Theoretical Issues on Nuclear Reaction Modeling

T. Kawano

T-2, LANL

Mar. 17-19, 2014

1 / 29

Introduction

Cross section calculations in the $keV\ to\ a\ few\ tens\ MeV\ range\ with\ the\ Hauser-Feshbach\ codes$

- Optical and statistical Hauser-Feshbach models with width fluctuation and pre-equilibrium emission play a central role.
 - width fluctuation models implemented in HF codes give some difference in calculated cross section.
- In general, we may say, the model works pretty well.
 - the Hauser-Feshbach codes, like GNASH, TALYS, Empire, CCONE, COH₃, etc., have been utilized in nuclear data evaluation successfully.
 - although many phenomenological or empirical treatments of model parameters are involved.

Issues Partially Solved, or Remain

Indeed, we calculate cross sections, but in a proper way?

- Deformed system needs more attention
 - direct inelastic scattering process in HF not so well studied
- Uncertainty in the photon and fission channels could be large
 - photon transmission coefficient from the Giant Dipole Resonance model
 - fission transmission with a simple WKF approximation
- Phenomenological model for pre-equilibrium process still widely used
 - long discussions on quantum mechanical models for PE, which were very active in 1990s, basically disappeared
 - Exciton model reasonably works in nuclear data evaluation
- … and more

Table of Contents

I will focus on neutron inelastic scattering issues in the modelling. This talk includes:

- Width fluctuation correction with direct reaction
- Quantum mechanical pre-equilibrium models

Statistical Model — Hauser-Feshbach

Energy average cross section over many resonances

$$\left\langle \sigma_{ab}^{\mathrm{fl}} \right\rangle = \sum_{\mu} \left\langle \left| \frac{g_{\mu a} g_{\mu b}}{E - W_{\mu}} \right|^2 \right\rangle$$

$$= \frac{1}{\Delta E} \int_{E' - \Delta E/2}^{E' + \Delta E/2} \frac{\Gamma_{\mu a} \Gamma_{\mu b}}{(E' - E_{\mu})^2 + \Gamma_{\mu}/4} dE'$$

$$= \left\langle \frac{2\pi}{D} \frac{\Gamma_{\mu a} \Gamma_{\mu b}}{\Gamma_{\mu}} \right\rangle$$

$$\simeq \frac{2\pi}{D} \frac{\langle \Gamma_{\mu a} \rangle \langle \Gamma_{\mu b} \rangle}{\langle \Gamma_{\mu} \rangle} = \frac{T_a T_b}{\sum_c T_c}$$

$$(1)$$

where

$$T_c = 2\pi \frac{\langle \Gamma_c \rangle}{D} \tag{2}$$

Theoretical Issues on Nuclear Reaction Model

Width Fluctuation Correction

The problematic assumption in the Hauser-Feshbach formula

$$\left\langle \frac{\Gamma_{\mu a} \Gamma_{\mu b}}{\Gamma_{\mu}} \right\rangle = \frac{\left\langle \Gamma_{\mu a} \right\rangle \left\langle \Gamma_{\mu b} \right\rangle}{\left\langle \Gamma_{\mu} \right\rangle} \tag{3}$$

This leads to the width fluctuation correction (WFC)

$$\langle \sigma_{ab}^{\rm fl} \rangle = \frac{T_a T_b}{\sum_c T_c} W_{ab} \tag{4}$$

Rigorously speaking, W_{ab} should be separated into two parts

- the elastic enhancement factor W_a
- the width fluctuation correction factor

Methods to Derive Width Fluctuation Correction

- Heuristic Method
 - generate resonances using Monte Carlo technique, and average them numerically
 - Moldauer (1980)
 - HRTW Hofmann, et al. (1975, 1980)
- Projection Operator Method
 - KKM, Kawai-Kerman-McVoy (1973)
 - using randomness of decay amplitude phase
- Maximum Entropy Method
 - Mello and Seligman (1980)
 - Fröhner (1986)

All models have some approximations, phenomenological parameters, or require numerical calculations.

GOE Triple Integral - Exact Solution for $N \to \infty$

Generalized Scattering Matrix

$$S_{ab} = S_{ab}^0 - 2i \sum_{\lambda\mu} \gamma_{\lambda a}^t (D^{-1}) \gamma_{\mu b}$$
(5)

$$D_{\lambda\mu} = \delta_{\lambda\mu} E - (H_{QQ})_{\lambda\mu} - (W_Q)_{\lambda\mu}$$
(6)

where the matrix H_{QQ} is replace by GOE. Verbaarschot, Weidenmüller, Zirnbauer obtained the $\langle S^{\rm fl}_{ab}(E_1)S^{\rm fl}_{cd}(E_2)\rangle$ in a triple integral, which is believed to be the correct answer.

$$\langle |S_{ab}|^2 \rangle = |\langle S_{ab} \rangle|^2 + \frac{T_a T_b}{8} \int_0^\infty d\lambda_1 \int_0^\infty d\lambda_2 \int_0^1 d\lambda \mu(\lambda, \lambda_1, \lambda_2)$$

$$\times \Pi_c \frac{1 - T_c \lambda}{\sqrt{(1 + T_c \lambda_1)(1 + T_c \lambda_2)}} J_{ab}(\lambda, \lambda_1, \lambda_2)$$
 (7)

Stochastic Scattering Matrix

Generate Resonances with the Random Matrix

- λ is a scale parameter (= 1.0)
 T_a given by eigenvalues of WW^T
- average spacing $d = \pi \lambda / N$, and strength $s = \langle \gamma^2 \rangle / d$
- poles are distributed in $[-2\lambda, 2\lambda]$
- We assume that the energy average $\langle |S_{aa}|^2 \rangle$ can be replaced by the ensemble average $|S_{aa}|^2$.

Monte Carlo Generated Cross Sections

- Statistical R-matrix includes distributions of d and γ ,
- while GOE has a random matrix in the propagator.

T. Kawano (T-2, LANL)

Theoretical Issues on Nuclear Reaction Model

Ensemble Average at the Center of GOE

Input

• N = 100, $\Lambda = 2$, s = 1

•
$$T_a = 0.708, T_b = 0.754$$

Output

•
$$\overline{|1 - S_{aa}|^2} = 2.85$$

• $\sigma^{\text{dir}} = |1 - \overline{S_{aa}}|^2 = 2.37$
• $\sigma^{\text{fl}} = \overline{|1 - S_{aa}|^2} - \sigma^{\text{dir}} = 0.477$

Model Prediction

•
$$\sigma^{\rm HF} = 0.343$$

•
$$\sigma^{\text{Moldauer}} = 0.478$$

•
$$\sigma^{\text{HRTW}} = 0.480$$

•
$$\sigma^{\text{GOE}} = 0.480$$

Inclusion of Direct Channel

- Approximated Method
 - calculate transmissions from Coupled-Channels S-matrix

$$T_a = 1 - \sum_c |\langle S_{ac} \rangle \langle S_{ac}^* \rangle|^2$$

- eliminate flux going to the direct reaction channels
- at least $\sum_a T_a$ gives correct compound formation cross section
- Hauser-Feshbach is performed in the direct-eliminated cross-section space (detailed balance)
- many HF codes employ this method
- Rigorous Method Engelbrecht-Weidenmüller transformation
 - diagonalize S-matrix to eliminate the direct channels
 - Hauser-Feshbach is performed in the channel space
 - transform back to the cross section space

Diagonalization of S-Matrix

Satchler's Transmission Matrix — Hermitian

$$P_{ab} = \delta_{ab} - \sum_{c} \langle S_{ac} \rangle \langle S_{bc}^* \rangle \tag{11}$$

The Hermitian matrix \boldsymbol{P} can be diagonalized by unitary transformation

$$(UPU^{\dagger})_{ab} = \delta_{ab}p_a, \qquad 0 \le p_a \le 1 \tag{12}$$

and the same \boldsymbol{U} diagonalizes the scattering matrix

$$\langle \tilde{S} \rangle = U \langle S \rangle U^T$$
 (13)

Statistical Model in Channel Space

New transmission coefficients are defined as

$$T_p = 1 - |\tilde{S}_{pp}|^2 \tag{14}$$

Perform GOE triple-integral in the channel space to calculate $\langle \tilde{S}_{pq} \tilde{S}^*_{rs} \rangle$, and finally a back-transformation from the channel space to the cross-section space reads

$$\langle |S_{ab}|^2 \rangle = \sum_{pqrs} U_{pa}^* U_{qb}^* U_{ra} U_{sb} \langle \tilde{S}_{pq} \tilde{S}_{rs}^* \rangle.$$
(15)

Note that ECIS calculates $\langle \tilde{S}\tilde{S}^*\rangle$ using Moldauer

Implementation of Direct Channel in Stochastic S-Matrix

$$S_{ab} = S_{ab}^{(0)} - i \sum_{\mu} \frac{\gamma_{\mu a} \gamma_{\mu b}}{E - E_{\mu} - (i/2)\Gamma_{\mu}}$$
(16)

Since $S_{ab}^{(0)}$ is unitary, it can be diagonalized by the orthogonal transformation. However, making a unitary matrix $S_{ab}^{(0)}$ including off-diagonal elements is not so easy.

Instead, we employ a K-matrix method.

$$K_{ab}(E) = K^{(0)} + \sum_{\mu} \frac{\tilde{W}_{a\mu}\tilde{W}_{\mu b}}{E - E_{\mu}}.$$
 (17)

where the background term $K^{(0)}$ is a model parameter. When K is real and symmetric, unitarity of S is automatically fulfilled.

Generated Elastic/Inelastic Cross Sections

Fixed resonances, background component K_{ab} changed from 0 to 2 $N=100, \ \Lambda=2$

Inelastic scattering cross sections affected by the direct reaction strongly due to the interference between the resonances and the background term.

Inelastic Scattering Enhancement

Compound inelastic scattering cross section as a function of $\sigma_{\rm DI}/\sigma_{\rm R}$

- The approximation method using the modified transmission coefficients does not work when the direct channels are strong,
- since the compound inelastic scattering cross sections will be largely underestimated.
- This happens when
 - direct cross section is strong
 - the number of open channels small

Classical Pre-Equilibrium Model

Exciton Model

- Nuclear state n-particle (n-1)-hole state
- Transition rate $\lambda_{nn'} = \frac{2\pi}{\hbar^2} |M|^2 \rho_{n'}$
- ${\ensuremath{\, \circ \,}}$ Solve a master equation for the occupation probability P(p,h)
- or a closed form expression using the never-come-back approximation
- $\, \bullet \,$ The matrix element $|M|^2$ is regarded as an adjustable parameter
- ρ is calculated from a single-particle state density model

Pros:

- calculation very quick
- generally the exciton model give a good fit to the energy distribution of emitted particles
- phenomenological model input parameters available
- Cons:
 - cannot calculate angular distributions nor spin-transfer

Quantum Mechanical Pre-Equilibrium Theory

- Feshbach, Kerman, and Koonin (1980)
- An extension of DWBA to the continuum state
- Particle-Hole excitation
- *P*-space (Multistep Direct, MSD)
 - Final state is unbound
 - Residual System: 1*p*-1*h*, 2*p*-2*h*, 3*p*-3*h*, ...
 - Green's Function for matrix elements involved
- Q-space (Multistep Compound, MSC)
 - Final state is bound
 - Residual System: 2*p*-1*h*, 3*p*-2*h*, 4*p*-3*h*, . . .

Multistep Direct MSD Theories

- FKK: Feshbach, Kerman, Koonin (1980)
 - On-Shell Approximation for Green's Function
- TUL: Tamura, Udagawa, Lenske (1982)
 - Adiabatic Approximation for the Second Step
- NWY: Nishioka, Weidenmüller, Yoshida (1988)
 - GOE for residual interaction
 - Sudden Approximation for the Second Step
- SCDW: Luo, Kawai, Weidenmüller (1991,1992)
 - Eikonal Approximation for the Second Step
- One-step process is dominant below 20 MeV
- The one-step expression of FKK, TUL, and NWY is the same (in principle), but modeling could be different.

Comparison of FKK, TUL, and NWY 2-Step

	FKK	TUL	NWY
Approximation	on-shell	Adiabatic	Sudden
Statistical Average	Each	Each	Final
State density	$ ho_{1p1h}\otimes ho_{1p1h}$	$ ho_{1p1h}\otimes ho_{1p1h}$	ρ_{2p2h}
Model	Equidistant	RPA	GÖE
Interference	No	No	Yes

Time Scale

FKK MSC/MSD Calculation Example

Strength of 2p-1h Formation and MSC/MSD Emissions for n + ${}^{93}Nb$

- Microscopic calculation of doorway state formation cross section
- Phase-space approximation of Chadwick and Young

TK, Phys. Rev. C, 59, 865 (1999).

GOE One-Step Cross Section

$$\frac{d^2 \sigma_{ba}}{dE d\Omega} = \frac{(2\pi)^4}{k_a^2} \sum_{\mu} |\langle \chi_b^{(-)} u_{m\mu} | \mathcal{V} | \chi_a^{(+)} u_0 \rangle|^2 \rho_{m\mu}(E_x)$$
(18)

Unperturbed State Density

$$\rho_m^{(0)}(E) = \sum_{\mu} \delta(E - \epsilon_{m\mu}) \tag{19}$$

Exciton State Density for fixed $J\pi$

$$\rho_m(E) = -\sum_{\mu} \frac{1}{\pi} \operatorname{Im} \frac{1}{E - \epsilon_{m\mu} - \sigma_m(E)}$$
(20)

Saddle Point Equation

$$\sigma_m(E) = \sum_n \mathcal{M}_{mn} \int \rho_n^{(0)}(\epsilon) \frac{1}{E - \epsilon - \sigma_n(E)} d\epsilon$$
(21)

Calculated One-Step MSD DDX

 $^{208}\mathrm{Pb}(n,n')$ reaction at $E_{in}=14.5,~E_{out}=7.5~\mathrm{MeV}$

TK and S. Yoshida, Phys. Rev. C, 64, 024603 (2001).

Notes on Practical Application of MSC/MSD

- They tend to be lengthy calculations, and not so practical in the nuclear data evaluation.
- Simplification applied
 - replace DWBA particle-hole matrix elements by the collective ones
 - TUL in Empire, or Koning and Akkermans [PRC 47, 724 (1993)]
 - second-step takes place on the ground state, rather than the excited state in the adiabatic approximation (TUL).
 - random sample of particle-hole pairs by Kawano and Yoshida (2001).
- Composite particle emissions is difficult to formulate.
- There is very little progress in this area nowadays, except for at CEA.
- Dupuis first time implemented QRPA in the MSD (see his talk).

FKK One-Step, Bonetti Approach

$$\frac{d^{2}\sigma_{ba}}{dEd\Omega} = \frac{(2\pi)^{4}}{k_{a}^{2}} \sum_{\mu} |\langle \chi_{b}^{(-)} u_{m\mu} | \mathcal{V} | \chi_{a}^{(+)} u_{0} \rangle|^{2} \rho_{m\mu}(E_{x})
= \sum_{j} \frac{(2\pi)^{4}}{k_{a}^{2}} \overline{|\langle \chi_{b}^{(-)} u_{m\mu} | \mathcal{V} | \chi_{a}^{(+)} u_{0} \rangle|^{2}} (2j+1) \hat{\rho}_{1p1h}(E_{x},j)
= \sum_{j} \left\langle \left(\frac{d\sigma_{ba}}{d\Omega} \right)_{DWBA} \right\rangle_{j} \hat{\rho}_{1p1h}(E_{x},j)$$
(22)

- Averaged DWBA cross section
 - $\, \bullet \,$ particle-hole excitation, with angular momentum transfer of j
- Phenomenological level density $\hat{\rho}_{1p1h}(E_x,j)$

Neutron Inelastic Scattering from U-238

TK, et al. Phys. Rev. C, 63, 034601 (2001).

Notes on Neutron Inelastic Scattering from Actinides

The model

- The phenomenological state density $\rho(E_x)$ drops sharply at the high side due to a pairing correction.
- **QRPA calculation** is required to take the embedded collective strength into account properly.

The experimental data

- The double-differential cross section data are not pure data with which we can compare the model calculations directly
 - background determination by MC required
 - energy broadening may not be a simple Gaussian

Concluding Remarks

- Direct calculation of cross section average by using the stochastic scattering matrix model that includes GOE
 - K-matrix background cross section given as the direct channel
 - unitarity of the total S-matrix ensured
 - comparison of two methods
 - generalized transmission coefficients, where direct reaction is subtracted
 - Engelbrecht-Weidenmüller transformation
 - looks both methods give very similar cross sections when the direct cross section is small.
 - however, the compound inelastic scattering might be largely underestimated when the direct channels are strong.
- Quantum mechanical pre-euqilibrium process
 - we should shed light on this again for better understanding of neutron inelastic scattering from actinides
 - maybe need more practical models for nuclear data evaluations