

DE LA RECHERCHE À L'INDUSTRIE

Importance of the neutron slowing down through ²³⁸U(n,n') for reactor applications.

Inherent nuclear structure uncertainties for the evaluation of its discrete levels.

Workshop Experimental and Theoretical problematic around actinides for future reactors « Espace de Structure Nucléaire Théorique, DSM-DAM », Orme des Merisiers, Saclay, France March 17, 2014

David BERNARD, CEA/DEN Cadarache.

david.bernard@cea.fr

www.cea.fr

Neutron slowing down in reactor media.

Importance of ²³⁸U(n,n') DDXS for accurate neutron transport calculation.

Integral trend tracking for ²³⁸U(n,n') to the continuum.

Proposed reduction of neutron-TOF inelastic γ-production XS : inherent nuclear structure uncertainty

Neutron slowing down in reactor media.

Importance of ²³⁸U(n,n') DDXS for accurate neutron transport calculation.

Integral trend tracking for ²³⁸U(n,n') to the continuum.

Proposed reduction of neutron-TOF inelastic γ-production XS : inherent nuclear structure uncertainty

The inelastic scattering is more efficient that the elastic process (because of the small amount of kinetic energy available for the emitted neutron: residual nucleus is in an excited state).

Kallbach-Mann systematics (continuum) emphasize neutron slowing down from [1-5]MeV to [10keV to 2MeV] but **350keV for max probability**

Neutron slowing down in reactor media.

Importance of ²³⁸U(n,n') DDXS for accurate neutron transport calculation.

Integral trend tracking for ²³⁸U(n,n') to the continuum.

Proposed reduction of neutron-TOF inelastic γ-production XS : inherent nuclear structure uncertainty

Importance of ²³⁸U(n,n')

French COMAC covariance

COMMARA-2 covariance

- ²³⁸U covariance matrices amongst international evaluations (ENDF/B-VII, JENDL-4, TENDL-2009, French-COMAC) are not consistent
- More of that, the discrepancies between major evaluations can reach 10% on the plateau
 - A 15% standard deviation, constant with neutron energy, seems realistic

DE LA RECHERCHE À L'INDUSTRIE

Importance of ²³⁸U(n,n')

OECD/Uncertainty Analysis and Modelling Benchmark

241 assemblages

cœur UOX

UOX 2.1% ²³⁵U assembly

UOX 4.2% ²³⁵U assembly

UOX 3.2% ²³⁵U assembly with 20 UO2-Gd₂O₃ rods

UOX 4.2% ²³⁵U assembly with 12 UO2-Gd₂O₃ rods

Stainless steel reflector assembly

Conditions 'HFP, BOC'

Parameter	Value
Fuel Temperature (K)	900
Cladding Temperature (K)	610
Moderator (Coolant) Temperature (K)	584
Pression (Coolant) (bars)	155
Reactor Power (MWt)	4250
Bore (ppm)	1300

W Borated water reflector assembly Table VI: Propagation of nuclear data uncertainties to the GEN-III assembly power

lsotope	Reaction	Core centre (%)	Power peak (%)	Neighbour of power peak (%)
	(n,f)	0.4	0.2	0.3
23511	ν	0.1	0.0	0.0
0	(n,γ)	0.6	0.3	0.3
	correlation (n,f)-(n,y)	(-) 0.3	(-) 0.2	(-) 0.2
	(n,f)	0.0	0.0	0.0
238	ν	0.2	0.1	0.1
0	(n,γ)	0.8	0.3	0.3
	(n,n')	4.6	2.2	2.5
¹ µ	(n,γ)	0.1	0.0	0.0
	(n,n)	1.8	0.9	1.1
¹⁶ O	(n,α)	0.1	0.0	0.0
¹⁰ B	(n,α)	0.1	0.0	0.0
¹⁵⁵ Gd	(n,γ)	0.5	0.4	0.6
¹⁵⁷ Gd	(n,γ)	1.0	0.8	1.3
	(n,γ)	0.7	0.4	0.5
⁵⁶ Fo	(n,n)	0.9	0.4	0.6
16	(n,n')	0.1	0.0	0.1
	correlation (n,n)-(n,n')	(-) 0.2	(-) 0.1	(-) 0.1
	(n,γ)	0.1	0.0	0.1
⁵² Cr	(n,n)	0.4	0.1	0.2
	(n,n')	0.0	0.0	0.0
Total	-	5.3	2.7	3.2

The total uncertainty reaches 5.3% $@1_{\sigma}$. This is more than the required target accuracy (1%) on PWR power map calculation.

²³⁸U(n,n') takes 85% of this overall uncertainty.

A slight modification of this XS can cause a tilt in the calculation of the flux and so on the deposited energy (burn-up)

Target accuracy for $^{238}U(n,n')$ is about 3%.

In parallel of TOF measurements, ²³⁸U(n,n') integral trend tracking can be done !

²³⁸U new evaluation + associated new (and reduced) covariances has to be perform !

Neutron slowing down in reactor media.

Importance of ²³⁸U(n,n') DDXS for accurate neutron transport calculation.

Integral trend tracking for ²³⁸U(n,n') to the continuum.

Proposed reduction of neutron-TOF inelastic γ-production XS : inherent nuclear structure uncertainty DE LA RECHERCHE À L'INDUSTRI

Integral trend tracking

First set:critical spheres (Radius r1) with fissile materialSecond set:critical spheres (Radius r2<r1) with the same fissile material are
reflected by 238U

First order perturbation theory shows that the sensitivity to this reflector saving can be expressed as $S_{Reflector} = S(G) = S_{r2} - S_{r1}$

Proof by deterministic calculations:

[pcm/%]	Flattop	Jezebel	S _G =∆S	
²³⁹ Pu	+589	+639	-50 🗲	
²⁴⁰ Pu	+17	+20	-2	
²⁴¹ Pu	+2	+2	0	
²³⁵ U	+5	+0	5	
²³⁸ U	-30	+0	-30	

Constraint by JEZEBEL k_{eff} uncertainties 639pcm/% = Δ Exp / Δ Pu239 $\rightarrow \Delta$ Pu239 = 200 / 639 $\approx 0.3\%$

Then, the reflector saving uncertainty due to ²³⁹Pu is about: $\Delta G = 50 \text{pcm}/\% * 0.3\% = 15 \text{ pcm}.$

DE LA RECHERCHE À L'INDUSTRI

Large core k_{eff}: Big-10

NUCLEAR SCIENCE AND ENGINEERING: 72, 230-236 (1979)

A Critical Assembly of Uranium Enriched to 10% in Uranium-235

G. E. Hansen and H. C. Paxton

University of California, Los Alamos Scientific Laboratory P.O. Box 1663, Los Alamos, New Mexico 87545

> Received April 16, 1979 Accepted May 30, 1979

With ENDF/B-V over the horizon, our comparisons of calculated and experimental parameters must be considered tentative. The 1% disagreement of eigenvalues, for example, would increase as the result of a proposed hardening of the thermal fission spectrum, unless there is compensation such as increased inelastic scattering by ²³⁸U. Similarly, the change by itself, proposed to improve agreement with spectral indexes measured in the thermal fission spectrum, would lead to further disagreement of Big Ten spectral indexes, most notably, the value of $\bar{\sigma}_f(^{238}\text{U})/\bar{\sigma}_f(^{235}\text{U})$.

Infinite core $k_{eff}=k_{\infty}=1.0$: SCHERZO+MINERVE+SNEAK8 (²³⁵U/²³⁸U=6.7% enrichment is needed to be just critical for an infinite geometry) avoiding so the sensitivity to Secondary Angular Distributions !!!

3D flux measurements in large PWRs :

⇒ Fission Chamber measurements at BOL HZP start-up : French N4 1500 MWe

N4 Radial cut TRIPOLI4 geometry

Accurate 3D Monte-Carlo TRIPOLI4 calc. using JEFF3.1.1

Critical spheres

Experiments	Pu bare	Pu reflected	Pu bare	Pu reflected	Pu reflected	²³⁵ U bare	²³⁵ U reflected	235 U reflected
	PMF-22	$\mathrm{PMF}\text{-}20\&41$	PMF-01	PMF-06	PMF-10	HMF-01	HMF-02	HMF-28
$k_{\text{eff}}^{exp} \pm \delta k_{\text{eff}}^{exp} (1\sigma)$	$1.\pm 0.0020$	$1.\pm 0.0019$	$1.{\pm}0.0015$	$1.\pm 0.0014$	$1.\pm 0.0015$	$1.{\pm}0.0015$	$1.\pm 0.0015$	$1.\pm 0.0030$
TRIPOLI4/JEFF-3.1.1	0.9983	1.0034	1.0001	1.0032	1.0016	0.9969	1.0003	1.0022
^{<i>nat</i>} U reflector worth	C-E = 51	0 ± 280 pcm	C-]	$E = 240 \pm 200$	pcm	C	$C-E = 370 \pm 200$	pcm

Satisfactory Keff prediction But the reactivity worth of ²³⁸U reflector is overestimated by about 400 pcm

■ K ∞ =1 – BIG TEN – $\sigma_f^{U238}/\sigma_f^{U235}$ – PWR radial map

Experiments	SCHERZO	BIG TEN	SCHERZO	PWR-N4
-	\mathbf{k}_{∞}	$k_{ m eff}$	$\sigma_{238_{U(n,f)}}/\sigma_{235_{U(n,f)}}$	P_{center}/P_{periph}
Measured Value	$1.0000 {\pm} 0.0030$	$1.0045 {\pm} 0.0020$	$0.0227 {\pm} 0.0003$	
TRIPOLI4/JEFF-3.1.1	0.9903	0.9987	0.0209	
(C-E)/E	-970 $\pm 300 \text{ pcm}$	-580 $\pm 200~{\rm pcm}$	$-8.1 \pm 1.5\%$	$-4.0{\pm}2.0\%$

- Keff of large cores with metallic U slightly-enriched fuel is strongly underestimated

- F8/F5 strongly underestimated

 \Rightarrow ²³⁸U fast-XS trend tracking is carried-out on 4 macrogroups :

- Group 1 $E_n > 5 \text{ MeV}$
- Group 2 2 MeV < En < 5 MeV
- Group 3 0.8 MeV < En < 2 MeV
- Group 4 En < 0.8 MeV

-By using Monte Carlo direct calculations for sensitivity vectors

Trend results (Generalized Least Square)

Nuclear Data	Prior	Pu Spheres	Pu Spheres	²³⁵ U Spheres	SCHERZO	BIG TEN	SCHERZO	PWR-N4
Data	uncert.	VNIITF	LANL	LANL	k_{eff}	$k_{ m eff}$	$\sigma_{f}^{238} / \sigma_{f}^{235}$	Powermap
$^{238}U(n,n')$ G1	15%	-2.2 ± 14.5	$-0.9{\pm}14.5$	-1.3 ± 14.7	-2.2 ± 13.6	-2.2 ± 13.6	-6.2 ± 13.0	-4.1 ± 13.5
$^{238}U(n,n')$ G2	15%	-5.7 ± 10.7	-2.5 ± 10.7	$-4.0{\pm}12.0$	-4.3 ± 8.9	$-3.7{\pm}10.4$	-12.0 ± 3.5	$-8.4{\pm}6.9$
$^{238}U(n,n')$ G3	15%	$-5.9{\pm}10.4$	-2.6 ± 10.5	$-4.4{\pm}11.3$	-3.8 ± 10.5	-2.9 ± 12.3	-10.0 ± 8.7	-7.4 ± 9.4
$^{238}U(n,n')$ G4	15%	$-3.7{\pm}13.4$	-1.6 ± 13.5	-3.5 ± 12.8	-2.3 ± 13.6	-0.3 ± 15.0	$0.0{\pm}15.0$	$-1.7{\pm}14.7$
$^{238}U(n,n) G1$	7%	$0.0{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$
$^{238}U(n,n)$ G2	7%	-0.2 ± 7.0	-0.1 ± 7.0	-0.2 ± 7.0	$0.0{\pm}7.0$	$0.1{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$
$^{238}U(n,n)$ G3	7%	-0.6 ± 6.9	-0.3 ± 6.9	-0.6 ± 6.9	$0.0{\pm}7.0$	$0.1{\pm}7.0$	$0.0{\pm}7.0$	$0.0{\pm}7.0$
$^{238}U(n,n) G4$	3%	-0.5 ± 2.9	-0.2 ± 2.8	-0.5 ± 2.8	$0.0{\pm}3.0$	$0.1{\pm}3.0$	$0.0{\pm}3.0$	$0.0{\pm}3.0$
238 U(n,n) SAD-P1	3%	0.5 ± 2.8	0.3 ± 2.8	$0.4{\pm}2.8$	$0.0{\pm}3.0$	-0.1 ± 3.0	$0.0{\pm}3.0$	$0.1{\pm}3.0$
$^{238}U(n,\gamma) G4$	3%	$0.2{\pm}3.0$	$0.1{\pm}3.0$	$0.1{\pm}3.0$	$-0.4{\pm}2.8$	-0.5 ± 2.5	$0.0{\pm}3.0$	$-0.4{\pm}2.9$
$^{238}U(n,f)$	1%	-0.03 ± 1.00	-0.01 ± 1.00	-0.03 ± 1.00	$0.02{\pm}1.00$	$0.03{\pm}1.00$	0.08 ± 1.00	$0.00{\pm}1.00$
$^{235}U\nu$	0.7%	$0.00{\pm}0.70$	$0.00{\pm}0.70$	$0.00 {\pm} 0.70$	$0.06 {\pm} 0.68$	$0.09{\pm}0.65$	$0.00{\pm}0.70$	$0.01{\pm}0.70$

Nuclear Data	Prior	Whole Expe	riments
Data	uncert.	with ND Correlation	no correlations
$^{238}U(n,n')$ G1	15%	$-5.4{\pm}12.8$	-1.6 ± 14.8
$^{238}U(n,n')$ G2	15%	-11.4 ± 3.0	-12.7 ± 5.6
$^{238}U(n,n')$ G3	15%	-9.7 ± 7.7	-6.4 ± 12.9
$^{238}U(n,n')$ G4	15%	$+3.2{\pm}6.6$	$+3.3\pm6.7$
$^{238}U(n,n) G4$	3%	$0.1{\pm}2.6$	-0.2 ± 2.6
$^{238}U(n,\gamma) G4$	3%	$+0.8{\pm}1.8$	$+0.7\pm1.8$
$^{238}U(n,f)$	1.0%	$+0.08 \pm 0.96$	$+0.09 \pm 0.96$
$^{235}U\nu$	0.7%	-0.15 ± 0.52	-0.14 ± 0.52

No particular trend on JEFF-3.1.1 ²³⁸U elastic or fission cross section (the reduction of the *a priori* uncertainty is not significant).

But the ²³⁸U(n_{[2;5]MeV},n'γ) cross section (including so double differential XS) seems to be overestimated by about (11±3)%. (note that *a priori* uncertainty was about 15%) This result is not that much sensitive to correlation matrix or initial variances !

The same analysis is now performed for discrete and continuum inelastic channels (sensitivity vectors are performed the same way)

Whatever the correlation is between levels ($-0.9 \rightarrow 0.9$), the consistent conclusion is:

JEFF-3.1.1 ²³⁸U(n,n'_c γ)+(SAED) seems to be overestimated by about (10±3)%

New experiments were perform 1.5 months ago at CEA-DAM CALIBAN facility to achieve inelastic scattering by fast neutron propagation through ²³⁸U sphere by dosimetric measurements.

This slowing down process (Age in the Fermi sense) is highly and specifically sensitive to ²³⁸U(n,n').

Analysis is on-going...

Neutron slowing down in reactor media.

Importance of ²³⁸U(n,n') DDXS for accurate neutron transport calculation.

Integral trend tracking for ²³⁸U(n,n') to the continuum.

Proposed reduction of neutron-TOF inelastic γ-production XS : inherent nuclear structure uncertainty

Because of possible quasi-elastic scattering (mixing so first inelastic levels and elastic channel) in **EXFOR scattered neutron measurements** (see R. Capote et al. ND2013), the deduced inelastic channel (continuum) should be overestimated.

(sort of Pandemonium for low lying levels versus "deeply" inelastic scattering)

Hopefully, γ -production XS measurements are on going at IRMM !

DE LA RECHERCHE À L'INDUSTRI

IRMM-TOF Data Reduction: from discrete γ-production to n-XS

Considering 1^{rst} inelastic level:

$$\sigma_{(n,n'1)} \left(44.9 * \frac{239}{238} < E_n < 148.4 * \frac{239}{238} \right) = \frac{\sigma_{\gamma(44.9KeV)}(E_n)}{I_{\gamma}}$$
$$= \frac{\sigma_{\gamma(44.9KeV)}(E_n)}{I_{transition}} (1+\alpha)$$

IRMM-TOF Data Reduction: from discrete γ-production to n-XS

Generalization to discrete levels ($E_n < E_{continuum} < S_{2n}$)

No metastable state \rightarrow Each populated level decays, Flux conservation is enforced:

$$\sigma_{(n,n'i)}(E_n) = \left(\sum_{down=0}^{i-1} \delta_{E_n > Threshold(i)} \times \frac{\sigma_{\gamma(i \to down)}(E_n)}{I_{\gamma(i \to down)}}\right) - \left(\sum_{up=i+1}^{Alldiscret} \delta_{E_n > Threshold(up)} \times \frac{\sigma_{\gamma(up \to i)}(E_n)}{I_{\gamma(up \to i)}}\right)$$

IRMM-TOF Data Reduction: from discrete γ-production to n-XS

Generalization to discrete and continuum levels ($E_n < S_{2n}$)

DE LA RECHERCHE À L'INDUSTRI

IRMM-TOF Data Reduction: from discrete γ-production to n-XS

$$\begin{aligned} \sigma_{(n,n'i)}(E_n) &= \left(\sum_{down=0}^{i-1} \delta_{E_n > Threshold(i)} \times \frac{\sigma_{\gamma(i \to down)}(E_n)}{I_{\gamma(i \to down)}}\right) - \left(\sum_{up=i+1}^{Alldiscrete} \delta_{E_n > Threshold(up)} \times \frac{\sigma_{\gamma(up \to i)}(E_n)}{I_{\gamma(up \to i)}}\right) \\ &- \sigma_{(n,n'c)} \times I_{\gamma} \end{aligned}$$

$$\begin{aligned} \sigma_{(n,n'i)}(E_n) &= \left(\sum_{down=0}^{i-1} \delta_{E_n > Threshold(i)} \times \frac{\sigma_{\gamma(i \to down)}(E_n)}{I_{\gamma(i \to down)}}\right) - \left(\sum_{up=i+1}^{Alldiscrete} \delta_{E_n > Threshold(up)} \times \frac{\sigma_{\gamma(up \to i)}(E_n)}{I_{\gamma(up \to i)}}\right) \\ &- \sigma_{(n,n'c)}(E_n) \times \left(\sum_{XL} y_{XL}^2 \times (S_n + E_n - E_i)^{2L+1} \times \frac{f_{XL}(S_n + E_n - E_i)}{\rho(S_n + E_n)}\right) \end{aligned}$$

- Discrete XS are linked to continuum XS.
- Measuring discrete levels versus incident energy can constraint continuum XS.

But,

- Low lying level nuclear structure data uncertainties have to be accounted for (as A. Plompen proposed, a coincidence analysis could be very helpful !)
- Model parameter as well: giant resonance, level density parameters...RIPL E_{max}

Uncertainty of discrete levels nuclear structure data

$$\frac{\operatorname{var}[\sigma_{(n,n'i)}(E_n)]}{\sigma_{(n,n'i)}^2(E_n)} \approx \left(\sum_{down=0}^{i-1} \delta_{E_n > Threshold(i)} * \frac{\sigma_{\gamma(i \to down)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(i \to down)}]}{I_{\gamma(i \to down)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\sigma_{\gamma(up \to i)}^2(E_n)}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_{\gamma(up \to i)}]}{I_{\gamma(up \to i)}^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_n]}{I_n^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_n]}{I_n^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_n]}{I_n^2}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} * \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} + \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)} + \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)}\right)$$

$$= \left(\sum_{up=i+1}^{\infty} \delta_{E_n > Threshold(up)} + \frac{\operatorname{var}[I_n]}{\sigma_{(n,n'i)}^2(E_n)$$

DE LA RECHERCHE À L'INDUSTR

A priori nuclear structure uncertainty reaches 12% for ²³⁸U(n,n'₁) and 25% for ²³⁸U(n,n'₂).

For others, no data reduction is achievable (a priori >100% !) after 1MeV !

Uncertainty of discrete levels nuclear structure data

Which transition is responsible of 12% for n1 and 25% for n2 ?

Neutron Kinetic Energy [MeV]

Beforehand, neutron-XS reduction from TOF measurements, one should improved drastically following discrete transitions:

-	For (n,n'5) data reduction:		
	\circ L11(950.12KeV;2 ⁻) \rightarrow	L5(680.11KeV;1 ⁻);	I_+=48 \pm 8 (XS unc. \sim 0 to 140%)
	○ L5(680.11KeV,1) \rightarrow	L0(0KeV,0⁺);	$I_{t}\text{=}79\text{\pm}4$ (XS unc. \sim 0 to $$ 50%)
-	For (n,n'6) data reduction:		
	\circ L16(1037.25KeV,2 $^{\scriptscriptstyle +}$) $ ightarrow$	L6(731.93KeV,3 ⁻);	I_{t} =11.8 \pm 0.5 (XS unc. ~ 0 to 220%)
	◦ L11(950.12KeV,2 ⁻) →	L6(731.93KeV,3 ⁻);	$I_{t}\text{=}~53\pm6$ (XS unc. ~0 to $~30\%\text{)}$
-	For (n,n'8) data reduction:		
	◦ L8(826.64KeV,5 ⁻) →	L2(148.38KeV,4 ⁺);	I_{t} =100 ±6 (XS unc. ~ 0 to 250%)
	\circ L8(826.64KeV,5 ⁻) $ ightarrow$	L3(307.18KeV,6 ⁺);	$I_{\text{t}}\text{=}~50\text{\pm}3~$ (XS unc. \sim 0 to 250%)

Starting from ${}^{238}U(n,n_c'\gamma)$ in JEF-2.2 stored in MF3-MT91

DE LA RECHERCHE À L'INDUSTR

cea

Focus on existing recent evaluations

Continuum channels open between $E_n = 1.2 \text{ MeV}$ to 1.34 MeV(could it be treated as virtual-discrete levels instead of continuum ?) NB: E_{max} values: 1.45 (RIPL2.0) and 1.41 (RIPL3.0) MeV

As a consequence, the threshold-tail is then more or less strong. The inelastic to continuum reaction rate (convoluted to PFNS) can change (by -10% from JEFF-3.1.1 to IAEA/IB33)!!

1. Accurate calculations of Fast Breeder and Light Water reactors need better knowledge for ²³⁸U(n,n'). Moreover, an integral trend is to reduce this XS (starting from JEFF311).

2. A new evaluation is needed. A tight covariance matrix is necessary as well in order to reduce the final uncertainty of parameters (k_{eff} , power map...) of specific designed reactors.

3. n-TOF γ -production will be very helpful for this, but nuclear structure data uncertainties have to be handle carefully.

- [1] M. Salvatores et al., ND2007, EDP Sciences, Paris, France
- [2] OECD/NEA: Nuclear Data High Priority Request List + WPEC/SG26
- [2] M. Kerveno et al., Phys. Rev. C 87, 024609 (2013)
- [3] OECD/WPRS/Expert Group on Uncertainty Analysis in Modelling
 [4] A. Santamarina et al., ND2013, Nuclear Data Sheets, New York, USA
- [5] R. Capote et al., ND2013, , Nuclear Data Sheets, New York, USA [6] A. Santamarina et al., Physor14, Japan

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance T. +33 (0)4 42 25 49 13 | F. +33 (0)4 42 25 70 09

Thank you.

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Direction de l'Energie Nucléaire Département d'Etude des Réacteurs Service de Physique des Réacteurs et du Cycle Laboratoire d'Etudes de PHysique