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Neutron induced reactions 

direct reactions 
compound nucleus 

reactions 
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1 meV 10 MeV neutron kinetic energy 

1 nm neutron wave length 10 fm 
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The n_TOF facility at CERN 
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PS 20 GeV!

Linac!
50 MeV!

Booster!
1.4 GeV!

n_TOF 185 m  
flight path 

Pb Spallation 
Target 

proton beam 
20 GeV/c 
7x1012 ppp 

neutron beam 
10o prod. angle 

The n_TOF facility at CERN 
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The n_TOF facility at CERN 

PS 20 GeV/c 

PSB 1.4 GeV/c 

n_TOF 185m flight path 

n_TOF Pb target 

protons 

neutrons 
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Pulsed white neutron source: 
• 20 GeV/c protons 
• neutrons from spallation 
• 6 ns rms pulse width 
• frequency 1 pulse/2.4 seconds 
• separate cooling and moderation 
• flight path length EAR1: 185 m 
• @source: 7x1012 protons/pulse 
• @source: 2x1015 neutrons/pulse  
• @EAR1: 5.105(capture) – 5.107(fission) neutrons/pulse 

  
 
 
Main features: 

 • Large energy range in one experiment (0.1 eV - 250 MeV) 
 • Favorable signal to noise ratio for capture  
   on radioactive isotopes (actinides, fission products) 

!

protons 

neutrons 

Pb 

The n_TOF facility at CERN 

phase II target 
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• n_TOF L=185 m, f=0.25 Hz 
• GELINA* L=30 m, f=800 Hz 
• NFS* L=20 m, f=220 kHz 
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• 1998 - 2001  preparation and commissioning  
• 2002 - 2004  phase I data taking  
!

beam!

no beam!

The n_TOF facility at CERN: phase I 

2001! 2002! 2003! 2004! 2005! 2006! 2007! 2008! 2009! 2010! 2011! 2012!

phase I phase II 

today 

2013! 14!20!

phase III 
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Capture measurement setup with C6D6 detectors 

 

 

C6D6 detector! sample!
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139La(n,γ) 

Phys. Rev. C 75 (2007) 035807   
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232Th(n,γ) 

Resolved resonances Unesolved resonances 

Phys. Rev. C 85 (2012) 064601     Phys. Rev. C 73 (2006) 054610 
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186, 187, 188Os(n,γ) at n_TOF 

Phys. Rev. C 82 (2010) 015804 
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Measurements with BaF2 detector 

 
• calorimeter with 40 BaF2 crystals  
• 4π solid angle 
• 100% efficiency for gamma rays 
• operating since  2004 
 
 
 

n 
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240Pu(n,γ) 
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243Am(n,γ) 
10 mg sample 
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233U(n,γ) 

 
 

Fission background in capture 
spectrum deduced from 
fission-only resonance  
!
91 mg 233U! !
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Fission detectors 

Parallel plate avalance counters   
(PPACS) fission detectors 

Fission ionization chamber  
detectors 
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PPAC 234U(n,f) 
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233U(n,f) 

Eur. Phys. J. A 47 (2011) 2  
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n_TOF CERN phase I (2001-2004) 
Summary of measurements 

capture C6D6
 !

24,25,26Mg !
56Fe !
90,91,92,93,94,96Zr 
139La !
151Sm !
186,187,188Os 
197Au !
204, 206, 
207,208Pb !
209Bi !
232Th!

capture BaF2
 

197Au 
233,234U 
237Np 
240Pu 
243Am 

fission PPAC!

natPb!
209Bi!
232Th!
237Np !

233,234,235,238U 

fission FIC!

232Th!
237Np !

233,234,235,236,238U!
241,243Am!
245Cm  
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• 1998 - 2001  preparation and commissioning  
• 2002 - 2004  phase I data taking  
• 2005 - 2007  spallation target upgrade  
• 2008             first protons on target 
• 2009             phase II data taking  
• 2010 - 2012  class A lab. borated water!

beam!

no beam!

The n_TOF facility at CERN 

2001! 2002! 2003! 2004! 2005! 2006! 2007! 2008! 2009! 2010! 2011! 2012!

phase I phase II 

today 

2013! 14!20!

phase III 
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n_TOF CERN phase II 
New Spallation Target 

• At the end of 2004 an increased radioactivity was observed in the  
  filters of the cooling water circuit. Stop of n_TOF beam. 
 
 
• In 2007 the target has been thorougly investigated and a new design 
  was made. 

 - new lead spallation target 
 - separated cooling and moderation water circuit 
 - cooling system with monitoring of pH, O2, T etc. 
 - new ventilation station 

  
• upgraded facility was ready by the end of 2008 
  
• new measurement programme started in 2009  
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Old Spallation Target 
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New Spallation Target 
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New Spallation Target in 2009 
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n_TOF CERN: Target/moderator configurations 

phase I target 
2001-2004 

protons Pb 
protons 

phase II target 
2009-2012 

2 configurations: 
water, water+10B 

1 configuration 
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Pulsed white neutron source: 
• 20 GeV/c protons 
• neutrons from spallation 
• 6 ns rms pulse width 
• frequency 1 pulse/2.4 seconds 
• separate cooling and moderation 
• flight path length EAR1: 185 m 
• @source: 7x1012 protons/pulse 
• @source: 2x1015 neutrons/pulse  
• @EAR1: 5.105(capture) – 5.107(fission) neutrons/pulse 

  
 
 
Main features: 

 • Large energy range in one experiment (0.1 eV - 250 MeV) 
 • Favorable signal to noise ratio for capture  
   on radioactive isotopes (actinides, fission products) 

!

protons 

neutrons 

Pb 

The n_TOF facility at CERN 

phase II target 



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA/Saclay      ESNT Workshop, Saclay, March 19, 2014                    34 

normal water 

borated water 

The n_TOF neutron spectrum 
moderator with/without boron 
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n_TOF setup  EAR1 

C6D6 detectors 

BaF2 TAC MicroMegas 

neutrons 
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Entrance of n_TOF beam line 

36 

Escape line 

EAR-1 

The n_TOF beam line EAR1 
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MicroMégas 

neutrons 

BaF2 TAC 

MicroMégas 

n_TOF setup  EAR1 
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MicroMegas-based neutron beam profiler 
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Beam profile using MicroMegas 
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Microbulk microscope picture 

40 µm 100 µm 
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MicroMegas-based neutron beam profiler 
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63Ni(n,γ) 

63Ni-sample 
62Ni-sample 

Sample material 62Ni and 63Ni (12%, 112 mg),  
same as at DANCE (LANL), but now chemically  
cleaned from 2% Cu impurities at PSI, Switzerland. 

PRL 110 (2013) 022501 
PRC 89 (2014) 025810 
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197Au(n,γ) 

5

thresholds and comparing the resulting capture yields.
The sample-related correction fms for neutron multiple-
scattering and neutron-self-shielding was calculated with
the code SESH [29]. As shown in Fig. 2, fms is always
smaller than 4% in the considered energy range. Assum-
ing a conservative value for the uncertainty of 10%, this
correction will enter into the final uncertainty with 0.4%.

FIG. 2: Correction factor for multiple scattering and self-
shielding calculated with the code SESH [29].

For the flux we used a modeled version of the standard
flux of n TOF phase I [30]. This flux represents the to-
tal number of incoming neutrons per pulse crossing the
plane at the sample position and needs to be corrected
by the fraction intercepted by the sample, which is the
energy dependent fraction A(E) of eq. 1. The beam pro-
file in different energy regions has been simulated (2 to
4% uncertainty) and is in agreement with corresponding
measurements [23]. This factor relative to the value at
4.9 eV is plotted in Fig. 3 for a sample 15 mm in diameter.
The same factor was used in previous measurements on
232Th [31] which were in excellent agreement with results
on 232Th obtained at GELINA [32]. The uncertainty on
the beam profile correction factor is negligible.

B. Background components

The background in the keV region is essentially
determined by elastic neutron scattering and by the
contributions due to in-beam γ rays. These components
were determined experimentally in dedicated runs with
a lead sample. Additional measurements with neutron
filters have been made for normalization of these back-
ground runs. The sample-independent background was
obtained with an empty position in the sample ladder.
The individual spectra are shown in Figure 4. The effect
of sample activation was practically negligible thanks to
the highly intense neutron pulses of the n TOF facility.
The contribution of neutron induced and (to a lesser
extent) the sample-independent background measured

FIG. 3: The fraction of the neutron beam covered by a sam-
ple 15 mm in diameter relative to the value applied at the
saturated resonance at 4.9 eV.

without sample exhibit a smooth decrease close to an
1/v dependence with neutron energy. The background
reduces to this component below 200 eV.

FIG. 4: (Color online) Weighted Au spectrum compared to
runs with Pb and with an empty position in the sample ladder.

Between 200 and 500 keV the detection of in-beam γ
rays, which are scattered in the sample represents the
main background contribution. These γ rays originate
mostly from neutron captures in the cooling water or in
the spallation target during and after the moderation
process, and reach the experimental area at the same
time as neutrons in the energy range between 1 and
100 keV. The photon energy spectrum, which exhibits
a prominent peak at 2.2 MeV from capture events
in hydrogen, extends up to several MeV [12] and is
energetic enough to be registered with considerable effi-
ciency above the 200 keV threshold used in data analysis.

Phys. Rev. C 81 (2010) 044616 
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241Am sample 

12 mm!
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241Am (n,γ) data (C6D6) 

neutron energy (eV)
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Phys. Rev. C (2014) acc. 
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241Am (n,γ) data (C6D6) 

Phys. Rev. C (2014) acc. 
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241Am (n,γ) data (C6D6) 

Phys. Rev. C (2014) acc. 

 threshold (eV)0
nΓg

-610 -510 -410

N
um

be
r o

f l
ev

el
s

0
50

100
150
200
250
300
350
400
450

 [0.0-150.0] eV, N=190
n

range E
lower limit fit = 2.4e-05 eV

>= 5.656e-05 eV0
nΓ=261.1, <g0fitted N

 = 0.9850S×4=0.574 eV, 100 D⇒

 [0.0-320.0] eV, N=362
n

range E
lower limit fit = 4.6e-05 eV

>= 6.303e-05 eV0
nΓ=611.1, <g0fitted N

 = 1.2040S×4=0.524 eV, 100 D⇒



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA/Saclay      ESNT Workshop, Saclay, March 19, 2014                    48 

Angular	
  distribu.on	
  of	
  fission	
  fragments	
  

Fission from 235U 
target 

Background from 
neighboring 238U 
target 

-  PPAC with 10 parallel plate detectors tilted 45 degrees with respect to the 
beam. 
-  9 samples: 235U, 238U, 237Np and 6x232Th. 

NIM A743 (2014) 79 
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Simultaneous capture and fission of 235U 

EPJ A48 (2012) 29 
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87Sr spin assignments 

Blue dots: counts integrated over a resonance 

Only resonance with known spin J=4 
from observed strong E1 primary transition to  
J=3- state 



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA/Saclay      ESNT Workshop, Saclay, March 19, 2014                    51 

Sn!

énergie d'excitation U
de

ns
ité

 d
e 

ni
ve

au
x

S
n

excitation energy 
le

ve
l d

en
si

ty
 

ex
ci

ta
tio

n 
en

er
gy

 

Nuclear level densities 

low-lying levels:!
Count levels, all Jπ!

level density  
model!

neutron resonances:!
Count levels, selected Jπ, 
extract D0!

neutron binding  
energy 
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Gamma-ray spectra from 87Sr+n with TAC 

n 
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87Sr(n,γthermal)88Sr spectrum 

data ENSDF 
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87Sr(n,γthermal)88Sr spectrum 

2+ à 0+ 

3– à 2+ 
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Simulated decay of 88Sr* 
multiplicity, method 1 
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Spin dependence of population ratio 
method 2 

s-wave resonances p-wave resonances 
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Angular distribution of primary dipole transitions 
method 3 

W (✓) = 1 +A2P2(cos ✓)

A2 = A2(S, Jr, Jf )

For s-waves: isotropic 
For p-waves: may be anisotropic, depends on  
channel spin S, resonance spin Jr and final state Jf 

Example: the primary transition  
from a Jr=4 resonance state to a  
Jf = 3 final state. 
 
Jr = 4 has to possible channel  
spins: S=4 and S=5 with an  
unknown mixing. 
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Data reduction 
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time-of-flight pulse 

raw data, 
waveforms: 
45000 TB 

event data, list of  
amplitude, time 
for each detector: 
60 TB 

• align events in time 
to find coincidences 
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Spectrum TOF-amplitude 
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Multiplicity decomposition 
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Assign orbital momentum 

neutron resonance energy (eV)
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Low-level population using pulse height spectra 
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Low-level population using pulse height spectra 
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CVC diamond detectors for (n,α) reactions 

5. 59Ni(n, α)56Fe cross-section measurement

The Diamond Mosaic-Detector was used at n_TOF in 2012 for a
cross-section measurement of the 59Ni(n, α)56Fe reaction [7]. The
sample consisted of a 25 μm Pt backing-foil on which 100 nm 59Ni
(cross-section measurement) was electro-plated, followed by a
400 nm layer of 6LiF (neutron fluence measurement), with a
diameter of 15 mm [8].

Apart from the measurement of the sample, the following
auxiliary measurements were performed:

1. Background from the Diamond Mosaic-Detector, see Fig. 7. At
low neutron energies, γ!rays from capture reactions in the
surrounding materials, especially in 109Ag (glue for diodes), can
be seen together with the in-beam γ!background, see also
Fig. 1. At about 200 keV, the elastic scattering of neutrons on
12C begins to be visible. At neutron energies above 6 MeV, the
background is dominated by inelastic nuclear reactions on 12C.

2. Background from the Pt foil.
3. Background from the radioactive decay of 59Ni, which disin-

tegrates with t1=2 ¼ 7675 kyr into 59Co via e!-capture, produ-
cing predominantly 7 keV X-rays. No signals were recorded
during this measurement, as expected for SNR/MeV¼40.

The data recorded with one of the diodes during the measure-
ment of the sample can be seen in Fig. 8. The signals in the region
labeled 59Ni(n, α)56Fe correspond to the α particles of this reaction.

The dominant resonance at 203 eV is clearly visible. The region
labeled 6Li(n, α)3H corresponds to signals created by the tritons of
this reaction. The signals below this region correspond to the α
particles of the 6Li(n, α)3H reaction, followed by the background
signals from the detector and the Pt foil in the beam.

The cuts indicated in Fig. 8 are used for the selection of data for
the cross-section and neutron fluence measurement, and the
detection efficiency corresponding to these cuts is calculated by
fitting the peaks in the particle spectra (projection on the y-axis).
The preliminary results for this measurement [7] are very promis-
ing and show that an accurate and clean (n, α) cross-section
measurement can be performed with this detection system.

6. Conclusions

The novel Diamond Mosaic-Detector has been developed for (n,
α) cross-section measurements at n_TOF. The characteristics of the
detector and the dedicated electronics were presented, together
with results from the calibration with a α-source and the 59Ni(n,
α)56Fe cross-section measurement, which was performed at n_TOF
in 2012.

The sCVD diamond material has proven to be suitable for (n, α)
cross-section measurements in a heterogeneous beam, where
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capture C6D6
 !

25Mg !
54,56,57Fe!
58,60,62,63Ni !
93Zr 197Au!
236,238U!
241Am 
240Pu 

capture BaF2
 

87Sr (spin) 

197Au 
235U (+fis) 
236,238U 
241Am 

fission PPAC!

232Th  (FF ang)!
237Np  (FF ang)!
235,238U (FF ang)!

Detector tests 
and 
developments!
• several!
!
!
!
!

(n,a) MGAS/
CVD!

59Ni !
33S !

fission MGAS!
240,242Pu!

n_TOF CERN phase II (2008-2012) 
Summary of measurements 
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• 1998 - 2001  preparation and commissioning  
• 2002 - 2004  phase I data taking  
• 2005 - 2007  spallation target upgrade  
• 2008             first protons on target 
• 2009             phase II data taking  
• 2010 - 2012  class A lab. borated water!
• 2013             construction second, short flight path (20 m) EAR2!
• 2014 !         commissioning !
• 2015 !         measurement programme!

beam!

no beam!

The n_TOF facility at CERN: the future 

2001! 2002! 2003! 2004! 2005! 2006! 2007! 2008! 2009! 2010! 2011! 2012!

phase I phase II 

today 

2013! 14!20!

phase III 



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA/Saclay      ESNT Workshop, Saclay, March 19, 2014                    67 

n_TOF 2nd experimental area (EAR2) 

Existing EAR-1: 
flight path ~185 m 

n_TOF target 
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n_TOF target 

Future EAR-2: flight path ~20 m at 
90° with respect to the proton beam 

Existing EAR-1: 
flight path ~185 m 

n_TOF 2nd experimental area (EAR2) 
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The spallation target area 

n_TOF target pit 

Technical gallery (@10 m from pit) 

EAR2 (@20 m from pit, above ground) 
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Beam Dump 

EAR-2 Exp. Hall 

Collimator 

Magnet 

Pit shielding 

Target 

New area 

Existing area 

Layout EAR2 



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA/Saclay      ESNT Workshop, Saclay, March 19, 2014                    71 

Experimental Hall EAR2 
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n_TOF EAR2 building 380 
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n_TOF EAR2 
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n_TOF EAR2 building 380 
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n_TOF target pit 

ISR 
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Comparison of the Neutron Fluence in EAR1 and EAR2

EAR2
EAR1

Maximum neutron fluence gain: 
x 25 (in the keV region) 

Higher flux, by a factor of 25, relative 
to EAR1. 
The shorter flight path implies a 
factor of 10 smaller time-of-flight. 
Global gain by a factor of 250 in the 
signal/background ratio for 
radioactive isotopes!  

The huge gain in signal-to-background 
ratio in EAR2 allows to measure 
radioactive isotopes with half lives as 
low as a few years. 

EAR2 enhanced flux 
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Neutron flux 
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n_TOF Collaboration 

• The n_TOF Collaboration operates the facility since 2001.  

 

• Members as of 2012: 
 - 33 Institutions (EU, USA, India) + coll. with Japan and Russia 
 - 100 scientists 
 - 16 PhD students 

 

• From July 2014, after the planned beam stop, n_TOF  
   will take data again simultaneously in  
   EAR1 (185 m) and EAR2 (20 m) 
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Thank you for your attention. 
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The n_TOF Collaboration 
 

More information: www.cern.ch/ntof 
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n_TOF target pit 

ISR 

Flux comparison n_TOF EAR1/EAR2, GELINA, NFS 
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