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Motivation

Why probabilities?

The choice of a probabilistic framework looks natural to model uncertainties, in
particular when these uncertainties are related to unpredictable natural events
(e.g weather conditions). It is more questionable when dealing with
uncertainties related to a lack of knowledge, and other modeling frameworks
have been proposed (e.g interval arithmetic).
We promote the systematic use of a probabilistic framework because:

it has well developed mathemathical bases;

it allows to integrate real-life data, either through statistics or through
expert knowledge (information theory);

it allows to formulate many (all?) of the questions of interest for an
engineer;

many good quality softwares are available (forget Excel!)

Most of the technical complexity related to probability theory is hidden in the
tools, but the engineer remains responsible for his results. As such, he must
know what is behind the software.
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Introduction

Historical view

17th Century First attempt to formalize the probability calculus by Pascal,
Pierre de Fermat, Huygens. Mainly focused on gambling
games, the theory was mainly a matter of counting.

20th Century A formalisation based only on counting leads to numerous
paradoxes, mainly due to a fuzzy definition of the probabilistic
experiment. The formalization proposed by Kolmogorov at the
beginning of the 20th Century has been a successful attempt to
give strong fundations to the theory of probability.

The several paradoxes resulting from the intuitive notion
of probability as a frequency have found a convincing
explanation;
The new formulation are more involved, the probability
theory is no more linked to a physical experiment.

This lecture will be based on the modern view of probabilities.
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Probability and statistics

Different point of views

Broadly speaking, we have the following separation between the probability
theory and the statistics theory:

The statistics theory is focused on the effective gathering of the
information related to a particular topic (e.g opinion, physical
measurement) and uses the probability theory to build a mathematical
model of this gathering and to study the quality of the resulting
conclusions from a mathematical point of view.

The probability theory is focused on the definition of abstract concepts
and on their interaction. In particular, it provides useful mathematical
models for the statisticians.

These two fields are complementary, the statistics being the field that makes
the link between raw data and the concepts found in the probability theory. In
return, using probability theory results, one is able to justify the correctness of
some data threatments.
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Kolmogorov formalism

σ-field

Let Ω be a given non-empty set. A σ-field F ∈ P(Ω) defined on Ω is a
collection of subsets of Ω such that:

Ω ∈ F
∀B ∈ F , Ω B ∈ F
For all countable sequence Bi ∈ F ,

S
i∈N Bi ∈ F

Generated σ-field

Let Ω be a non-empty set and (Ai )i∈I be an arbitrary collection of subsets of
Ω. The σ-field generated by (Ai )i∈I F((Ai )i∈I ) is the smallest σ-field (for the
inclusion) that contains all the Ai .

Example

If Ω = R (or any topological space) and (Ai )i∈I is the collection of its open
sets, then F((Ai )i∈I ) = B(R) is the Borel σ-field associated with R.
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Kolmogorov formalism

Measurable space

A measurable space is a couple (Ω,F) where Ω is a given non-empty set and F
is a σ-field defined on Ω.

Probability space

A probability space is a triple (Ω,F ,P) such that (Ω,F) is a measurable space
and P is probability measure, it means a function defined on F , taking values
into [0, 1] and such that:

P(Ω) = 1;

If Ai is a countable collection of disjoint elements of F , then
P(
S

i∈N Ai ) =
P

i∈N P(Ai ).
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Examples

1 Arbitrary non-empty set Ω, F = {∅,Ω}. We can only observe if an experiment
has been done (event Ω) or not (event ∅). By definition, P(Ω) = 1 and P(∅) = 0.

2 Coin flipping: Ω = {Tail ,Head}, F = {∅,Ω, {Tail}, {Head}} = P(Ω). All the
possible outcomes are considered in this modeling. A fair coin is associated with
P such that P(Tail) = P(Head) = 1/2.

3 Dice tossing: Ω = {1, 2, 3, 4, 5, 6}, F = { ∅, Ω, {1}, {2}, {3}, {4}, {5}, {6},
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5},
{3, 6}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4},
{1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6},
{2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6},
{2, 4, 5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6},
{1, 3, 4, 5, 6}, {2, 3, 4, 5, 6} } = P(Ω). All the possible outcomes are considered
in this modeling. A fair dice is associated with P such that
P({i}) = 1/6, i = 1, . . . , 6.

4 Coin flipping using a dice: Ω = {1, 2, 3, 4, 5, 6}, F = { ∅, Ω, {1, 3, 5}, {2, 4, 6} }.
Only the parity of the face is considered in the outcome of a dice roll.

5 Real number localization: Ω = R, F = B(R). All possible outcomes made of
countable union of intervals are considered. If P({x}) = 0 for all x ∈ R, the
probability measure P is continuous, and if there exists an at most countable
collection of reals (xi )i∈N such that

P
i∈N P(xi ) = 1 then P is discrete.Page 8
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Random variable

Definition

A real-valued random variable X defined on the probability space (Ω,F ,P) and
taking values in R is a function defined on Ω and taking values in R and such
that

∀B ∈ B(R), X−1(B) ∈ F (1)

Induced probability measure

Let X be a real-valued random variable defined on the probability space
(Ω,F ,P). The probability measure PX induced by X on the σ-field B(R) is
defined by:

∀B ∈ B(R), PX (B) = P(X−1(B)) (2)

From a modeling point of view, a random variable is a way to numerize
through a unique number the event resulting from a random experiment.
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Random vector

Definition

A real-valued n-dimensional random vector X defined on the probability space
(Ω,F ,P) and taking values in Rn is a function defined on Ω and taking values
in Rn and such that

∀B ∈ B(Rn), X−1(B) ∈ F (3)

From a modeling point of view, a random vector is a way to numerize through
a set of real numbers the event resulting from a random experiment. A
one-dimensional random vector is no more than a random variable.
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Distribution function

Definition

Let X be an n-dimensional real-valued random vector. Its distribution function
FX (or F for short) is the real-valued function defined on Rn such that:

∀~x ∈ Rn, F (x) = PX ((−∞, x1]× · · · × (−∞, xn]) (4)

The distribution function is also named the cumulative distribution function,
abbreviated in CDF.

Theorem

The distribution function F of a random vector X characterizes its probability
measure PX .

The probabilistic modeling of a random vector is thus equivalent to the
construction of its distribution function.
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Marginal distribution functions, quantile

Definition

Let X be an n-dimensional random vector with distribution function F . Its ith
marginal component Xi is the random variable obtained by projection of X on
the ith dimension of Rn. The distribution function Fi of Xi is the ith marginal
distribution function of F and is such that:

∀xi ∈ R, Fi (xi ) = F (+∞, . . . ,+∞, xi ,+∞, . . . ,+∞) (5)

Given an n-dimentional distribution function F , the marginal distribution
functions Fi are known. The stochastic dependence associated with F (or X ) is
the complementary information that allows to recover F from F1, . . . ,Fn. It is
exactly what does the copula concept.
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Discrete random vectors

Definition

If there exists an at most countable set of points (x i )i∈N ∈ Rn such thatP
i∈N P(x i ) = 1, then X is said to be a discrete random vector.

The function pX defined on the countable set S = {x i , ‖ i ∈ N} by:

∀x ∈ S, pX (x) = P(x) (6)

is called the probability function of the random vector.

The probability function is also named the probability distribution function
abbreviated in PDF.
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Continuous random vectors

Definition

If the distribution function F of a random vector X is a continuous function,
then the random vector is said to be continuous. If there exists a positive
function pX defined on Rn such that:

∀x ∈ Rn, F (x) =

Z xn

−∞
. . .

Z xn

−∞
pX (ξ) dξ (7)

In that case, the nth cross derivative ∂nF
∂x1...∂xn

exists and we have:

∀x ∈ Rn,
∂nF

∂x1 . . . ∂xn
(x) = pX (x) (8)

The function pX (or p for short) is the density function of X .

The density function is also named the probability density function abbreviated
in PDF. A random vector can be neither discrete nor continuous.
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Some classical distribution

Continuous distributions
Name probability density function

Exponential λe−λ(x−γ)1[γ,+∞[ (x), x ∈ R

Normal
1

(2π)
n
2 (detΣ)

1
2
e−

1
2 (x−µ)′Σ−1 (x−µ), x ∈ Rn

Uniform
1

b − a
1[a,b](x), x ∈ R

Discrete distributions
Name probability distribution function

Bernoulli P(X = 1) = p,P(X = 0) = 1− p, p ∈ [0, 1]

Multinomial P(X = x) =
N!

x1! . . . xn!(N − s)!
px1
1 . . . pxn

n (1− q)N−s

with 0 ≤ pi ≤ 1, xi ∈ N, q =
Pn

k=1 pk ≤ 1, s =
Pn

k=1 xk ≤ N
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PDF and CDF, random variables
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PDF and CDF, random vectors
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What is the stochastic dependence?

The stochastic dependence between the components of a random vector X is
the interaction between these components that does not depend on the
marginal distribution functions of X .

In terms of distribution functions, the stochastic dependence is described by the
part of the distribution function F of X that does not depend on its marginal
distribution functions F1,. . . ,Fn. This part corresponds to the concept of copula

Page 18



Uncertainty modeling and quantification September 26, 2012

Copula

Definition

An n-dimensional copula C is a function defined on [0, 1]n and taking values in
[0, 1] which is the restriction to [0, 1]n of an n-dimensional distribution function
with uniform marginal distibutions on [0, 1].

Sklar’s theorem

Let F be an n-dimensional distribution function with marginal distribution
functions F1,. . . ,Fn. Then there exists an n-dimensional copula C such that:

∀x ∈ Rn, F (x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)) (9)

If the marginal distribution functions are continuous, then C is unique, else it is
uniquely defined on Im(F1)× . . .× Im(Fn).
When the marginal distribution functions are continuous, then

∀u ∈ [0, 1]n, C(u1, . . . , un) = F (F−11 (u1), . . . ,F−1n (un)) (10)
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Some classical bi-dimensional copulas

Name C(u1, u2)

Independent u1u2

Normal
Z Φ−1(u1)

−∞

Z Φ−1(u2)

−∞

1

2π
p

1− ρ2
exp

„
−

s2 − 2ρst + t2

2(1− ρ2)

«
ds dt, ρ ∈ [−1, 1]

Frank −
1
θ
log
„
1 +

(e−θu1 − 1)(e−θu2 − 1
e−θ − 1

«
, θ 6= 0

Clayton
“
u−θ1 + u−θ2 − 1

”−1/θ
, θ ≥ 0

Gumbel exp
„
−
“

(− log(u1))θ + (− log(u2))θ
”1/θ«

, θ ≥ 1
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Classical bi-dimensional iso-density
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Measures of association

Definition

A measure of association r between the two components X1 and X2 of a
bi-dimensional random vector X is a scalar function of X1 and X2 with the
following properties:

1 −1 ≤ r(X1,X2) ≤ 1

2 If X1 and X2 are independent, then r(X1,X2) = 0

3 If g and h are strictly increasing functions, r(X1,X2) = r(g(X1), h(X2)).

The property (3) insures that r is a function of the copula C of X only.

It is the most general way to synthetize the full dependence information
between two random variables into a single scalar.
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Measures of concordance

Definition

A measure of concordance κ between the two components X1 and X2 of a
bi-dimensional random vector X is a scalar function of X1 and X2 that has the
following properties:

1 κ is defined for all continuous bi-dimensional random vectors X ,

2 κ(X1,X2) = κ(X2,X1),

3 κ is monotone in the copula CX of X , it means that if X and Y are two
bi-dimensional random vectors with respective copulas CX and CY and if
∀u ∈ [0, 1]2,CX (u) ≥ CY (u), then κ(X1,X2) ≥ κ(Y1,Y2).

4 κ(X1,X2) ∈ [−1, 1], κ(X1,X1) = 1, κ(X1,−X1) = −1,
5 if X1 and X2 are independent, then κ(X1,X2) = 0,

6 κ(X1,−X2) = κ(−X1,X2) = −κ(X1,X2),

7 if Cn is a sequence of copulas that converges pointwise to the copula C ,
then κ(Cn) converges pointwise to κ(C), where κ(C) is a shorthand for
κ(X1,X2), the support of X is [0, 1]2 and its distribution function
restricted to this support is C .
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Is a scalar measure enough to quantify the dependence?

The short answer is NO. It ease quite easy to build bi-dimensional
distribution functions with common marginal distribution functions and a
common value for a given measure of association, but with very diffrent
tail behaviour for example.

If we are able to combine different such measures, then the answer is
MAYBE.

In any case, these measures are usefull if one is interested in a global
quantification of the dependence, and it is also of first importance for the
statistical parametric estimation of copulas.
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A common measure of concordance is not enough to share the same
dependence structure
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A common measure of concordance is not enough to share the same
dependence structure

Échantillon aleatoire

Un echantillon aleatoire de taille n est un vecteur aleatoire de dimension n tel
que les variables aleatoires X1, . . . ,Xn soient independantes et aient même loi.
Cela signifie:

FX1 ≡ · · · ≡ FXn et FX (x) = FX1(x1)× · · · × FXn (xn) (11)
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Expectation of a random vector

Definition

Let X be an n-dimensional random vector with distribution function F . Its
expectation E[X ], if it exists, is given by:

E[X ] =

Z
Rn

x FX (dx) (12)

In the case of a discret random vector, it rewrites:

E[X ] =
X
i∈I

x i P(X = x i ) (13)

and in the case of an absolutely continuous one:

E[X ] =

Z
Rn

x pX (x) dx (14)
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General moments

Definition

Let X be an n-dimensional random vector and φ a measurable function from
Rn into Rp, i.e such that φ(X ) is a p-dimensional random vector defined on the
same probability space than X .
The general moment of X with respect to φ is the expectation of Y = φ(X ).

The variance of a random variable is obtained with φ(u) = (u − E[X ])2, and
the generic element of the covariance matrix of a random vector is given by
φ(u) = (ui − E[Xi ])(uj − E[Xj ]).
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Almost sure convergence

Definition

A sequence of n-dimensional random vectors (X n)n∈N all defined on the same
probability space (Ω,F ,P) converges almost surely if the set:

{ω ∈ Ω | (X n(ω))n∈N converges} (15)

has a probability 1. If we note by X∞(ω) the limit of (X n(ω))n∈N when it
exists, it defines a random vector on (Ω,F ,P) called the almost sure limit of
(X n)n∈N:

X n
a.s−→ X∞ (16)

This convergence means that for n large enough, both X n and X∞ will take
the same value on a given random experiment.
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Convergence in distribution

Definition

A sequence of n-dimensional random vectors (X n)n∈N possibly defined on
different probability spaces (Ωn,Fn,Pn) converges in distribution if for all g in
the set C 0

b (Rn,R) of bounded continuous functions defined on Rn and taking
value into R we have:

lim
n→∞

E[g(X n)] = E[g(X∞)] (17)

This convergence is denoted by X n
D−→ X∞.

Theorem

A sequence of n-dimensional random vectors (X n)n∈N converges in distribution
if and only if the sequence of distribution functions (Fn)n∈N converges
pointwise to a function F for all points x ∈ Rn at which F is continuous.
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Strong law of large numbers

Theorm

Let (X )n∈N be a sequence of n-dimensional random vectors defined over the
same probability space, independent and with the same distribution. For all
measurable functions f ∈ {(Rn,Rp) such that E[|f (X 1)|] <∞ exists, we have:

1
n

nX
k=1

f (X )
a.s−→ E[f (X 1)] (18)
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Central Limit Theorem

Theorem

Under the hypotheses of the strong law of large numbers, if the covariance
matrix of X 1 axists and is finite, then:

√
n

 
1
n

nX
k=1

f (X )− E[f (X 1)]

!
D−→ X∞ (19)

where the random vector X∞ is distributed according to the n-dimensional
normal distribution N (0,Cov [X 1]).
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Sampling model

Definition

Let X be an n-dimensional random vector. A statistical sample SN of size N
associated with X is a collection (X i )i∈{1,...,N of independent random vectors
all defined on the same probability space than X , independent and sharing the
same distribution than ~X (they are N independent copies of X ).
The distribution function of SN is the distribution function of the nN
dimensional random vector obtained by stacking X 1,. . . ,XN :

FSN (X 1, . . . ,XN) =
NY

i=1

FX i (x i ) (20)
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Parametric model

Definition

A parametric model Lθ is a collection of probability distributions indexed by a
vector θ ∈ O ⊂ Rq. If different values of θ lead to different distributions (i.e
the function θ 7→ Lθ is one-to-one), then the model is said to be identifiable.

Likelihood function

Let SN be a statistical sample SN of size N associated with a random vector X
whose distribution is a member of the parametric model Lθ. Its likelihood
function is the function L defined on O and taking value in R+ such that:

Lx(θ) =
NY

i=1

pX i (xi ; θ) (21)

where pX i is the probability density function or the probability distribution
function depending on the continuous or the discrete nature of X .
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Estimation of distributions

Depending on the nature and the quantity of the available information about
the distribution of a random vector, the estimation of its distribution can be
based on:

a statistical treatment of the available data if thay are in sufficient
quantity and quality,

a judgement of experts, who fully prescribe the distribution,

a maximum entropy principle, to build the less informative distribution
that integrate the partial knowledge available on the target distribution.

but in real-life, things are less clear-cut:

Even a large amount of data can be usefully completed by an expert
judgement, leading to the parametric estimation approach,

There is no judgement of expert emanating from nowhere. The associated
data, even scarce, are precious and should be integrated into the
estimation process.
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Estimation with data

A two-steps approach: estimation and validation

If data (x1, . . . , xN) are available, one can use the classical statistical tools to
quantify the distribution of interest. The data are seen as the realization of a
sample of size N of the random vector of interest X and we perform the
following two steps:
Step 1: estimation of the distribution, which can be either:

a parametric estimation: given the hypothesis that the target distribution
is a member of a parametric family of distributions Lθ, one uses the data
to compute the best estimation of θ. The main methods are the
maximum likelihood estimator and the moment-based estimator.

a non-parametric estimation: the whole shape of the distribution function
is obtained without a priori hypothesis on the target distribution. The
main methods are the empirical distribution function, the histogram-based
estimation and the kernel smoothing estimation.

Step 2: validation of the fitting, which can be either:

A fitting test checking the hypothesis made on the distribution,

A graphical validationPage 37
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Parametric estimation

Estimator

An estimator Θ̂N of the parameters of a given parametric model Lθ is a random
vector build as a function of the sample model SN : Θ̂N = ψ(X1, . . . ,XN).
The estimated value θ̂N of the parameter θ is the value taken by the estimator Θ̂N
when the realization of SN is equal to the observed data:

θ̂N = ψ(x1, . . . , xN) (22)

If ∀N, E[θ̂N ] = θ the estimator is unbiased.

Consistent estimator

An estimator Θ̂N of the parameters of a given parametric model Lθ is consistent if
and only if it converges almost surely to the value θ of the target distribution:

Θ̂N
a.s−→ θ (23)

A consistent estimator is such that for N large enough, any realization of Θ̂N will have
a value close to the target value θ, in particular when this realization is equal to the
observed data.
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Maximum likelihood estimator

Definition

Let Lθ be a parametric model and SN the associated sample of size N. The
maximum likelihood estimator of θ is the value of θ (supposed to be unique)
that maximizes the likelihood function of SN given SN :

Θ̂N = Argmax
θ∈O

LX1,...,XN (θ) (24)

Theorem

Under the following hypotheses:

1 The model is identifiable;

2 The function (x ,θ) 7→ Lx(θ) is bounded;

3 The function θ 7→ Lx(θ) is continuous;

4 The expectation E[log LX1,...,XN (θ)] exists for all θ ∈ O;
the maximum likelihood estimator is consistent.
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Moments estimator

Definition

Let Lθ be a parametric model, m be a continuous invertible function from O
into O and φ be a measurable function such that Eθ[|φ(X 1)|] <∞ and
m(θ) = Eθ[φ(X 1)]. Then the moments estimator of θ is defined by:

Θ̂N = m−1
 

1
N

NX
i=1

φ(Xi )

!
(25)

In practice, one choose φ and check that the resulting function m is continuous
and invertible. A common choice is to take φ(x) = (xi , xixj , xixjxk , . . .).

Theorem

The moments estimator is always convergent.
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Examples

Parametric model Maximum likelihood Moments

N (µ, σ) µN = 1/N
P

xi identical
σ2N = 1/N

P
(xi − µN)2 identical

Exp(λ) λN = N/
P

xi identical

Unif (a, b) aN = min(xi ) aN = µN −
√
3σN

bN = max(xi ) bN = µN +
√
3σN
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Asymptotic normality

Definition

An estimator Θ̂N is asymptoticaly normal if it converges in distribution when
N → +∞ to a normal distribution with zero mean and covariance matrix Σ:

√
N
“

Θ̂N − θ
”

D→ N (0,Σ) (26)

Confidence region

Let Θ̂N be a consistent and asymptoticaly normal estimator of θ. Then the
following random ellipsoid:

Eα = {u ∈ Rq | (u − Θ̂N)′Σ(u − Θ̂N) ≤ aα/N} (27)

where aα is the (1− α)-quantile of the χ2(q) distribution is such that:

P(θ ∈ Eα)→ 1− α (28)
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Interpretation

Dispersion of the estimator as a function of the sample size N

2.0 2.5 3.0 3.5 4.0

0
1

2
3

4

Dispersion of the estimator

theta

pd
f

N_1
N_2
N inf

8<:
N1 large, Θ̂N1 ∼ N (θ, σ2/N1)

N2 ≥ N1, Θ̂N2 ∼ N (θ, σ2/N2)

N =∞, Θ̂∞ ≡ θ

A larger sample leads to less disper-
sion for the estimator: the estimated
value is more likely close to the true
value of the parameter
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Interpretation

Precision of the estimators for a fixed sample size N

0
1

2
3

4

valeurs des estimateurs

P
D

F

Estimateur 1

Estimateur 2

Meilleur estimateur

Lois des estimateurs en fct de leur variance asymptotique

θ

8<:
Θ̂1

N ∼ N (θ, σ21/N)

Θ̂2
N ∼ N (θ, σ22/N)

Θ̂opt
N ∼ N (θ, σ2opt/N)

For a given sample size, different es-
timators can have significant differ-
ences in their asymptotic variance.

Theorem

For unbiased estimators, the minimal possible variance is I−1(θ) where the
matrix I (θ) = −Eθ[∂2pθ(x)/∂θ2] is Fisher’s information matrix.

An unbiased estimator with such a covariance matrix is an Asymptoticaly
efficient estimator. For a given sample size, it will give the smallest confidence
region.
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Estimators comparison

Main properties

Estimator Asympt. Normality Asympt. Efficiency Unbiased

Mx. Likelihood∗ yes yes no in general
Moments yes no in general no in general

∗ Under additional regularity conditions (support independent of θ).

Confidence interval associated with the maximum likelihood estimator

Parametric model Asymptotic distribution Confidence interval

N (µ, σ)
√

N(λN − λ)→ N (0, I (λ)−1 = λ2) [λN − aα√
N
λN ; λN + aα√

N
λN ]

Exp(λ)
√

N(θN − θ)→ N (0, I (θ)−1 [µN − aα√
N
µN ; µN + aα√

N
µN ]

[σ2
N −

aα
2
√

N
σ2

N ; σ2
N + aα

2
√

N
σ2

N ]

Unif (a, b) Regularity conditions not fulfilled
N(aN − a)→ Exp(1/(b − a)) [aN ; aN + log(1−α)

N (bN − aN)]

N(b − bN)→ Exp(1/(b − a)) [bN − log(1−α)
N (bN − aN) ; bN ]

where aα is the (1 + α)/2 quantile of N (0, 1).
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Non-parametric estimation

The objective is to estimate the density function from a given sample SN of X .

Kernel smoothing: the uni-dimensional case

The density function p is estimated by the random function p̂N given by:

p̂N(x) =
1

Nh

i=NX
i=1

K
„

x − Xi

h

«
(29)

where K is a symmetric density function called the kernel (e.g N (0, 1),
U(−1, 1)...) and h > 0 is a scalar parameter called the bandwidth.
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Principle of the kernel smoothing: put a scaled version of the kernel
at each sample point
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Principle of the kernel smoothing: average all the scaled versions of
the kernel
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Large sample approximation
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Kernel smoothing

Kernel and bandwidth selection

The modeling error is quantified using the Asymptotic Mean Integrated Squared Error
(AMISE) built this way:

The Mean Squared Error is defined by MSE(p̂N , x) = (E[p̂N(x)]− p(x))2 + Var [p̂N(x)],
also called the quadratic risk of p̂N(x);

The Mean Integrated Square Error is defined by MISE(p̂N) =
R

R MSE(p̂N , x) dx

The Asymptotic Mean Integrated Squared Error is defined as being equal to the two first
terms of the asymptotic expansion of MISE(p̂N) with respect to N.

The choice of K is not crucial, but the choice of h is crucial. For large h, the data are
oversmoothed while for small values of h they are undersmoothed. In the uni-dimensional case,
the optimal choice for h is, according to the AMISE minimization:

hAMISE (K) =

»
R(K)

µ2(K)2R(p′′)

– 1
5

N−
1
5 (30)

where R(ψ) =
R

R ψ
2(x) dx and µ2(K) =

R
x2K(x) dx = σ2

K .
The value of R(p′′) is unknown, and the different bandwidth selection rules correspond to
different ways to estimate this quantity: Silverman’s rule, Scott’s rule, Solve-the-equation
plug-in rule.
The main interest of the kernel smoothing approach is to be model-free (i.e non-parametric):
even exotic density shapes can be consistently approximated such as multimodal densities.
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Impact of the kernel
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Impact of the bandwidth
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Impact of the bandwidth
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Silverman’s rule

When p is the density of a normal distribution N (0, σ2), R(p) is explicitely
known and we get:

hp=normal
AMISE (K) =

»
8
√
πR(K)

3µ2(K)2

– 1
5
σN−

1
5 (31)

An estimator ĥ of hp=normal
AMISE (K) is obtained using an estimator σ̂2N of σ2 using

(X1, . . . ,Xn).
Silverman’s rule is to choose h = ĥ even if p is not normal:

hSilver (K) =

»
8
√
πR(K)

3µ2(K)2

– 1
5
σ̂NN−

1
5 (32)

This rule is an heuristic that gives good results as soon as the target
distribution is almost symmetric and unimodal.
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Scott’s rule

Scott’s rule is an approximation of Silverman’s rule resulting from the remark that for
a normal kernel K , one has :

hSilver (K) ' σ̂NN−
1
5 (33)

and for all the efficient kernels, σKR(K) ' 1 ∀K , which keads to:

hAMISE (K1)

hAMISE (K2)
=
σK2

σK1

»
σK1R(K1)

σK2R(K2)

– 1
5
'
σK2

σK1

(34)

Taking K2 = N(0, 1), one get :

hSilver (K) ' hSilver (K2)
1
σK

(35)

Scott’s rule is to take hSilver (K) with the approximations (33) and (35) even if p is
not a normal density:

hScott =
σ̂N

σK
N−

1
5 (36)

Scott’s rule has the same efficiency than Silverman’s rule, while being simpler to use.
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Solve-the-equation plug-in rule

The method is based on a non-parametric estimation of R(p′′) using a further
step of kernel smoothing. The key point is that the optimal bandwidth for a
non-parametric estimation of R(p′′) is different from the optimal bandwidth for
the estimation of p.
This new optimal bandwidth is computed assuming a normal density for p, and
the AMISE criterion is replaced by a sampling version that involves to consider
all the pairs (Xi ,Xj ) in the sample. The cost of this method is significantly
higher than the cost of the preceeding rules, but it’s performances are largely
superior.
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Comparison of the bandwidth selection rules
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Border effect

When the target density p or its derivative p′ have discontinuities, which occurs
frequently when p has a bounded support (i.e when p is zero outside of a
compact interval), then the kernel smoothing approximation converges to the
mid-point of the discontinuity and the local rate of convergence of the
approximation is reduced.
A cheap first order correction, the mirroring technique, allows to make up this
loss of performance:

• The bandwidth h is estimated using the initial sample;

• The data at a distance less than h to a boundary are reflected with respect
to the boundary;

• The density is estimated using the enlarged sample;

• The final estimation is obtained by truncation of the previous estimator to
the suppport.
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Border effect
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Ranking of the kernel smoothing parameters

The border effect, if present, is most important than the bandwidth selection
rule, which is in turn more important than the kernel choice.
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Multi-dimensional kernel smoothing

In dimension n, one uses a product kernel Kn associated with a given
one-dimensional kernel K :

Kn(x) =
nY

j=1

K(xj )

which leads to the following density estimation:

p̂N(x) =
1

N
Qn

j=1 hj

NX
i=1

Kn

„
x1 − Xi1

h1
, . . . ,

xn − Xin

hn

«
The multi-dimensional bandwidth h = (h1, · · · , hn) can be estimated using the
multi-dimensional Scott’s rule :

hi
Scott =

σ̂i
N

σK
N−1/(d+4)

where σ̂i
N is the standard deviation of the ith marginal of the sample.
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Histogram/kernel smoothing comparison, uni-dimensional case

h opt. according to AMISE AMISE value

Histogram ∝ 1
N1/3 ∝ 1

N2/3

Kernel smoothing ∝ 1
N1/5 ∝ 1

N4/5

The kernel smoothing technique is asymptotically better than the histogram
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Parametric vs non-parametric

Effect of the sample size

• A small sample size leads to a fragile estimation: the variability of the
estimation increase.

• The fitting tests are based on the asymptotic distribution of the
estimators, which is questionable for small values of N.

• If the model hypothesis is correct, a parametric estimation will always be
better than a non-parametric estimation, but if the hypothesis is wrong,
there is no way to fix it by increasing the sample size.

• Increasing the sample size will always improve a non-parametric estimation.
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Tests

Several tests are available:

Qualitative tests (visual tests)

Quantitative tests

Qualitative tests

The main visual tests are:

QQ-plot test, where the empirical quantiles are plotted versus the
estimated ones. If the curve is close to the main diagonal, the estimated
distribution is credible.

Visual comparison of the density resulting from a parametric estimation
and a non-parametric estimation
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Tests

Quantitative tests

Such tests are based on two antagonist hypotheses HO and H1, leading to two sources
of error:

First kind error : α : probability that H0 is wrongly rejected.

Second kind error : β : probability that H1 is wrongly rejected.
These two errors are non-symmetrical in general. One want to control the first kind
error while minimizing the second kind error. The first kind error is controlled but not
the second kind error. As such, H0 will be the hypothesis that the parametric model is
correct.

Test methodology

One define a test statistics T , which is a random variable built from the sample.
Its distribution is known under hypothesis H0.

The critical region W of rejecting HO is given by : PH0 (W ) ≥ α, which leads to
W = {x ∈ R |T (x) > tα} where tα is a threshold on T .

The test statistics is evaluated on the sample realization at hand, and compared
to the threshold. H0 is rejected if T is in W .
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Graphical interpretation of the errors
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Classical tests

Tests focused on the central part of the distribution: chi-square test,
Kolmogorov-Smirnov test...
Tests focused on the tails of the distribution: Anderson-Darling test, Cramer’s
test...

The test statistics is the normalized gap between the candidate distribution function
and the empirical distribution function obtained as the uniform discrete distribution
over the sample:

Kolmogorov-Smirnov :
√

N supy∈R |FN(y)− F (y)| →W , where W is a
tabulated distribution.

chi-square : ζ(2)
N = N

mX
i=1

(p̂i − p0i )2

p0i
→ χ2(m − 1).

If several parametric models are accepted?

One can rank the parametric models according to an information criterion:
the p-value: compare P(T (X ) ≥ T (x1, . . . , xn)) to α,

the Bayesian Information Criteria (BIC): that mitigates the log-likelihood of the
sample, the dimension of the parameter space of the parametric model and the
sample size.
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How to question an expert?

The lack of data, or the scarcity of data are the main reason to resort to
judgement of experts. One has to question them and to interpret their answer
as a probability distribution.
These 3 questions are of uttermost importance:

Question 1 : Is there an historical reason for the choice of a specific
parametric model?
Question 2 : Is there a specific range in which a given variable must stay?
Question 3 : Are there remarkable values for the variable?

Choice of the parametric model

Several strategies are possible to turn the expert knowledge into a probability
distribution:

Choice based on an organigram built upon simple alternatives that result
from ground experience.

Use of the maximum entropy principle
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Organigram

Ans. Q1 Ans. Q2 Ans. Q3 Parametric model

No Yes : [a, b] No Uniform(a,b)

Yes : mode m Triangular(a,m,b)

Yes : [a,+∞[ Yes : mean and standard deviation LogNormal

Yes : 2 values v1, v2 LogNormal

No Yes : mean and standard deviation Normal

Yes : 2 values v1, v2 Normal

Yes - - Historical distribution
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Maximum entropy principle

Statistical entropy and information

The statistical entropy is a measure of the lack of knowledge of the state of a
complex system.
When all the N possible states of the system are not equi-probable but weighted
by a discrete probabity distribution function p, the entropy S is defined by

S = −k
NX

i=1

pi log pi

The probability pi is linked to a level of disorder of the system, which reflect
our lack of knowledge on the state of the system. Shannon has extended this
definition to the case of a continuous number of states:

S = −
Z

p(x) log p(x) dx
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Maximum entropy principle

The principle

The maximum entropy principle is to choose the distribution that maximize the
statistical entropy while being compatible with the knowledge we have on the
system. Any other choice would implicitely suppose that additional information
about the system is available, so the entropy should be smaller.

Some examples

Available information Resulting distribution

Support : [a, b] Uniform(a, b)

Mean m and support : [a,∞[ Exp(a, λ = 1/(m − a))
Mean m, variance σ2, support : R Normal(m, σ2)

Mean m, variance σ2, p(x) ∝ eax+bx2
on the support

bounded or half-bounded support
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Validation of the distribution resulting from expert knowledge

Qualitative and quantitative validation

The distribution can be check by:

a visual inspection of the density and a confirmation from the expert,
using synthetic quantities derived from the distribution:

1 median : value under which the variable must stay with probability 1/2,
2 90% quantile: value under which the variable must stay with probability

9/10,
3 standard deviation : global measure of dispersion for uni-modal distributions
4 ...
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