Quantification des incertitudes - Partie I

Saclay, February 2014

Fabien MANGEANT, fabien.mangeant@eads.net

Outline

1 Motivation

- Philosophy...
- Domains of application

2 Developing uncertainty management in an applicative context

- Uncertainty management and associated decision
- Risk and uncertainty
- Description of the industrial environment
- Strategies to deal with uncertainty
- Survey of the main trends and popular concepts
- Existing referentials to deal with the uncertainty
- UQ environement

3 Practitionner's difficulties

- Building several images of the world
- General model presentation
- Basics in validation and verification
- What kind of complexity do we face to validate a numerical simulation ?

4 Bibliography

Outline

1 Motivation

Philosophy...

Domains of application

- 2 Developing uncertainty management in an applicative context
 - Uncertainty management and associated decision
 - Risk and uncertainty
 - Description of the industrial environment
 - Strategies to deal with uncertainty
 - Survey of the main trends and popular concepts
 - Existing referentials to deal with the uncertainty
 - UQ environement
- **3** Practitionner's difficulties
 - Building several images of the world
 - General model presentation
 - Basics in validation and verification
 - What kind of complexity do we face to validate a numerical simulation ?

Bibliography

Page

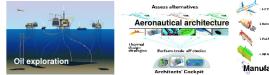
Complexity and uncertainty

"**Complexity** lies within the entanglement that does not allow to tackle things separately, it severs what binds groups, and produces a crippled knowledge. The problem of complexity further appears since we are part of a world, which is ruled not only by determination, stability, repetitions, or cycles, but also by outbursts and renewal. Throughout complexity, there are **uncertainties**, either empirical or theoretical, but, most of the time, both."

Edgar Morin, Philosopher.

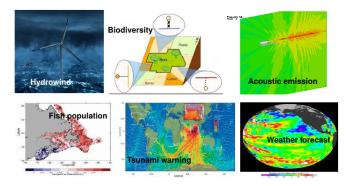
Various contexts of uncertainty

SAFETY CONTEXTS



Various contexts of uncertainty

ECONOMICAL CONTEXTS



Various contexts of uncertainty

ENVIRONMENTAL CONTEXTS

Several types of systems

Technical systems

Car, airplane, nuclear power plant, hydrowind farm, ...

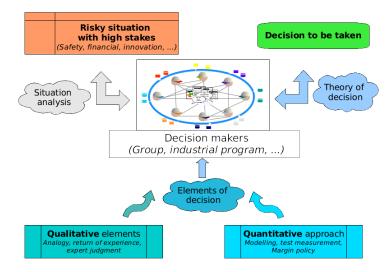
Natural systems

Fish population, weather forecast

Hybrid systems

Internet, social network models

Outline


1 Motivation

- Philosophy...
- Domains of application

2 Developing uncertainty management in an applicative context

- Uncertainty management and associated decision
- Risk and uncertainty
- Description of the industrial environment
- Strategies to deal with uncertainty
- Survey of the main trends and popular concepts
- Existing referentials to deal with the uncertainty
- UQ environement
- **3** Practitionner's difficulties
 - Building several images of the world
 - General model presentation
 - Basics in validation and verification
 - What kind of complexity do we face to validate a numerical simulation ?
 - Bibliography

Page

EADS

Situation analysis

- Identification of constraints (applicable standards, group strategy)
- Identification of risks and opportunities
- Identification of the degrees of freedom in the situation
- Definition of the scenarii to be investigated
- Allocation of resources to undertake the analysis

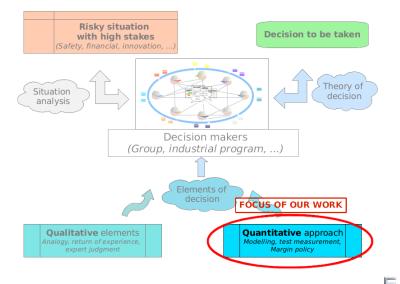
Technical analysis

Definition: Technical work intended to generate and aggregate qualitative and quantitative elements within an allocated resource

- Qualitative approaches refer to methods and tools that integrate past experience, intuition, return of experience, sense of analogy. They are not supported by a physical test or a numerical model at the time of their expression but they integrate engineering/expert judgement.
- Quantitative approaches are supported by tests or numerical models. Tests and models represent a simplified and theorized understanding of the situation. They are designed to be representative and reproducible for the situation of interest. Anyway, some problems arise when dependence is hidden between the different elements of the situation or when the cost of a test (physical or numerical) that is required is too expensive for the avalaible budget.

Decision

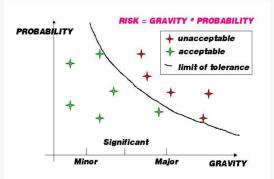
Definition: Act of deciding, responsible for the consequences in a certain context (risk adverse, knowledge and positioning of the decision maker).


- Risk adverse
- Decision under constraints

Remark

Choosing the appropriate decision criteria for decision-making under uncertainty is a large and specific domain of research: it involves in-depth understanding of the larger decision processes, and potentially a conceptual decision-theory approach to the decision-maker's preferences, attitudes towards risk and uncertainty

Scope of application of our mathematical tools



Risk and uncertainty

Risk

A risk is defined by the effect of uncertainty on specific objectives. A risk is both attached to the realization of a certain event towards its subjective scale of gravity/criticity. It is very common to define the risk by the following formula:

$$Risk = probability * gravity$$
(1)

Risk and uncertainty

Uncertainty

Distinction between types of uncertainties encountered in practice:

- "irreducible" or "aleatory" (or random, stochastic, objective, inherent,...) vs. "reducible" or "epistemic" (or lack of knowledge, ignorance, subjective, imprecision, ...)
- "variability" (spatial, temporal, ...) vs. "uncertainty" (lack of knowledge, measurement error etc)
- "epistemic uncertainty" (invevitable ignorance) vs. "error" (deliberate ignorance)
- uncertainty that is "parametric" (associated with model inputs according to the level of information available on those inputs) vs.
 "modelling uncertainty" affecting the adequacy of the model itself to reality (structure, equations, discretisation, numerical resolution etc.)

Uncertainty Quantification I February 12, 2014 Internal/endogeneous versus external/exogeneous uncertainties

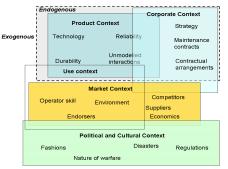
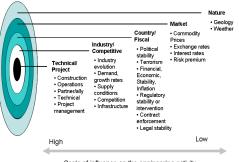



Figure : Links between uncertainties and industrial contexts

- Internal/endogeneous: Each product or system bears its own uncertainties with it, which arise primarly from the "inside". It can be influenced by the system designer or company to a certain extent.
- **2** External/exogeneous: Uncertainties outside the system boundary can be influenced by the designers or company to a lesser extent.

Layers of uncertainty

Scale of influence on the engineering activity

Figure : Links between uncertainties and external contexts

- The degree of influence decreases sharply from the inner to the outer layer.
- The possibility of mitigating risks or exploiting opportunities arising from these uncertainties thus also decrease.

Uncertainty Quantification I February 12, 2014 **Time scale and uncertainty management strategies**

Short-term

These decisions concern immediate issues. Being limited to the available data and pre-existing models, the objective is to treat the existing information to aid the decision-maker.

Mid-term

Unlike short-term decisions, these involve situations in which a support is conceivable, such as the development of refined models or collection of additional data to improve the understanding of the global phenomenon.

Long-term

These concern long-term issues, including the influence of societal, political and market evolutions.

New opportunities to improve procedures and practices around uncertainty management

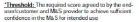
- Recent conceptual reformulation: shift from "failure-driven risk approach" to "option-exploring approach" in uncertainty management.
- Recognition that the performance of an engineered system has to be taken into account in its larger commercial and political environment:
 - To bullet-proof design against technical and human failure
 - To enable the system to evolve to new circumstances and usages
- New advances in information technology (development of models, acquisition of computer, etc) make it possible to conceive of a much more coherent uncertainty management approach.

February 12, 2014

Standards and tools

First edition September 2008

© JCGM 2008


Standards and tools

1	Example of Credibility Scoring – With Factor
	Weighting (NASA HRP Implementation)

Credibility Assessment	Evidence			Technical Review		Factor	Weighted	Overall	Sufficiency
Factors	Score*	Weight'	Threshold*	Score* Threshold*		Score	Subfactor Score	Score	Threshold
1 Verification	2	0.20	3	2	3	2	0.40		
2 Validation	2	0.25	2	2	3	2	0.50		
3 Input Pedigree	2	0.10	3	2	3	2	0.20	1	
4 Results Uncertainty	0	0.10	2	0	3		0.00	1.75	2.54
5 Results Robustness	2	0.10	2	2	3	2	0.20	1./5	2.54
6 Use History	1	0.15	2	N/A	N/A	1	0.15		
7 M&S Management	2	0.05	3	N/A	N/A	2	0.10	1	
8 People Qualifications	4	0.05	3	N/A	N/A	4	0.20	1	

* Maximum = 4; where 0=insufficient evidence and 4=highest fidelity/rigor achievable

+ Minimum = 0.05, maximum = 0.25 and sum of all weights must equal 1.0

Subfactors	Weight	
Evidence	0.7	
Technical Review	0.3	

gend	
	CAS Score > Threshold
	Exceeds credibility requirements
	Threshold \geq CAS Scare \geq (Threshold-0.5)
	Ready for use
	(Threshold-0.5) > CAS Score ≥ (Threshold-1.0)
	Use with caution
	CAS Score < (Threshold-1.0)
	Use not recommended or to be used with EXTREME CAUTION by subject matter experts only

UM environment

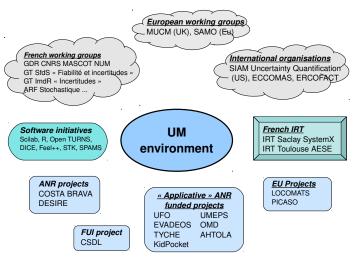


Figure : On-going initiatives in UM that I know... See for example MASCOT NUM [20] or MUCM [23]

Outline

- 1 Motivation
 - Philosophy...
 - Domains of application
- **2** Developing uncertainty management in an applicative context
 - Uncertainty management and associated decision
 - Risk and uncertainty
 - Description of the industrial environment
 - Strategies to deal with uncertainty
 - Survey of the main trends and popular concepts
 - Existing referentials to deal with the uncertainty
 - UQ environement

3 Practitionner's difficulties

- Building several images of the world
- General model presentation
- Basics in validation and verification
- What kind of complexity do we face to validate a numerical simulation ?

Page 23

Bibliography

Two types of images of the world

- **The Empirical Image**: made of material experiments
- The Rational Image: essentially a theory-based image which rests on (supposed-to-be) physical models and derived codes (models are scientific images of a theory).

Examples of scientific images

- Flight of an airplane
 - Rational : use of NS equations plus turbulence models
 - Empirical : Scale model (= wind tunnel)
- Tumor growth :

Page 24

- Rational : discrete reality of interest continuously representated through a set of coupled PDE
- Empirical : analogical model (mice = men)
- Urban gang extension :
 - Rational : individuals thought as particles submitted to simple interacting rules.
- Empirical : polls, police reports

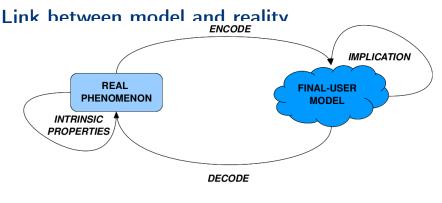


Figure : Interaction between model and reality

Simulation: A process which mimics the relevant features of a target process.

Numerical Simulation: A processis is a Computer Simulation iif it is a Simulation and a computer process

EADS

Figure : Modelling loop

E /

Example in simulation contexts

Source	Vérification	Validation		
Systems Eng. [1]	Proof of compliance with specifications. Verifi- cation may be determined by test, analysis, de- monstration, and inspection.	Proof that the product accomplishes the inten- ded purpose. Validation may be determined by a combination of test, analysis, and demonstra- tion.		
Software Eng. [2]	Software verification is a software engineering activity that demonstrates that the software products meet specified requirements.	Software validation is a software engineering ac- tivity that demonstrates that the as-built soft- ware product or software product component sa- tisfies its intended use in its intended environ- ment.		
M&S [3]	The process of determining that a computatio- nal model accurately represents the underlying mathematical model and its solution from the perspective of the intended uses of M&S.	The process of determining the degree to which a model or a simulation is an accurate represen- tation of the real world from the perspective of the intended uses of the model or the simula- tion.		

[1] :NASA systems engineering processes and requirements, URL http://nodis3.gsfc.nans.gov

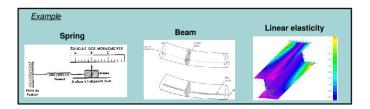
[2] :IEEE standard dictionary of electrical and electronics term, ANSI/IEEE Std 100-1984 (1984)

[3] :NASA standards for models and simulations,NASA-STD-2009, 11 juillet 2008

Figure : Numerical Simulation contexts ([30]

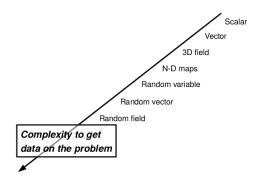
Example in simulation contexts

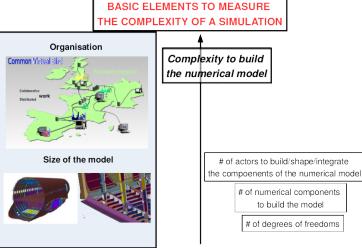
Simulation contexts differ from a field to another


	Geology	Epidemiology	Engineering		
Purpose	Understand the Chicoxulub meteorit impact	Contain the spreading of some virus (ie. H1N1 flue)	Conceive some industrial product		
Goals	Was it responsible of the ex- tinction of dinosaurs?	Minimize the number of in- fected people	Maximize performances while minimizing costs		
Empirical grounds	Only one observation ; deduction, hypothetizing	Real time observations of spreading evolution	Many dedicated experiments		
Confirmatory experiment	hope not !!!	The end of the infection	Many experiments		
Do it again	No	No	Yes		
Faith enhan- ced if	New discoveries confirm theoritical computations	Not assessable ^a	If experiments agree with nu- merical simulations		
External constraints	No one	Public opinion, Media, Crisis management	Markets, consumers attitude, costs		

Complexity of the physical representation

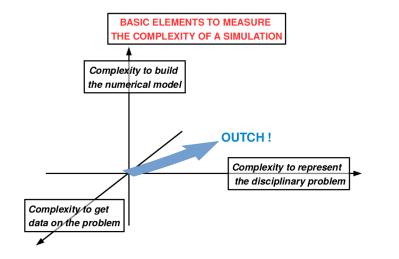
BASIC ELEMENTS TO MEASURE THE COMPLEXITY OF A SIMULATION





Complexity linked to the input data model

BASIC ELEMENTS TO MEASURE THE COMPLEXITY OF A SIMULATION



February 12, 2014 Complexity linked to the multiplicity of actors and location

The challenge of complexities

Outline

- 1 Motivation
 - Philosophy...
 - Domains of application
- **2** Developing uncertainty management in an applicative context
 - Uncertainty management and associated decision
 - Risk and uncertainty
 - Description of the industrial environment
 - Strategies to deal with uncertainty
 - Survey of the main trends and popular concepts
 - Existing referentials to deal with the uncertainty
 - UQ environement
- **3** Practitionner's difficulties
 - Building several images of the world
 - General model presentation
 - Basics in validation and verification
 - What kind of complexity do we face to validate a numerical simulation ?

- A. Antoniadis, Analyse de sensibilite, Seminaire de Toulouse 2006, www.gdr-mascotnum.fr
- Apostolakis G & Wu JS. (1993), Reliability and decision-making, Chapman & Hall London.
- Aven T. (2003), Foundations of Risk Analysis, John Wiley & Sons, Ltd.1
- Bedford T. & Cooke R. (2001), Probabilistic Risk Analysis -Foundations and Methods, Cambridge University Press.2
- R. Cont, R. Deguest, G. Scandolo (2010), Robustness and sensitivity analysis of risk measurement procedures, Quantitative Finance, Vol 10, No 6 - p593-606.
- Roger G. Ghanem and Pol D. Spanos (1991), Stochastic finite elements: A Spectral Approach, publisher Springer-Verlag - ISBN 0-387-97456-3 or 0-540-97456-3

De Neufville R. (2003), Architecting/Designing engineering Systems using Real Options, MIT report ESD-WP-2003-01.09 (http://esd.mit.edu).

De Neufville R. (2004), Uncertainty management for engineering systems planning and design, MIT Engineering

- **E**sREDA group (2008), Uncertainty in industrial practice: a guide to quantitative uncertainty management, Wiley
- Ghanem R, Spanos PD. (1991), Stochastic Finite Elements: A Spectral Approach. Springer: New York.
- Granger Morgan M. & Henrion M. (1990), Uncertainty A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press.3
- T. Hastie, R. Tibshirani, J. Friedman (2008) The elements of statistical learning Springer Series in Statistics.

- Kleijnen JPC (2009), Design and Analysis of Simulation Experiments
- Knight F.H. (1921), Risk, Uncertainty and Profit, Hart, Schaffner & Marx. Systems Monograph (http://esd.mit.edu/symposium/pdfs/monograph/uncertainty.pdf).
- P. Ladeveze (1999). Non linear Computational Structural Mechanics â New Approaches and Non-Incremental Methods of Calculation, Springer-Verlag, New York.
- Le Maitre O.P. and Knio O.M. (2010), Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics. Scientific Computation.
- Lucor D. (2006), Presentation at CEMRACS'06
- Maday Y., Reduced Basis Method for the Rapid and Reliable Solution of Partial Differential Equations, hal-00112152, version 1.

- F. Mangeant, Joined initiatives around uncertainty management, Annals of Telecommunications, DOI: 10.1007/s12243-011-0266-7
- GDR CNRS MASCOT-NUM, http://www.gdr-mascotnum.fr
- P. Massart (2007), Concentration inequalities and model selection: Ecole d'Ete de Probabilites de Saint-Flour XXXIII-2003. Springer Verlag.
- H.G. Matthies (2007), Uncertainty Quantification with Stochastic Finite Elements. Encyclopedia of Computational Mechanics.
- Managing Uncertainty in Complex Models (MUCM), http://www.mucm.ac.uk/
- Open Source initiative in uncertainty managempent, http://www.openturns.org
 - A. Owen, J.R. Koehler, (1996), Computer Experiments

N. Rachdi, J-C Fort, T. Klein (2010), Risk bounds for new M-estimation problems, http://hal.archives-ouvertes.fr/hal-00537236.

- N. Rachdi (2011), PhD thesis from University Paul Sabatier of Toulouse.
- J Sacks et al (1989), Design and Analysis of Computer Experiments, Technometrics
- Saltelli A., K. Chan, and E.M. Scott (2000). Sensitivity Analysis. Chichester: Wilev
- - Sancandi M. GDR MASCOT NUM "Journée validation". www.gdr-mascotnum.fr
- Santner, Thomas (2003), The design and analysis of computere experiments -ISBN 0-387-95420-1

- Sobol, I. M. (1993). Sensitivity estimates for non linear mathematical models. Mathematical Modeling and Computational Experiment 1, 407-414
- de Weck O. & Eckert C. (2007), A classification of uncertainty for early product and system design, MIT report ESD-WP-2007-10 (http://esd.mit.edu/WPS).