
Semiclassical approach to pairing in the weak coupling
regime: nuclei, cold atoms and neutron stars

X. Viñasb
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INTRODUCTION

STABLE NUCLEI

177 even-even; 58 even-odd; 54 odd-even; 10 odd-odd

∆ ∼ 1
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)
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THEORETICAL FRAMEWORK

BCS THEORY
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FURTHER IMPROVMENTS
Hartree-Fock-Bogolibov theory

Particle-vibration coupling



SEMICLASSICAL APPROXIMATIONS

LDA is the standard semiclassical limit to the pairing problem.
H.Kuchareck, P.Ring, P.Schuck, R.Bengtsson amd M.Girod,

Phys. Lett.B216, 240 (1989).
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The pairing matrix elements are evaluated using plane waves.



THE THOMAS-FERMI APPROXIMATION IN WEAK
COUPLING

In the weak cooupling regime ∆/µ << 1. In this case the
canonical basis can be replaced by the HF one:

H|n〉 = εn|n〉.

At equilibrium and for time reversal invariant systems canonical
conjugation and time reversal operation are related by

〈r|n̄〉 = 〈n|r〉 ⇒ 〈r1r2|nn̄〉 = 〈r1|ρ̂n|r2〉,

Vnn′ = 〈nn̄|v |n′n̄′〉 =

∫
〈r2|ρ̂n|r1〉〈r1r2|v |r′1r′2〉〈r′1|ρ̂n|r′2〉dr1dr2dr′1dr′2



H|n〉 = εn|n〉 can be written in terms of ρ̂n as:

(H − εn)ρ̂n = 0.

Taking the Wigner transform of this latter equation, we obtain in
the ~ → 0 limit: (Hcl . − ε)fε(R,p) = 0 , which solution is

fE (R,p) =
1

gTF (E )
δ(E − Hcl .) + O(~2).

with
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+V (R) and gTF (E ) =

1
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∫
dRdpδ(E−Hcl .).

X. Viñas, P. Schuck, M. Farine and M. Centelles, Phys. Rev. C67,
054307 (2003).



HARMONIC OSCILLATOR POTENTIAL



The gap equation in semiclassical TF approximation reads:

∆(E ) = −
∫ ∞

0
dE ′gTF (E ′)V (E ,E ′)κ(E ′),
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and
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with v(R,p;R′,p′) the double Wigner transform of
< r1r2|v |r′1r′2 > which for a local translationally invariant force

yields v(R,p;R′,p′) = δ(R− R′)v(p− p′)



A SIMPLE EXEMPLE: SLAB GEOMETRY

Mean field potential

V (x) = 0 −L ≤ x ≤ −R or R ≤ x ≤ L; V (x) = V0 −R ≤ x ≤ R

V0 = −40MeV L = 100fm R = 10fm

Pairing force

Vp = −gδ(r − r′) g = 150MeVfm3 Λ = 50MeV



Gap Equation
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Gap and Pairing Tensor



TF approach to the inner crust of neutron stars
BCP Energy Density Functional

Allows to compute not in spherical symmetry but also with planar

(slabs) and cylindrical (rods) geometries



TF approach to the inner crust of neutron stars
BCP Energy Density Functional

Close to transition density some pasta phases appears within the

BCPM model



TF approach to the inner crust of neutron stars
BCP Energy Density Functional



TF approach to the inner crust of neutron stars
BCP Energy Density Functional



Semiclassical pairing in Wigner-Seitz cells
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TF approach to the inner crust of neutron stars
BCP Energy Density Functional

Comparison with HFB calculations



Semiclassical pairing in Wigner-Seitz cells



Semiclassical pairing in Wigner-Seitz cells
Comparison between TF and LDA



N. Chamel et al, Phys. Rev. C81, 045804 (2010)



Semiclassical pairing in Wigner-Seitz cells
Gaps in Pasta Phases



Compressible Liquid Drop Model (CLDM)
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Pairing in the Compressible Liquid Drop Model (CLDM)
Gap equations

−V1 ≤ E ≤ −V2 ∆1(E ) = ∆N(µ)

−V2 ≤ E ≤ Λ ∆2(E ) =
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Semiclassical pairing in Wigner-Seitz cells
Gaps in Pasta Phases

ρB= 0.07 fm−3 7.696684 -0.134515 7.562169 MeV SLABS
ρB= 0.07 fm−3 7.693298 -0.134406 7.558892 MeV SPHERES
ρB= 0.07 fm−3 7.693138 -0.134319 7.558819 MeV RODS
ρB= 0.04 fm−3 5.851508 -0.365913 5.485595 MeV SLABS
ρB= 0.04 fm−3 5.807168 -0.365727 5.441441 MeV RODS
ρB= 0.04 fm−3 5.800047 -0.366284 5.433763 MeV SPHERES



COLD ATOMS
Ketterle’s trap, Phys. Rev. Lett. 81, 2194 (1998)

ωopt = 2π × 1000Hz ; g = −~ωopt Λ = 164.34~ωopt



CONCLUSIONS

• We have presented here a Thomas-Fermi theory for pairing in finite
Fermi systems for weak coupling situations with ∆/εF << 1.

• This Thomas-Fermi theory differs from the usual Local Density
Approximation. This essentially stems from the fact that we
approximate the gap equation in configuration space and, thus, keep
the size dependence of the matrix elements of the pairing force.
This is not the case in LDA where the matrix elements of the force
are always evaluated in plane wave basis.

• This semiclassical approach to pairing is only based on the usual
validity criterion of Thomas-Fermi theory, namely that the Fermi
wave length is smaller than the oscillator length. At no point the
Local Density Approxiamtion condition that the extension of the
Cooper pairs (coherence length) must be smaller than the oscillator
length enters the theory. Thus, the present Thomas-Fermi approach
yields for all pairing quantities the same quality as Thomas-Fermi
theory does for quantities in the normal fluid state.



• The gap values obtained represent very well the mass number
dependence in N and Z of the average gap for the D1S Gogny force
employed in this work. Essentially the obtained gap values
correspond to nuclei where the discrete quantal single particle level
density has been replaced by a Thomas-Fermi smoothed continuous
level density.

• We presented the full chart of the N,Z dependence of the average
gap at the Fermi surface using, as mentioned, the D1S force for the
pairing field and also for the mean field and effective mass, as
obtained from the D1S force using extended TF theory.

• An interesting feature of our study is that the average gap breaks
down going to the drip line. This surprising result is confirmed by
quantal calculations, though strongly masked by shell fluctuations.

• A similar fact can also appears for cold atoms in a double trap.


