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Screening effects in pairing force

Standard BCS or HFB use something like Gogny force and effective mass
m∗ ∼ 0.7m

Gogny force in 1S0 channel not far from bare force. Close tovlowk .
Yields good pairing in finite nuclei.

Derivation of pairing force from FIRST PRINCIPLE:



Polarisation propagator→ induced interaction

Naturally with induced interaction, one also should renormalise single

particle energies

=
1

ω − ε0
k − M(ω, k)

∼
Zk

ω − εk

Zk =
1

1 − ∂M
∂ω

|ω=ωk

< 1



Since the gap equation contains two single particle propagators→ two
Z-factors in gap equation

∆k = −

∫

d3k ′

(2π~)3 Vk ,k ′

Zk Zk ′∆k ′

2
√

(εk ′εF )2 + ∆2
k ′



Induced interaction



ph interaction à la Babu-Brown



Results: L. G. Cao, U. Lombardo, P.S. ; PRC 74/064301
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Monte Carlo: Gezerlis-Carlson, neutron matter, arXiv:0911.3907
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Fantoni: Auxiliary Filed diffusion Monte Carlo; C. Gandolfi et al,
arXiv:0907.1588
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Conclusions
There seems to exist a partial cancellation of self energy and vertex
corrections.
-
Many body theory not controlled, only can give trends; only
Raleigh-Ritz variational methods can be reliable because of
exponential dependences
-
It may not be an accident that Monte Carlo results are close to BCS,
at low density
-
MC results for nuclear matter ????



The T=0 (deuteron) channel; BEC ↔ BCS
transition.

(M. Urban, Meng Jin, PS.)
The problem with screening seems much more pronounced in thedeuteron
(T=0, S=1) channel. Pairing with bare force much too strong!
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G GHF
Σ(p, ω) Σ(p, ξp)= + -

=Σ T
+ Exchange Term

= + + + ...T

‘T-matrix ≡ pp-RPA;
Nozières Schmitt-Rink

Σ̃(p, ω) = Σ(p, ω) − ReΣ(p, ξp); ξp =
p2

2m
− Σ

Gogny
HF (p) − µ (1)

G(p, ω) = GHF (p, ω) + GHF (p, ω)Σ̃(p, ω)GHF (p, ω) (2)

From there → density

n = nHF + ncorr ; ncorr = nbound + nscatt (3)



One can calculate influence on EOS:
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Conclusion
-
Deuteron channel very interesting, since possibility of deuteron
condensation at low density → astrophysical interest. Deuteron
fluctuations far out in surface of nuclei??
-
Screening effects supposedly quite strong



Thomas-Fermi approach to pairing in nuclei; weak
coupling

X. Vinas, PS.

In weak coupling, we have BCS:

∆n =
∑

n′

〈nn̄|v |n′n̄′〉
∆n′

2
√

(εn′ − µ)2 + ∆n′

(4)

In LDA we have

∆(R, p) =

∫

d3p′

2π~)3 Vp,p′

∆(R, p′)

2
√

(εp′ − µ(R))2 + ∆2(R, p′)
(5)

whereµ(R) is the local Fermi energy. The condition for validity of LDA is
that coherence length is<< oscillator length.



In TF, We take ~ → 0 of gap equation.

〈r1r2|nn̄〉 = 〈r1|n〉〈n|r2〉 (6)

Then for ~ → 0, we have

{|n〉〈n|}Wigner → fEn ∝ δ(En − Hcl.) (7)

With this we can calculate pairing matrix element semiclassically and
obtain for gap eq.:

∆(E) =

∫

dE ′gTF (E ′)V (E , E ′)
∆(E ′)

2
√

(E ′ − µ)2 + ∆2(E ′)
(8)



TF vs LDA
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We see strong improvement of TF over LDA; Similar for all other
pairing quantities.
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and

δP†
p1p2

=
a†

p1
a†

p2
√

1 − np1 − np2

δP†
h1h2

=
a†

h1
a†

h2
√

1 − nh1 − nh2

. (9)

The eigenvalues correspond to those where one adds or removes
two particels from the original ground state |0〉 with N particles. We
again have to assume that the ground state is the vacuum to the
addition operators, i.e. Aρ = 0. Also the Xρ, Yρ amplitudes have the
orthonormality and completness relations of standard p-RPA. We can
define the removal operators

R†
α =

1
2

∑

h1h2

Xα
h1h2

ah2 ah1 −
1
2

∑

p1p2

Y α
p1p2

ap2 ap1 . (10)

Again amplitudes can be determined from minimising a
corresponding sum rule. The resulting RPA equations have a similar
structure with (?? ) and (?? ). Actually the content of RPA equations
for removal is the same as the one for addition. Only the amplitudes
Xα, Y α and Xρ, Y ρ have subtle relations involving interchange of
p ↔ h indices and relative phases.



Three-level Lipkin model
SU(3) algebra

Three single particle levels α=0,1,2.

Level degeneracy on projection µ is N = 2Ω (number of particles).

0 is a hole level, filled with N particles in the ground state
1,2 are particle levels.
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Figure:
THREE-LEVEL LIPKIN MODEL

with N=8 particles



Hamiltonian

H =

2
∑

α=0

ǫαKαα −
V
2

2
∑

α=1

(Kα0Kα0 + K0αK0α) , (11)

where ”quadrupole-like” operators are defined as follows

Kαβ ≡

N
∑

µ=1

c†
αµcβµ . (12)

c†
αµ is a fermion creation operator on α-th level.

Commutation rules

[Kαβ , Kγδ] = δβγKαδ − δαδKγβ . (13)



Continuously broken symmetry

appears when ǫ1 = ǫ2.

The angular momentum projection operator

L̂0 = i(K21 − K12) , (14)

commutes with the Hamiltonian, i.e.

[H, L̂0] = 0 . (15)

Will will show that SCRPA exhibits a Goldstone mode
with a vanishing energy, as this is also the case with standard RPA.
That this property is conserved has already been announced
by D. Rowe in Rev. Mod. Phys. 40, 153 (1968),
but never has been explicitly verified.
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Figure:
SCRPA IN THE SPHERICAL REGION

versus the strength parameter χ for N = 20 and e0 = 0, e1 = 1, e2 = 2
(dashed lines). By solid lines are given the lowest exact eigenvalues and by
dot-dashes the standard RPA energies.
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Figure:
TRANSITION FROM SPHERICAL TO THE DEFORMED REGION

The SCRPA expectation value of the Hamiltonian versus the angle φ, for
N = 20 and different values of the strength parameter χ (from the top of the
figure, χ = 0, 0.5, ..., 5).



Goldstone mode

The commutation relation

[H, L0] = 0 , (16)

can be seen as an
RPA equation with zero energy ω=0

[H, L0] = ωL0 . (17)

Thus, SCRPA will exhibit a Goldstone mode, as this is also the case
with standard RPA.
That this property is conserved has already been announced by
Rowe, but never has been explicitly verified.



As a matter of fact we checked that
for an SCRPA operator restricted to ph and hp configurations the
Goldstone mode does NOT come at zero energy .
The reason for this is simple: usually a symmetry operator contains
also (hh) and (pp) configurations, and without them, it is atrophiated
and SCRPA fails to produce a zero mode.

In standard RPA this does not matter because hh and pp
configurations decouple. Beyond standard RPA it matters and
the inclusion of scattering terms produces the Goldstone mo de.

This is the reason why we think that the three-level Lipkin Hamiltonian
is adequate since it can be studied in the limit δǫ = ǫ2 − ǫ1 → 0 where
the spontaneously broken symmetry shows up.
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Figure:
GOLDSTONE MODE

SCRPA excitation energies versus the strength parameter χ, for N = 20,
∆ǫ = 0.001 MeV (full line). By dashes are given the lowest exact
eigenvalues and by dot-dashes the standard RPA energies.



Conclusions

1. The three-level Lipkin model has the advantage of allowing for a
continuously broken symmetry on the mean field level with the
appearance of a Goldstone mode .

2. The RPA operator should contain, in addition to the usual ph
components a†

k a0, also the so-called anomalous or scattering terms
a†

2a1.

3. Therefore the present formulation of SCRPA allows to mentain all
the formal and desirable properties of standard RPA:
conservation laws, sum rules are fulfilled


