Local approximation to the pairing field

<u>A. Pastore^a</u>, T. Duguet^{b,c}

^a IAA, CP 226, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
^b CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
^c National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Saclay, May 2013

Introduction

New challanges for nuclear structure

[J. Erler et al., Nature 486 509 (2012)]

A.Pastore (ULB)

Introduction

Nuclear superfluidity plays a crucial for the structure of exotic nuclei.

[M. Bender et al., EPJA 8 59-75 (2000)]

What do we know about pairing interaction?

• What happens when we go to neutron rich nuclei?

[J. Hakala et al., PRL 109, 032501 (2012)]

A.Pastore (ULB)

May 2013 4 / 38

Odd-even mass staggering II

[J. Hakala et al., PRL 109, 032501 (2012)]

New challanges • State of the art SR calculations are not capable to explain new data (D) (D) (ULB) Local approximations May 2013 5 / 38

Outline

Separable interactions

2 Study of local approximations

3 Density Matrix Expansion

4 HFB vs BCS (P. Schuck)

Quantal calculation

HFB in spherical symmetry

$$\sum_{n'} (h_{n'nlj}^q - e_{F,q}) U_{n'lj}^i + \sum_{n'} \Delta_{nn'lj}^q V_{n'lj}^i = E_{lj}^i U_{nlj}^i,$$
$$\sum_{n'} \Delta_{nn'lj}^q U_{n'lj}^i - \sum_{n'} (h_{n'nlj}^q - e_{F,q}) V_{n'lj}^i = E_{lj}^i V_{nlj}^i, \quad q = p, n$$

Properties of the calculation

- Skyrme MHF in the ph channel [K. Hebeler et al., Phys. Rev. C (2009)]
- Separable rank-1 $\langle k | v^{^1S_0} | k'
 angle$ in the pp channel [T. Duguet, Phys. Rev. C (2004)]
- Box size = 24 fm , bessel basis cut off 4 fm $^{-1}$ [T. Lesinski et al., Eur. Phys. J. A (2008)]
- ¹S₀ pairing only [S. Baroni et al. arxiv (2009), Phys. Rev C (in print)]
- Coulomb treated in pp channel [T. Lesinski et al., Eur. Phys. J. A (2008)]

Separable interactions

[T. Lesinski et al., J. Phys. G 39, 015108 (2012)]

Derived from realistic N3LO forces

No free parameters to adjust on data of atomic nuclei

A.Pastore (ULB)

Separable interactions: rank-1

• Corresponding gaps in finite nuclei (NN only)

[T. Lesinski (private)]

A.Pastore (ULB)

May 2013 9 / 38

Separable interactions

2 Study of local approximations

3 Density Matrix Expansion

4 HFB vs BCS (P. Schuck)

A.Pastore (ULB)

Introduction: part I

Scheme

1 $\Delta_{\text{full}}(\vec{R}, \vec{k}) = \text{non-local pairing field from full HFB calculation}$

- 2 $\Delta_{\text{semi}}(\vec{R},\vec{k}) = \text{semiclassical non-local pairing field from Infinite Matter}$
- 3 $\Delta^{\text{LOC}}(\vec{R}) = \text{local pairing field derived from } \Delta_{\text{full}}$
- **4** $\Delta^{\text{LDA}}(\vec{R}) = \text{local pairing field from Local Density Approximation$

Extended Thomas-Fermi

New improved version of simple LDA [X. Viñas et al., J. Phys.: Conf. Series 321, 012024, (2011)]

A.Pastore (ULB)

Local approximations

Wigner transform

Non-local pairing field Δ(r₁, r₂) from HFB calculation
 Δ(R, k) from Wigner transform

$$\Delta(\vec{R},\vec{k}) = \frac{1}{(2\pi)^3} \int d^3r e^{i\vec{k}\cdot\vec{r}} \Delta(\vec{R},\vec{r}).$$

Local approximation to the pairing field

1) Local pairing field

•
$$\hbar^2 k_F^2(R) \equiv 2m_q^*(R)(e_F - U(R))$$
 [A.P. et al., Phys. Rev. C (2008)]
• $\Delta^{\text{LOC}}(R) \equiv \begin{cases} \Delta(R, k_F(R)) & R \leq R_t; \\ \Delta(R, k = 0) & R > R_t. \end{cases}$

Limit $\hbar \longrightarrow 0$ (Infinite Matter with HF spectrum)

2) Thomas-Fermi limit

• Gap equation [R. Bengtsson and P. Schuck Phys. Lett. (1979)]

$$\Delta(\mathbf{R}, \mathbf{k}) = \frac{1}{2} \int \frac{d^3 \mathbf{k}'}{(2\pi)^3} \langle k | v^{^1S_0} | k' \rangle \frac{\Delta^{\text{semi}}(\mathbf{k}', \mathbf{R})}{[(k^2/2m^*(\mathbf{R}) - e_{Fn}(\mathbf{R}))^2 + \Delta^{\text{semi}}(\mathbf{k}', \mathbf{R})^2]^{1/2}}$$

• Approximation of $m^*(R)$ at local isospin asymmetry $\beta(R) = \frac{\rho_n(R) - \rho_p(R)}{\rho_n(R) + \rho_p(R)}$

Pairing energy

Not an observable!!!

$$E_{pair} = \int \frac{d^3 \mathbf{k} d^3 \mathbf{R}}{(2\pi)^3} \Delta_{semi}(\mathbf{R}, \mathbf{k}) k(\mathbf{R}, \mathbf{k}) \qquad k(\mathbf{R}, \mathbf{k}) = \frac{\Delta_{semi}(\mathbf{R}, \mathbf{k})}{2E_{\mathbf{R}, \mathbf{k}}}$$

Thomas Fermi reproduces the average quantal calculation, and the second s

A.Pastore (ULB)

Local approximations

May 2013 15 / 38

Local Density Approximation

local pairing field from IM

$$\Delta^{\text{LDA}}(R) = \Delta^{\text{semi}}(\vec{R}, \vec{k}_F(R))$$

- $\Delta^{\rm LDA}$ is strongly surface peaked
- $\bullet \ \Delta^{\rm LDA}$ loses quantal effects

A.Pastore (ULB)

May 2013 16 / 38

Comparing both local approximations

Skyrme-HFB equations in position space for spherical symmetry

$$\left(\frac{d^2}{dR^2} - \frac{l(l+1)}{R^2} + \frac{2m^*}{\hbar^2} [e_F + E_{qp} - U(R)]\right) u_{lj}(R) + \frac{2m^*}{\hbar^2} \left(\frac{\hbar^2}{2m^*}\right)' u'_{lj}(R) - \frac{2m^*}{\hbar^2} \Delta(R) v_{lj}(R) = 0,$$

$$\left(\frac{d^2}{dR^2} - \frac{l(l+1)}{R^2} + \frac{2m^*}{\hbar^2} [e_F - E_{qp} - U(R)]\right) v_{lj}(R) + \frac{2m^*}{\hbar^2} \left(\frac{\hbar^2}{2m^*}\right)' v'_{lj}(R) + \frac{2m^*}{\hbar^2} \Delta(R) u_{lj}(R) = 0.$$

Solve using

- IFBRAD [K. Bennaceur and J. Dobaczewski, Comp. Phys. Comm. (2005)]
- Pixed ph potential form full HFB calculation
- **3** Insert $\Delta^{\text{LDA}}(R)$ or $\Delta^{\text{LOC}}(R)$ as pairing field
- Particle number fixed using the same box and same mesh

Quasi particle spectrum ¹²⁰Sn

full			LOC		LDA		
l	2j	$E_{qp}[MeV]$	v^2	$E_{qp}[MeV]$	v^2	$E_{qp}[MeV]$	v^2
2	3	1.692	0.631	1.483	0.597	1.229	0.601
5	11	1.750	0.280	1.951	0.265	1.591	0.199
0	1	1.800	0.757	1.591	0.744	1.398	0.767
4	7	2.560	0.859	2.315	0.866	1.894	0.933

- LOC gives better description then LDA
- Both modify the pattern of quasi particle spectrum

Spectra

Systematic error along tin isotopic chain

$$\begin{split} \sigma_E &= \sqrt{\sum_{(E_{nlj} < 5 \text{MeV})} (E_{full} - E_x)^2} \\ \sigma_{v^2} &= \sqrt{\sum_{(E_{nlj} < 5 \text{MeV})} (v_{full}^2 - v_x^2)^2} \quad x = \text{LOC/LDA} \end{split}$$

Error comparable with the intrinsic error of the theory [M. Kortelainen et al., Phys. Rev. C (2008)]

Sn chain: radii

Error on the average radius

$$r_q = \frac{\int dr 4\pi r^4 \rho_p(r)}{\int dr 4\pi r^2 \rho_p(r)}$$
$$r_q^{\%} = \frac{|r_q^{Full} - r_q^{type}|}{r_q^{Full}} \cdot 100$$

◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

- The LDA distribution is more spread
- The LDA spread is shifted towards an underestimation for proton gaps (-500 KeV)

It is possible to rescale $\Delta^{LOC}(R)$ to improve the average error

A.Pastore (ULB)

Local approximations

May 2013 22 / 38

Separable interactions

2 Study of local approximations

3 Density Matrix Expansion

4 HFB vs BCS (P. Schuck)

Rank-1 separable interaction in momentum space

$$v(k,k') = \mu g(k)g(k')$$
 $g(k) = e^{-\alpha^2 k^2/2}$

$$\begin{split} E_{\text{pair}} &= \sum_{q} \frac{1}{4} \int d\vec{R} \mu_{q} \left| \hat{\hat{\rho}}_{q}(\vec{R}) \right|^{2} \\ \hat{\hat{\rho}}_{q}(\vec{R}) &= -\sum_{ij}^{E_{cut}} \hat{\psi}_{ij}^{q}(\vec{R}) k_{ij} \\ \psi_{ij}^{q}(\vec{R},\vec{r}) &= \sum_{\sigma} 2\sigma \phi_{i}(\vec{R} + \frac{\vec{r}}{2}\sigma q) \phi_{j}(\vec{R} - \frac{\vec{r}}{2}\sigma q) \\ \hat{\psi}_{ij}^{q}(\vec{R}) &= \int \frac{d\vec{k}}{(2\pi)^{2}} g(r) \psi_{ij}^{q}(\vec{R},\vec{r}) \end{split}$$

A.Pastore (ULB)

Density matrix expansion

Standard scheme

$$\rho(\mathbf{R}, \mathbf{r}) = \rho(\mathbf{R}) + ir_a j_a(\mathbf{R}) + \frac{1}{2} r_a r_b \left[\frac{1}{4} \nabla_a \nabla_b \rho(\mathbf{R}) - \tau_{ab}(\mathbf{R}) \right] + \dots$$

Implicit summation over cartesian indices a, b

• To ensure $\rho(\mathbf{R},\mathbf{r}) \to 0$ for large \mathbf{r} we introduce $\pi_0(r), \pi_1(r), \pi_2(r)$

[G. Carlsson et al., Phys. Rev. Lett. 105,122501 (2010)]

A.Pastore (ULB)

May 2013 25 / 38

Density matrix expansion

Non-standard scheme

$$\psi_{nn'}^{q}(\mathbf{R},\mathbf{r}) = \exp^{i\mathbf{r}\cdot\mathbf{k}} \exp^{\mathbf{r}|\nabla_{\mathbf{r}}-i\mathbf{k}|} \psi_{nn'}^{q}(\mathbf{R},\mathbf{r})\Big|_{\mathbf{r}=0}$$

- We consider just 0th order
- Shifted-expansion $\mathbf{k} \rightarrow \mathbf{k} + \alpha \mathbf{K}$
- No averaging functions $\pi_0(r), \pi_1(r), \pi_2(r)$

Separable interaction

$$\hat{\psi}_{nn'}^q(\mathbf{R}) \approx g([k_{\alpha}^2]_{nn'}(R)) \left.\psi_{nn'}^q(\mathbf{R},\mathbf{r})\right|_{\mathbf{r}=0}$$

- Need to define the momentum scale
- g is the form factor of the rank-1 interaction
- Exact in infinite matter

Separable interaction II

$$[k_{\alpha}^{2}]_{nn'}(R) = \frac{\psi_{nn'}^{q*}(\mathbf{R},\mathbf{r})(\mathbf{k}+\alpha\mathbf{K})^{2}\psi_{nn'}^{q}(\mathbf{R},\mathbf{r})}{\psi_{nn'}^{q*}(\mathbf{R},\mathbf{r})\psi_{nn'}^{q}(\mathbf{R},\mathbf{r})}\Big|_{\mathbf{r}=0}$$

so we can write

$$\begin{split} \tilde{\rho}^{q}_{loc}(\mathbf{R}) &= \sum_{nn'} g([k^{2}_{\alpha}]_{nn'}(R))\psi^{q}_{nn'}(\mathbf{R})\kappa_{nn'}\\ \Delta_{nn'}(\mathbf{R}) &= -\frac{\mu}{2}g([k^{2}_{\alpha}]_{nn'}(R))\tilde{\rho}^{q}_{loc}(\mathbf{R}) \end{split}$$

No free parameters

- All the parameters come from rank-1
- The choice $\alpha = \frac{1}{2}$ guarantees $\tilde{\rho}^q_{loc}(\mathbf{R}) \to 0$ for large values of R.

- ∢ 🗇 🕨

Preliminary results: ¹²⁰Sn

Some advantages

- The regulator $g_{ij}(k)$ improves the pattern of canonical gaps.
- DDDI is not able to reproduce the pattern (unless small pairing window)

A.Pastore (ULB)

Local approximations

May 2013 28 / 38

Preliminary results: ¹²⁰Sn

The abnormal density takes the form

Abnormal density

- The regulator do not work for s-states and $R \rightarrow 0$
- Numerical problems (?) at $R \to +\infty$

A.Pastore (ULB)

Local approximations

May 2013 29 / 38

Preliminary results: ¹²⁰Sn

Convergence (in MeV) as a function of q.p. states used in the HFB matrix

E_{qp-cut}	Δ_{LCS}	E_{tot}	E_{pair}	$\Delta_{LCS}^{\text{original}}$	$E_{tot}^{original}$	$E_{pair}^{original}$
30	1.376	-1017.250	-12.1450	1.472	-1017.552	-12.695
60	1.421	-1018.573	-15.363	1.645	-1018.820	-15.606
100	1.442	-1018.846	-15.994	1.674	-1019.041	-16.079
150	1.446	-1018.926	-16.1802	1.680	-1019.078	-16.156
250	1.446	-1018.966	-16.272	1.680	-1019.084	-16.167

Convergence (in MeV) as a function of basis states used in the HFB matrix

$k_{max} [\text{fm}^{-1}]$	Δ_{LCS}	E_{tot}	E_{pair}	$\Delta_{LCS}^{\text{original}}$	$E_{tot}^{\text{original}}$	$E_{pair}^{\text{original}}$
4	1.447	-1018.985	-16.304	1.680	-1019.081	-16.1675
5	1.447	-1018.995	-16.335	1.680	-1019.083	-16.1676
6	1.447	-1018.998	-16.346	1.680	-1019.084	-16.168
7	1.447	-1018.998	-16.348	1.680	-1019.084	-16.168

Some remarks

- The convergence is not too much affected by the problem with s-states.
- We can reproduce at the same time $E_{tot}, E_{pair}, \Delta_{LCS}$ within good accuracy
- We can use a typical basis size (pprox 60 MeV) as for a DDDI (within a given error)

Systematic calculations

Spherical calculations

- The DME0th behaves well along 3 different isotopic chains
- Good reproduction of $E_{tot}, E_{pair}, \Delta_{LCS}$ on average

Outline

Separable interactions

2 Study of local approximations

3 Density Matrix Expansion

4 HFB vs BCS (P. Schuck)

BCS approximation

Numerical details

- We use the Gogny D1 pairing interaction (separable form)
- $\bullet\,$ The same code to perform HFB/BCS

The BCS approximation gives a factor 2 difference!!!

A.Pastore (ULB)

Does BCS converge using finite-range forces?

[L. Robledo (private)]

- Convergence problem!!!!
- BCS is NOT a good approximation for well stable nuclei for finite-range force!!!!

- Within BCS ¹²⁰Sn presents an external neutron gas
- BCS favor occupations of unbound states!
- Using a small pairing-window ($pprox 1h\omega$) we avoid such problem (stable nuclei)

A.Pastore (ULB)

Conclusions

- We have applied a non-standard DME approach to pairing problem
 - Numerical problem at the same level of standard DDDI
 - Accurate reproduction of main (pseudo)-observables
 - Systematic calculations
- No ultraviolet divergency
- Possible implementation in 3D code
- We need still some improvements

Thanks to all collaborators

- T. Duguet (CEA Saclay)
- T. Lesinski (Warsaw)
- P. Schuck, N. Van Giai (Orsay)
- K. Bennaceur, J. Margueron, J. Meyer (Lyon)
- X. Viñas (Barcelona)
- S. Baroni, C. Losa

... not only working on superfluidity ...

- D. Davesne, R. Jodon (Lyon)
- V. Hellemans, P.H. Heenen, S. Goriely, N. Chamel, M. Martini (Bruxelles)
- J. Navarro (Valencia)
- M. Bender (Bordeaux)