Skyrme interaction with 2-, 3- and 4-body terms : Pairing and surface properties.

Robin Jodon

IPNL - Université Lyon 1

28/05/2013

Introduction		
•		
New Skyrme interaction with 2-,3- and 4-body terms		

Introduction

- Motivations : surface and pairing properties, how to calculate it ?
- New Skyrme interaction with 2-,3- and 4-body terms

A pocket formula for the surface energy

- The modified Thomas-Fermi method (MTF)
- Results and comparison with other semi-classical or quantal approaches

Pairing gap in the symmetric infinite nuclear matter

- Pairing in the SINM
- Solving the gap equation in the SINM
- Pairing Gaps : What's new with 3 and 4-body terms ?

Motivations

- Need for fast and robust tools to calculate and then constrain : \rightarrow surface properties ;
 - \rightarrow pairing properties.

Basic ingredients

• General form of the interaction :

$$V_{\rm Sk}(\mathbf{r}) = V_{\rm Sk}^{(2)}(\mathbf{r}) + V_{\rm Sk}^{(3)}(\mathbf{r}) + V_{\rm Sk}^{(4)}(\mathbf{r}),$$

Possibility including spin-orbit and tensor terms (14 up to 16 parameters)
Leads to a Skyrme EDF of the form :

$$\begin{split} \mathcal{E}_{\mathsf{Sk}}(\mathbf{r}) &= \mathcal{E}_{\mathsf{Sk}}^{\rho\rho}(\mathbf{r}) + \mathcal{E}_{\mathsf{Sk}}^{\kappa\kappa}(\mathbf{r}) + \mathcal{E}_{\mathsf{Sk}}^{\rho\rho\rho}(\mathbf{r}) + \mathcal{E}_{\mathsf{Sk}}^{\kappa\kappa\rho}(\mathbf{r}) \\ &+ \mathcal{E}_{\mathsf{Sk}}^{\rho\rho\rho\rho}(\mathbf{r}) + \mathcal{E}_{\mathsf{Sk}}^{\kappa\kappa\rho\rho}(\mathbf{r}) + \mathcal{E}_{\mathsf{Sk}}^{\kappa\kappa\kappa\kappa}(\mathbf{r}) \,. \end{split}$$

	A pocket formula for the surface energy	Pairing gap in the symmetric infinite nuclear matter
	00	
The modified Thomas-Fermi method (MTF)		

The modified Thomas-Fermi method : Cooking recipe

Skyrme EDF in symmetric semi-infinite nuclear matter, without pairing :

 $\mathcal{E}_{(\mathsf{Sk})} = \mathcal{E}_{(\mathsf{Sk})} \big[\rho_0, \tau_0, J_0 \big] \,,$

 Modified Thomas-Fermi approximation (MTF) = truncated ħ expansion [Brack,Phys.Rep. (1985)]:

$$\begin{aligned} \tau^{(\mathsf{MTF})} &= \alpha \,\rho + \beta \, \frac{(\nabla \rho)^2}{\rho} + \gamma \, \Delta \rho + \tau^{(\mathsf{SO})} \,, \\ J^{(\mathsf{MTF})} &= -\frac{2m}{\hbar^2} \frac{\rho}{f[\rho]} \frac{\partial E_{Sk}}{\partial J} \end{aligned}$$

- α , β , γ extracted from Wigner-Kirkwood transformation
- MTF : no effective mass dependant terms in developpement + modified β values.
- Euler-Lagrange equation analytically solvable :

$$\frac{\partial \mathcal{E}_{\mathsf{Sk}}}{\partial \rho} + \nabla \frac{\partial \mathcal{E}_{\mathsf{Sk}}}{\partial \nabla \rho} = \frac{\partial \mathcal{E}_{\mathsf{Sk}}}{\partial \rho} \Big|_{\rho_{\mathsf{sat}}}.$$

• Extract surface energy coefficient from the solution of the Euler equation.

	A pocket formula for the surface energy	Pairing gap in the symmetric infinite nuclear matter
	000	
Results and comparison with other semi-classical or quantal approaches		

Results : MTF

• A pocket formula for the surface energy coefficient

$$E_s = 8\pi r_0^2 \int_0^{\rho_{sat}} d\rho \left[F[\rho] \left(E/A(\rho) - E/A(\rho_{sat}) \right) \right]^{1/2},$$

with $F[\rho] = \beta \frac{\hbar^2}{2m} + d\rho + g\rho^2 + V_{so}[\rho].$

Results : How does it compare with other methods ?

HF

ETF4

MTF

- Trial wave function.
- Iterative process → minimize the energy density and find the associate states.

- Trial density profile.
- Iterative process → minimize the energy density and find the associate density profil.
- A standalone pocket formula dependanding only on ρ_{sat} and Skyrme parameters.
- MTF Advantages : No CPU time consumming ! While, ETF4 calculation or HF are more time demanding.

	A pocket formula for the surface energy	Pairing gap in the symmetric infinite nuclear matte
	000	
Results and comparison	with other semi-classical or quantal approaches	

Is MTF calculations reliables ?

- Interest of constraining surface energy : control fission and deformation properties.
- Comparison between HF, ETF4 and MTF surface energy calculations.
- Large set of different Skyrme parametrizations with different properties :
 - \rightarrow effective masses (BSk, SIII...) ;
 - \rightarrow including tensor part (Tij) ;

etc...

	Pairing gap in the symmetric infinite nuclear matter
Pairing in the SINM	

Solving the pairing gap equation in SINM

- motivation : hard to constrain in nuclei (evaluation of f7/2 shell pairing matrix element in 40Ca). [Gomez, NPA (1992)] :
- Skyrme EDF in symmetric infinite nuclear matter, with pairing :

 $\mathcal{E}_{(\mathsf{Sk})} = \mathcal{E}_{(\mathsf{Sk})} \left[\rho_0, \tau_0, \tilde{\rho}_0, \tilde{\tau}_0 \right],$

• Non-zero densities in SINM [Takahara, PLB (1994)] :

$$\begin{split} \rho_0 &= \frac{2}{\pi^2} \int_{k_{min}}^{k_{max}} dk \ k^2 v^2(k) + \frac{2}{3\pi^2} k_{min}^3, \qquad \tilde{\rho}_0 &= -\frac{2}{\pi^2} \int_{k_{min}}^{k_{max}} dk \ k^2 u(k) \ v(k) \ , \\ \tau_0 &= \frac{2}{\pi^2} \int_{k_{min}}^{k_{max}} dk \ k^4 v^2(k) + \frac{2}{5\pi^2} k_{min}^5, \qquad \tilde{\tau}_0 &= -\frac{2}{\pi^2} \int_{k_{min}}^{k_{max}} dk \ k^4 u(k) \ v(k) \ , \, . \end{split}$$

- A new parameter of the interaction \rightarrow the energy cutoff E_c .
 - \rightarrow E_c choosed at 8.5 MeV for SLyMR0 and SLyMR1.
- SLyMR0 : 2-body NLO interaction + 3- and 4-body contact terms.
- SLyMR1 : 2-,3-body NLO interaction + 4-body contact term.

Gap equation

$$\Delta(k) = -\sum_{\mathbf{k}_1} V_{\mathsf{Sk}} \left(|\mathbf{k} - \mathbf{k}_1| \right) u(k_1) v(k_1) \quad \Rightarrow \Delta(k) = -\left[\frac{\partial \mathcal{E}_{\mathsf{Sk}}}{\partial \tilde{\rho}} + k^2 \frac{\partial \mathcal{E}_{\mathsf{Sk}}}{\partial \tilde{\tau}} \right].$$

	A pocket formula for the surface energy	Pairing gap in the symmetric infinite nuclear matter
Solving the gap equation in the SINN	Λ	

		Pairing gap in the symmetric infinite nuclear matter
		000000000
Solving the gap equation in the SINM		

Solving the gap equation : Technical prescriptions

- A simple iterative procedure is not sufficient to solve the problem \rightarrow Zero gap and non-zero gap solutions are co-existing.
- Solutions :
 - \rightarrow Need to check if the solution with pairing minimize the Hamiltonian density.

		Pairing gap in the symmetric infinite nuclear matter
		000000000
Solving the gap equation in the SINM		

Solving the gap equation : Technical prescriptions

- A simple iterative procedure is not sufficient to solve the problem \rightarrow Zero gap and non-zero gap solutions are existing.
- Solutions :

 \rightarrow Need to look if the solutions with pairing is minimizing the Hamiltonian density otherwise, pairing gap is is zero.

		Pairing gap in the symmetric infinite nuclear matter
		000000000
Pairing Gaps : What's new with 3 and 4-body terms ?		

News with 3 and 4-body interactions in infinite matter

- $\bullet\,$ For densities around saturation $\simeq\,$ 90 % of the gap is due to the 2-body interaction.
- 3-body interaction lowers pairing correlations.
- Attractive 4-body dominates at very high densities.
- SLyMR0 mainly gives a surface pairing while SLyMR1 gives a mixed pairing.

News with 3 and 4-body interactions in nuclei How does it compare with infinite nuclear matter ?

Neutrons pairing fields with SLyMR1 in 44Ca

News with 3 and 4-body interactions in nuclei How does it compare with infinite nuclear matter ?

Neutrons pairing fields with SLyMR1 in 44Ca

News with 3 and 4-body interactions in nuclei How does it compare with infinite nuclear matter ?

Neutrons pairing fields with SLyMR1 in 44Ca

News with 3 and 4-body interactions in nuclei How does it compare with infinite nuclear matter ?

		Pairing gap in the symmetric infinite nuclear matter
		0000000000
Pairing Gaps : What's new with 3 and 4-body terms 7		

News with 3 and 4-body interactions in nuclei

		Pairing gap in the symmetric infinite nuclear matter
		000000000
Pairing Gaps : What's new with 3 and 4-body terms ?		

Conclusions

- MTF is a fast and reliable method to calculate the surface energy coefficient.
- It can be incorporated in fit procedure.
- SLyMR1 gives a mixed pairing mainly governed by the 2-body part on the surface and by 4-body in the bulk.

Collaborations in this works

- IPNL: K. Bennaceur, D. Davesne, J. Meyer,
- CENBG: M. Bender, J. Sadoudi,
- IRFU: T. Duguet.