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Motivation

Pairing correlations and thermal effects

Theoretical Models

Particle number conserving approaches, Projected-BCS at Finite Temperature

Applications and Results

The Pairing (Richardson) Model, testing the Projected-BCS at Finite-T a

Finite Nuclei, Preliminary results for161,162Dy and 171,172Yb b

aDG and D.Lacroix, PRC 85, 044321 (2012)
bDG, D. Lacroix and N. Sandulescu, in preparation
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Quantal Fluctuations
Statistical Fluctuations
Projected BCS at Finite-Temperature

Thermodynamics description of pairing effects

Pairing in Nuclei

Pairing effects in atomic nuclei are well established:
Energy Gap in even-even-nuclei spectra, Binding energy and odd-even effects,..

Thermal signatures of the pairing interaction are less known

Thermodynamics properties of nuclei

One of the key quantity is the statistical nuclear level density:
Specific Heat, Entropy, Temperature, Compound nuclei properties,...

Astrophysics
reaction rates, supernovae, s- and r- processes,hot neutron stars, ..
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Thermodynamics description of pairing effects

Pairing in Nuclei

Pairing effects in atomic nuclei are well established:
Energy Gap in even-even-nuclei spectra, Binding energy and odd-even effects,..

Thermal signatures of the pairing interaction are less known

Thermodynamics properties of nuclei

One of the key quantity is the statistical nuclear level density:
Specific Heat, Entropy, Temperature, Compound nuclei properties,...

Astrophysics
reaction rates, supernovae, s- and r- processes,hot neutron stars, ..

Theoretical description is a quite complicated task

Critical behaviour and Phase Transitions

Interplay between single particle and collective d.o.f.

Continuum coupling
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Pairing correlations and interplay with thermal effects

A Simplistic View

Pairing correlations are expected to be more important at low energy

Paired correlated particles, Cooper pairs

As the energy increases the pair will break up

Pair break ⇒ drastic changes (level density,specific heat, backbending,.. )

Excitation energy reduces pairing correlations

Danilo Gambacurta Pairing correlations af finite temperature



Outline
Motivation

Results in the Richardson Model
Applications to atomic nuclei

Quantal Fluctuations
Statistical Fluctuations
Projected BCS at Finite-Temperature

Pairing correlations and finite-size effects

Pairing correlations in Mesoscopic Systems

Mesoscopic Systems (atomic nuclei,quantum dots, ultra-small grains)

Thermodynamical properties deviate from infinite systems

The Pairing GAP thermal evolution in finite systems

In infinite systems it decreases to zero as a function of the temperature

In finite nuclei the BCS/HFB predict the same behaviour, i.e. a sharp
phase transition at Tc ≈ 0.5∆0

Experimentally a much more smoothed behaviour is observed

A S-shape in the specific heat instead of a sharp phase transition

Theories able to describe both quantal and statistical fluctuations are
needed
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Quantal Fluctuations

The BCS Case T=0

BCS case
| BCS〉 =

Y

i

(ui + via
†
i a

†

ī
) | 0〉

where a
†
i creates a particle in ϕi ,aī time reversed state, | 0〉 is the vacuum.

N̂ | BCS〉 6= N | BCS〉,not eigenstate of N̂, | BCS〉 =
P

N cn | ΨN〉
BCS breaks U(1) Symmetry, Particle Number non Conserved
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Quantal Fluctuations

The BCS Case T=0

BCS case
| BCS〉 =

Y

i

(ui + via
†
i a

†

ī
) | 0〉

where a
†
i creates a particle in ϕi ,aī time reversed state, | 0〉 is the vacuum.

N̂ | BCS〉 6= N | BCS〉,not eigenstate of N̂, | BCS〉 =
P

N cn | ΨN〉
BCS breaks U(1) Symmetry, Particle Number non Conserved

Quantal Fluctuations: BCS case

〈
`

N̂ − 〈N̂〉
´2〉 = 〈N̂2〉 − 〈N̂〉2 6= 0

How to solve that?
Project onto Good Particle Number⇒ 〈N̂2〉 = 〈N̂〉2
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Thermodynamics Description

Statistical Ensembles

Grand-Canonical Ensemble (GCE), ⇒ 〈N̂2〉 6= 〈N̂〉2

Canonical Ensemble (CE), ⇒ 〈N̂2〉 = 〈N̂〉2

Microcanonical Ensemble (MCE)
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Statistical Fluctuations

From a Grand-Canonical to a Canonical Description

The BCS at finite-T (FT-BCS) amounts to work in the GC Ensemble

We apply a Variation after Projection at finite-T (FT-VAP) method
which allows to give a Canonical description within a mean-field level

Proposed by C. Esebbag and E. Egido, NPA 552,205 (1993)

but applied only to a degenerate model because of its complexity
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BCS at Finite-T, (Grand-Canonical)

H ≃ h =
P

i Eiα
†
i αi , α†

i = Uia
†
i − Viaī

Statistical density operator D

D = e
−βh/Tr{e−βh}, β = 1/KBT

The FT-BCS equations are obtained by minimizing the Free Energy

F =< H > −TS − µN

< H >= Tr{DH}, , S = −KBTr{DlogD}
Usual (T=0) BCS equations with Gap Temperature dependent, i.e

∆i =
X

j

∆jGij

2Ej
(1 − 2fj); fj = (1 + e

βEj )−1

Danilo Gambacurta Pairing correlations af finite temperature



Outline
Motivation

Results in the Richardson Model
Applications to atomic nuclei

Quantal Fluctuations
Statistical Fluctuations
Projected BCS at Finite-Temperature

Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-Temperature

H ≈ h =
P

i Eiα
†
i αi , α†

i = Uia
†
i − Viaī

We define the Projected density operator DN

DN = PNe−βhPN/Tr{PNe−βhPN}, β = 1/KBT

and PN is the Particle Number Projector,

PN =
1

2π

Z 2π

0
e iφ(N̂−N)dφ

The Free Energy is minimized

F =< H >N −TS, < H >N= Tr{DNH}, S = −KBTr{DN logDN}
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Application: Pairing Pickt-Fence Model

Pairing Model (Richardson)

N particles distributed over Ω doubly-folded
equidistant levels of energy ǫi

H =
X

i,σ

ǫia
†
i,σai,σ − G

X

i,j

a
†
i,+a

†
i,−aj,−aj,+

Exact Canonical Solution

Z(T ) =
X

n

e
−βEn ; < E(T ) >=

X

n

Ene
−βEn/Z(T )

all the eigenvalues are needed.

Danilo Gambacurta Pairing correlations af finite temperature



Outline
Motivation

Results in the Richardson Model
Applications to atomic nuclei

Quantal Fluctuations
Statistical Fluctuations
Projected BCS at Finite-Temperature

Mean Field Description

Mean Field (BCS or HFB based ) approaches at finite T

Finite Temperature BCS, minimizes F= 〈H − λN̂〉 -TS

BCS plus Lipkin Nogami at Finite-T, minimizes F= 〈H − λN̂ − λ2N̂
2〉 -TS

Modified BCS
(statistical fluctuations are incorporated in a second quasi-particle
transformation)
N. Dinh Dang and A. Arima PRC 68, 014318 (2003).
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Applications to the Pairing Model (Richardson), N=Ω=10, G=0.4d
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Mean Field Based Results 
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Projected BCS at Finite-Temperature

H ≈ h =
P

i Eiα
†
i αi

We define the Projected density operator DN

DN = PNe−βhPN/Tr{PNe−βhPN}, β = 1/KBT

and PN is the Particle Number Projector,

PN =
1

2π

Z 2π

0
e iφ(N̂−N)dφ

The Free Energy is minimized

F =< H >N −TS, < H >N= Tr{DNH}, S = −KBTr{DN logDN}
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Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-Temperature

H ≈ h =
P

i Eiα
†
i αi

We define the Projected density operator DN

DN = PNe−βhPN/Tr{PNe−βhPN}, β = 1/KBT

and PN is the Particle Number Projector,

PN =
1

2π

Z 2π

0
e iφ(N̂−N)dφ

The Free Energy is minimized

F =< H >N −TS, < H >N= Tr{DNH}, S = −KBTr{DN logDN}

Approximated Scheme

Projected after Variation (PAV):
We solve FT-BCS equation and the we calculate < H >= Tr{DNH}
Commonly used in the T=0 case.
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Results: FT-BCS and FT-PAV Vs Exact, N=Ω=10, G=0.4d
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Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-T

We define the Projected density operator DN

DN = PNe−βhPN/Tr{PNe−βhPN}, β = 1/KBT

We minimize the Free Energy

F =< H >N −TS, < H >N= Tr{DNH}, S = −KBTr{DN logDN}

Not easy...h and DN do not commute

Variation After Projection (VAP)

Direct (Numerical) Minimization, Ei and Vi variational parameters whose
< H >N and S depend on

We perform a full Finite-Temperature Variation After Projection (FT-VAP)

For more details see DG and D.Lacroix, PRC 85, 044321 (2012)
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Results: FT-VAP Vs Exact, N=Ω=10, G=0.4d
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Results: FT-VAP Vs Exact,N=10,11 and Ω=10, G=0.4d

Odd-Even Effects

Pairing Gaps

Spin Susceptibility χ(T ) = − 1
T

“

〈M̂2〉 − 〈M̂〉2
”

, M̂ = −µB

P

σ,i σa
†
i,σai,σ
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Results: FT-VAP Vs Exact,N=10,11 and Ω=10, G=0.4d

Odd-Even Effects
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T

“

〈M̂2〉 − 〈M̂〉2
”

, M̂ = −µB

P

σ,i σa
†
i,σai,σ

0.4

0.6

0.8

1

G
ap

0 1 2 3 4 5
Temperature

0

1

2

χ(
T

)/
χ B

Black N=10
Red    N=11

Danilo Gambacurta Pairing correlations af finite temperature



Outline
Motivation

Results in the Richardson Model
Applications to atomic nuclei

We test the FT-VAP approach in the Richardson Model

The FT-VAP is able to reproduce low- and high-T thermodynamics
properties

It works both for odd and even systems
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We test the FT-VAP approach in the Richardson Model

The FT-VAP is able to reproduce low- and high-T thermodynamics
properties

It works both for odd and even systems

Part II

Applications to atomic nuclei
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Specific Heat in 161,162Dy and 171,172Yb

Oslo Group measurements

Level density extracted from γ-ray spectra

Using (3He, αγ) on 162,163Dy and 172,173Yb targets a

aA. Schiller et al. PRC63,021306(R)
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Specific Heat in 161,162Dy and 171,172Yb

Specific Heat
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Calculation Details

Basic input for CE and FT-VAP calculations

Single particle (sp) basis form Relativistic Mean Field (RMF,PK1) and
Hartee-Fock (HF,SLY4) axially deformed calculations

Truncation in sp basis is needed, i.e. active window

We use prescription given in A. Alhassid et al. PRC68, 2003 to take into
account of excluded states in an effective way
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Calculation Details

Basic input for CE and FT-VAP calculations

Single particle (sp) basis form Relativistic Mean Field (RMF,PK1) and
Hartee-Fock (HF,SLY4) axially deformed calculations

Truncation in sp basis is needed, i.e. active window

We use prescription given in A. Alhassid et al. PRC68, 2003 to take into
account of excluded states in an effective way

Hamiltonian and Pairing Strengths

H =
X

q,i,σ

ǫq
i a

†
iq,σaiq,σ − G

q
X

q,i,j

a
†
iq,+a

†
iq,−ajq,−ajq,+

q = ν neutron or π proton

G q is fixed at BCS (T=0) level to have reasonable gaps
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Some Pairing properties in the Active window

Pairing Gap properties and Condensate Fraction

The pairing plays a role only in the active window

Some pairing properties in the reduce space (i.e. 3 MeV around Fermi
Energy)

Thermal Evolution of

Pairing Gap

Condensate Fraction
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Neutron Pairing Gaps: VAP vs BCS and odd-even features
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Condensate Fraction

Superconducting phenomena

Cooper pairs, strongly correlated pair via the pairing interaction

Bosonic-like properties and they can (eventually) condensate

The quantitative description of these features is not easy

Off-diagonal long-range order (ODLRO)

Connection with the ODLROa in the density matrix ρn where n is the
number of particles forming a condensate unit

Appearance of eigenvalues of ρn much larger than the others connected to
the appearance of (pseudo)-condensate

Eigenvalues of the two-body matrix

Cij = 〈P†
i Pj〉T , P

†
i = a

†
i a

†

ī

aC.N. Yang, Rev. Mod. Phys. 1962
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Two-Body matrix eigenvalues, (five biggest ones)
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Order Parameter and Condensate Fraction
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Full Results

Full interacting partition function

Active Window: 3 MeV around the Fermi Energy
Non Interacting Window: 7 MeV around the Fermi Energy

Active
Window

Non
Interacting
Window

Znint

Znint,tr

Zint,tr

Zint

ln Zint = ln Zint,tr − ln Znint,tr + ln Znint

A. Alhassid et al. PRC68, 2003
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Partition Function and Specific Heat
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Results Stability...increasing the active window: from 3 to 5 MeV
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Dependence on the pairing strength
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Dependence on the mean field input

Yb(RMF)

N P
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Dependence on the mean field input
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CE versus VAP description
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Odd-Even comparison
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Part III

Comparison with experimental specific heat
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Specific Heat in 161,162Dy and 171,172Yb
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Comparison with Experimental data

(Semi)experimental Specific Heat

Level densities (from γ-ray spectra) up to 6 MeV (odd) and 8 MeV (even)
systems

For the high energy part (up to 40 MeV) they use the Back Shifted Fermi
GAS (BSFG)

ρBSFG (U) = f
exp(2

√
aU)

12
√

0.1776aU
3
2 A

1
3

U = E − E1, E1 = C1 + ∆,f parameter fixed to match neutron resonance

Full interacting partition function

ln Zint = ln Zint,tr − ln Znint,tr + ln Znint ⇒
ln Zint = ln Zint,tr − ln Znint,tr + ln ZBFGS
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Full interacting partition function

ln Zint = ln Zint,tr − ln Znint,tr + ln Znint ⇒
ln Zint = ln Zint,tr − ln Znint,tr + ln ZBFGS
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Specific Heat in 161,162Dy and 171,172Yb
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Conclusions and Outlook

Conclusions

Thermodynamics Pairing Properties in Finite Systems

Both CE and FT-VAP solutions

Thermal evolution of Pairing Gap and Condensate Fraction indicate
smooth phase transition

Specific Heat in 161,162Dy and 171,172Yb

S-Shape related both to pairing interaction and s.p. states around Fermi
Energy

Outlook

Phenomenological Single Particle basis (i.e. Wood-Saxon)

More general Hamiltonian (quadrupole part,..)

Including continuum coupling (Exotic Systems)

From a Canonical to the Microcanonical description

Danilo Gambacurta Pairing correlations af finite temperature



Outline
Motivation

Results in the Richardson Model
Applications to atomic nuclei

Danilo Gambacurta Pairing correlations af finite temperature



Outline
Motivation

Results in the Richardson Model
Applications to atomic nuclei

Experimental GAP in Mo isotopes

K. kaneko et al., PRC 74, 024325
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Odd-Even Entropy Effects

M Guttormsen et al., PRC 62, 024306
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Pairing Gaps: VAP vs BCS and odd-even features
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The Entropy...

The calculation of the Entropy is the most difficult task..

We need the eigenvalues of DN in the many-body Fock space with N

particles

Each state is characterized by η pairs and I unpaired particles, such as
2η + I = N

diagonalization of block matrices for each allowed seniority I

Required computational cost

1) calculation of the matrix elements (ME) of DN

bit representation of the states, ME are obtained by using logical operations

(much faster)

2) diagonalization
standard QR algorithm is used
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The Entropy...A more direct and simple approach

The calculation of the Entropy is the most difficult task..

We need the eigenvalues of DN in the many-body Fock space with N

particles |N, i〉
〈N, i |e−βh|N, j〉
High energy configurations are expected to be less important

We consider only the states |N, i〉 whose energy is less than Ec

We increase Ec to study the reliability of the solution
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N=Ω=10, G=0.4d
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N=Ω=10, G=0.4d
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N=Ω=10, G=0.4d
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Applications to the Pairing Model (Richardson),

N=Ω=16, G=0.4d (No Exact Solution)

-70

-60

-50

E
ne

rg
y

E
c
=10d

E
c
=20d

E
c
=30d

FT-BCS

0

5

10

15

E
nt

ro
py

0 1 2
Temperature

0.5

1G
ap

No Exact Solution

Danilo Gambacurta Pairing correlations af finite temperature


	Outline
	Motivation
	Quantal Fluctuations
	Statistical Fluctuations
	Projected BCS at Finite-Temperature

	Results in the Richardson Model
	Applications to atomic nuclei

