Pairing correlations af finite temperature

Danilo Gambacurta¹

¹GANIL,CEA/DSM-CNRS/IN2P3, Caen, France

Pairing correlations around the drip-line of finite system, and beyond Espace de Structure Nucléaire Théorique, Sacaly, May 27-29, 2013

4 E b

Outline

Motivation Results in the Richardson Model Applications to atomic nuclei

Outline

Motivation

Pairing correlations and thermal effects

Theoretical Models

Particle number conserving approaches, Projected-BCS at Finite Temperature

Applications and Results

- The Pairing (Richardson) Model, testing the Projected-BCS at Finite-T^a
- Finite Nuclei, Preliminary results for^{161,162}Dy and ^{171,172}Yb ^b

^aDG and D.Lacroix, PRC 85, 044321 (2012) ^bDG, D. Lacroix and N. Sandulescu, in preparation

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Thermodynamics description of pairing effects

Pairing in Nuclei

- Pairing effects in atomic nuclei are well established: Energy Gap in even-even-nuclei spectra, Binding energy and odd-even effects,...
- Thermal signatures of the pairing interaction are less known

Thermodynamics properties of nuclei

- One of the key quantity is the statistical nuclear level density: Specific Heat, Entropy, Temperature, Compound nuclei properties,...
- Astrophysics

reaction rates, supernovae, s- and r- processes, hot neutron stars, ...

5 N A 5 N

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Thermodynamics description of pairing effects

Pairing in Nuclei

- Pairing effects in atomic nuclei are well established: Energy Gap in even-even-nuclei spectra, Binding energy and odd-even effects,...
- Thermal signatures of the pairing interaction are less known

Thermodynamics properties of nuclei

- One of the key quantity is the statistical nuclear level density: Specific Heat, Entropy, Temperature, Compound nuclei properties,...
- Astrophysics

reaction rates, supernovae, s- and r- processes, hot neutron stars, ...

Theoretical description is a quite complicated task

- Critical behaviour and Phase Transitions
- Interplay between single particle and collective d.o.f.
- Continuum coupling

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Pairing correlations and interplay with thermal effects

A Simplistic View

- Pairing correlations are expected to be more important at low energy
- Paired correlated particles, Cooper pairs

- As the energy increases the pair will break up
- Pair break \Rightarrow drastic changes (level density, specific heat, backbending,...)
- Excitation energy reduces pairing correlations

- 4 同 6 4 回 6 4 回 6

э

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Pairing correlations and finite-size effects

Pairing correlations in Mesoscopic Systems

- Mesoscopic Systems (atomic nuclei, quantum dots, ultra-small grains)
- Thermodynamical properties deviate from infinite systems

The Pairing GAP thermal evolution in finite systems

- In infinite systems it decreases to zero as a function of the temperature
- In finite nuclei the BCS/HFB predict the same behaviour, i.e. a sharp phase transition at $T_c \approx 0.5 \Delta_0$
- Experimentally a much more smoothed behaviour is observed
- A S-shape in the specific heat instead of a sharp phase transition
- Theories able to describe both quantal and statistical fluctuations are needed

- 4 B b - 4 B b

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Quantal Fluctuations

The BCS Case T=0

BCS case

$$\mid BCS
angle = \prod_{i} (u_i + v_i a_i^{\dagger} a_i^{\dagger}) \mid 0
angle$$

where a_i^{\dagger} creates a particle in $\varphi_i, a_{\overline{i}}$ time reversed state, $|0\rangle$ is the vacuum.

- $\hat{N} \mid BCS \rangle \neq N \mid BCS \rangle$, not eigenstate of \hat{N} , $\mid BCS \rangle = \sum_{N} c_n \mid \Psi_N \rangle$
- BCS breaks U(1) Symmetry, Particle Number non Conserved

3

< 🗇 🕨

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Quantal Fluctuations

The BCS Case T=0

BCS case

$$\mid BCS
angle = \prod_{i} (u_{i} + v_{i}a_{i}^{\dagger}a_{i}^{\dagger}) \mid 0
angle$$

where a_i^{\dagger} creates a particle in $\varphi_i, a_{\overline{i}}$ time reversed state, $|0\rangle$ is the vacuum.

- $\hat{N} \mid BCS \rangle \neq N \mid BCS \rangle$,not eigenstate of \hat{N} , $\mid BCS \rangle = \sum_{N} c_n \mid \Psi_N \rangle$
- BCS breaks U(1) Symmetry, Particle Number non Conserved

Quantal Fluctuations: BCS case

$$\langle \left(\hat{N} - \langle \hat{N} \rangle \right)^2 \rangle = \langle \hat{N}^2 \rangle - \langle \hat{N} \rangle^2 \neq 0$$

How to solve that?

Project onto Good Particle Number \Rightarrow $\langle \hat{N}^2
angle = \langle \hat{N}
angle^2$

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Thermodynamics Description

Statistical Ensembles

- Grand-Canonical Ensemble (GCE), \Rightarrow $\langle \hat{N}^2 \rangle \neq \langle \hat{N} \rangle^2$
- Canonical Ensemble (CE), \Rightarrow $\langle \hat{N}^2 \rangle = \langle \hat{N} \rangle^2$
- Microcanonical Ensemble (MCE)

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Thermodynamics Description

Statistical Ensembles

- Grand-Canonical Ensemble (GCE), \Rightarrow $\langle \hat{N}^2 \rangle \neq \langle \hat{N} \rangle^2$
- Canonical Ensemble (CE), \Rightarrow $\langle \hat{N}^2 \rangle = \langle \hat{N} \rangle^2$
- Microcanonical Ensemble (MCE)

Statistical Fluctuations

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

From a Grand-Canonical to a Canonical Description

- The BCS at finite-T (FT-BCS) amounts to work in the GC Ensemble
- We apply a Variation after Projection at finite-T (FT-VAP) method which allows to give a Canonical description within a mean-field level
- Proposed by C. Esebbag and E. Egido, NPA 552,205 (1993)
- but applied only to a degenerate model because of its complexity

- 4 B b - 4 B b

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

BCS at Finite-T, (Grand-Canonical)

- $H \simeq h = \sum_{i} E_{i} \alpha_{i}^{\dagger} \alpha_{i}, \quad \alpha_{i}^{\dagger} = U_{i} a_{i}^{\dagger} V_{i} a_{\overline{i}}$
- Statistical density operator D

$$D = e^{-\beta h} / Tr\{e^{-\beta h}\}, \quad \beta = 1 / K_B T$$

• The FT-BCS equations are obtained by minimizing the Free Energy

$$F = \langle H \rangle - TS - \mu N$$

 $< H >= Tr{DH}, \quad , S = -K_B Tr{DlogD}$

• Usual (T=0) BCS equations with Gap Temperature dependent, i.e

$$\Delta_i = \sum_j rac{\Delta_j \mathcal{G}_{ij}}{2 \mathcal{E}_j} (1-2 f_j); \quad f_j = (1+e^{eta \mathcal{E}_j})^{-1}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

-

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-Temperature

•
$$H \approx h = \sum_{i} E_{i} \alpha_{i}^{\dagger} \alpha_{i}, \quad \alpha_{i}^{\dagger} = U_{i} a_{i}^{\dagger} - V_{i} a_{\overline{i}}$$

• We define the Projected density operator D_N

$$D_N = P_N e^{-\beta h} P_N / \operatorname{Tr} \{ P_N e^{-\beta h} P_N \}, \quad \beta = 1 / K_B T$$

and P_N is the Particle Number Projector,

$$P_N = \frac{1}{2\pi} \int_0^{2\pi} e^{i\phi(\hat{N}-N)} d\phi$$

The Free Energy is minimized

$$F = \langle H \rangle_N - TS, \quad \langle H \rangle_N = Tr\{D_NH\}, \quad S = -K_BTr\{D_N \log D_N\}$$

< 🗇 🕨

→ Ξ ► < Ξ ►</p>

3

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Application: Pairing Pickt-Fence Model

Pairing Model (Richardson)

 N particles distributed over Ω doubly-folded equidistant levels of energy ε_i

$$H = \sum_{i,\sigma} \epsilon_i \mathbf{a}_{i,\sigma}^{\dagger} \mathbf{a}_{i,\sigma} - G \sum_{i,j} \mathbf{a}_{i,+}^{\dagger} \mathbf{a}_{i,-}^{\dagger} \mathbf{a}_{j,-} \mathbf{a}_{j,+}$$

• Exact Canonical Solution

$$Z(T) = \sum_{n} e^{-\beta E_{n}}; \langle E(T) \rangle = \sum_{n} E_{n} e^{-\beta E_{n}} / Z(T)$$

all the eigenvalues are needed.

글 > - < 글 >

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Mean Field Description

Mean Field (BCS or HFB based) approaches at finite T

- Finite Temperature BCS, minimizes $F = \langle H \lambda \hat{N} \rangle$ -TS
- BCS plus Lipkin Nogami at Finite-T, minimizes $F = \langle H \lambda \hat{N} \lambda_2 \hat{N}^2 \rangle$ -TS
- Modified BCS

(statistical fluctuations are incorporated in a *second* quasi-particle transformation)

N. Dinh Dang and A. Arima PRC 68, 014318 (2003).

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Applications to the Pairing Model (Richardson), N= Ω =10, G=0.4d

Mean Field Based Results Richardson Model

∃ ⊳

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-Temperature

- $H \approx h = \sum_{i} E_{i} \alpha_{i}^{\dagger} \alpha_{i}$
- We define the Projected density operator D_N

$$D_N = P_N e^{-\beta h} P_N / Tr\{P_N e^{-\beta h} P_N\}, \quad \beta = 1/K_B T$$

and P_N is the Particle Number Projector,

$$P_N = \frac{1}{2\pi} \int_0^{2\pi} e^{i\phi(\hat{N}-N)} d\phi$$

• The Free Energy is minimized

$$F = \langle H \rangle_N - TS, \quad \langle H \rangle_N = Tr\{D_NH\}, \quad S = -K_B Tr\{D_N \log D_N\}$$

글 > - < 글 >

Quantal Fluctuations Statistical Fluctuations Projected BCS at Finite-Temperature

Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-Temperature

- $H \approx h = \sum_{i} E_{i} \alpha_{i}^{\dagger} \alpha_{i}$
- We define the Projected density operator D_N

$$D_N = P_N e^{-\beta h} P_N / Tr\{P_N e^{-\beta h} P_N\}, \quad \beta = 1/K_B T$$

and P_N is the Particle Number Projector,

$$P_N = \frac{1}{2\pi} \int_0^{2\pi} e^{i\phi(\hat{N}-N)} d\phi$$

• The Free Energy is minimized

$$F = \langle H \rangle_N - TS, \quad \langle H \rangle_N = Tr\{D_NH\}, \quad S = -K_B Tr\{D_N \log D_N\}$$

Approximated Scheme

- Projected after Variation (PAV):
 We solve FT-BCS equation and the we calculate < H >= Tr{D_NH}
- Commonly used in the T=0 case.

- 4 同 2 4 日 2 4 日 2 4

э

Results: **FT-BCS and FT-PAV Vs Exact**, $N=\Omega=10$, G=0.4d

Projected BCS at Finite-T, (Canonical)

Projected BCS at Finite-T

• We define the Projected density operator D_N

$$D_N = P_N e^{-\beta h} P_N / Tr\{P_N e^{-\beta h} P_N\}, \quad \beta = 1/K_B T$$

We minimize the Free Energy

 $F = \langle H \rangle_N - TS, \quad \langle H \rangle_N = Tr\{D_NH\}, \quad S = -K_B Tr\{D_N log D_N\}$

• Not easy...h and D_N do not commute

Variation After Projection (VAP)

- Direct (Numerical) Minimization, E_i and V_i variational parameters whose $< H >_N$ and S depend on
- We perform a full Finite-Temperature Variation After Projection (FT-VAP)
- For more details see DG and D.Lacroix, PRC 85, 044321 (2012)

イロト 不得下 不足下 不足下 一日

Results: **FT-VAP Vs Exact**, N= Ω =10, G=0.4d

ㅋ ㅋ

Results: **FT-VAP Vs Exact**, N=10,11 and $\overline{\Omega}$ =10, G=0.4d

Odd-Even Effects

Pairing Gaps

• Spin Susceptibility
$$\chi(T) = -\frac{1}{T} \left(\langle \hat{M}^2 \rangle - \langle \hat{M} \rangle^2 \right), \quad \hat{M} = -\mu_B \sum_{\sigma,i} \sigma a_{i,\sigma}^{\dagger} a_{i,\sigma}$$

ヨト・イヨト

э

Results: **FT-VAP Vs Exact**, N=10,11 and $\overline{\Omega}$ =10, G=0.4d

Odd-Even Effects

• Pairing Gaps

• Spin Susceptibility
$$\chi(T) = -\frac{1}{T} \left(\langle \hat{M}^2 \rangle - \langle \hat{M} \rangle^2 \right)$$
, $\hat{M} = -\mu_B \sum_{\sigma,i} \sigma a_{i,\sigma}^{\dagger} a_{i,\sigma}$

∃ ⊳

We test the FT-VAP approach in the Richardson Model

- The FT-VAP is able to reproduce low- and high-T thermodynamics properties
- It works both for odd and even systems

프 🖌 🛪 프 🕨

3

< 🗇 🕨

We test the FT-VAP approach in the Richardson Model

- The FT-VAP is able to reproduce low- and high-T thermodynamics properties
- It works both for odd and even systems

Part II

Applications to atomic nuclei

프 + + 프 +

э

Specific Heat in ^{161,162}Dy and ^{171,172}Yb

Oslo Group measurements

- Level density extracted from $\gamma\text{-ray}$ spectra
- Using (${}^{3}\text{He}, \alpha\gamma$) on ${}^{162,163}\text{Dy}$ and ${}^{172,173}\text{Yb}$ targets a

^aA. Schiller et al. PRC63,021306(R)

3

Specific Heat in ^{161,162}Dy and ^{171,172}Yb

Oslo Group measurements

- Level density extracted from $\gamma\text{-ray}$ spectra
- Using (${}^{3}\text{He}, lpha\gamma$) on ${}^{162,163}\text{Dy}$ and ${}^{172,173}\text{Yb}$ targets a

^aA. Schiller et al. PRC63,021306(R)

∃ ⊳

Specific Heat in ^{161,162}Dy and ^{171,172}Yb

Specific Heat

Calculation Details

Basic input for CE and FT-VAP calculations

- Single particle (sp) basis form Relativistic Mean Field (RMF,PK1) and Hartee-Fock (HF,SLY4) axially deformed calculations
- Truncation in sp basis is needed, i.e. active window
- We use prescription given in A. Alhassid *et al.* PRC68, 2003 to take into account of excluded states in an effective way

- A 🖻 🕨

Calculation Details

Basic input for CE and FT-VAP calculations

- Single particle (sp) basis form Relativistic Mean Field (RMF,PK1) and Hartee-Fock (HF,SLY4) axially deformed calculations
- Truncation in sp basis is needed, i.e. active window
- We use prescription given in A. Alhassid *et al.* PRC68, 2003 to take into account of excluded states in an effective way

Hamiltonian and Pairing Strengths

۹

$$H = \sum_{q,i,\sigma} \epsilon_i^q a_{iq,\sigma}^{\dagger} a_{iq,\sigma} - G^q \sum_{q,i,j} a_{iq,+}^{\dagger} a_{iq,-}^{\dagger} a_{jq,-} a_{jq,+}$$

 $q = \nu$ neutron or π proton

• G^q is fixed at BCS (T=0) level to have reasonable gaps

4 B K 4 B K

Some Pairing properties in the Active window

Pairing Gap properties and Condensate Fraction

- The pairing plays a role only in the active window
- Some pairing properties in the reduce space (i.e. 3 MeV around Fermi Energy)

Thermal Evolution of

- Pairing Gap
- Condensate Fraction

∃ >

Neutron Pairing Gaps: VAP vs BCS and odd-even features

э

Condensate Fraction

Superconducting phenomena

- Cooper pairs, strongly correlated pair via the pairing interaction
- Bosonic-like properties and they can (eventually) condensate
- The quantitative description of these features is not easy

Off-diagonal long-range order (ODLRO)

- Connection with the ODLRO^a in the density matrix ρ_n where n is the number of particles forming a condensate unit
- Appearance of eigenvalues of ρ_n much larger than the others connected to the appearance of (pseudo)-condensate
- Eigenvalues of the two-body matrix

$$C_{ij} = \langle P_i^{\dagger} P_j \rangle_T, \quad P_i^{\dagger} = a_i^{\dagger} a_{\overline{i}}^{\dagger}$$

^aC.N. Yang, Rev. Mod. Phys. 1962

★ Ξ ► ★ Ξ ►

Two-Body matrix eigenvalues, (five biggest ones)

¹⁶²Dy

Danilo Gambacurta Pairing correlations af finite temperature

э

-

Order Parameter and Condensate Fraction

Cond. Fract. λ_{max}/N_{pair}

< - 17 ►

▲ 문 ▶ ▲ 문 ▶ ...

æ

Full Results

Full interacting partition function

Active Window: 3 MeV around the Fermi Energy Non Interacting Window: 7 MeV around the Fermi Energy

$$ln Z_{int} = ln Z_{int,tr} - ln Z_{nint,tr} + ln Z_{nint}$$

A. Alhassid et al. PRC68, 2003

< ∃ →

э

Partition Function and Specific Heat

< ∃⇒

æ

Results Stability...increasing the active window: from 3 to 5 MeV

ㅋ ㅋ

Dependence on the pairing strength

¹⁶²Dy

ㅋ ㅋ

Dependence on the mean field input

æ

Dependence on the mean field input

æ

CE versus VAP description

Odd-Even comparison

Danilo Gambacurta Pairing correlations af finite temperature

ヨト ヨ

Part III

Comparison with experimental specific heat

< □ > < □ > < □ > < □ > < □ > < □ >

э

Specific Heat in ^{161,162}Dy and ^{171,172}Yb

Comparison with Experimental data

(Semi)experimental Specific Heat

- Level densities (from $\gamma\text{-ray}$ spectra) up to 6 MeV (odd) and 8 MeV (even) systems
- For the high energy part (up to 40 MeV) they use the Back Shifted Fermi GAS (BSFG)

$$\rho_{BSFG}(U) = f \frac{exp(2\sqrt{a}U)}{12\sqrt{0.1776a}U^{\frac{3}{2}}A^{\frac{1}{3}}}$$

• $U = E - E_1$, $E_1 = C_1 + \Delta$, f parameter fixed to match neutron resonance

Full interacting partition function

$$ln \ Z_{int} = ln \ Z_{int,tr} - ln \ Z_{nint,tr} + ln \ Z_{nint} \Rightarrow$$

$$\textit{In } Z_{\textit{int}} = \textit{In } Z_{\textit{int},tr} - \textit{In } Z_{\textit{nint},tr} + \textit{In } Z_{\textit{BFGS}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Comparison with Experimental data

(Semi)experimental Specific Heat

- Level densities (from $\gamma\text{-ray}$ spectra) up to 6 MeV (odd) and 8 MeV (even) systems
- For the high energy part (up to 40 MeV) they use the Back Shifted Fermi GAS (BSFG)

$$\rho_{BSFG}(U) = f \frac{exp(2\sqrt{a}U)}{12\sqrt{0.1776a}U^{\frac{3}{2}}A^{\frac{1}{3}}}$$

• $U = E - E_1$, $E_1 = C_1 + \Delta$, f parameter fixed to match neutron resonance

Full interacting partition function

$$ln \ Z_{int} = ln \ Z_{int,tr} - ln \ Z_{nint,tr} + ln \ Z_{nint} \Rightarrow$$

$$ln \ Z_{int} = ln \ Z_{int,tr} - ln \ Z_{nint,tr} + ln \ Z_{BFGS}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Specific Heat in ^{161,162}Dy and ^{171,172}Yb

Specific Heat in ^{161,162}Dy and ^{171,172}Yb

Conclusions and Outlook

Conclusions

- Thermodynamics Pairing Properties in Finite Systems
- Both CE and FT-VAP solutions
- Thermal evolution of Pairing Gap and Condensate Fraction indicate smooth phase transition
- $\bullet\,$ Specific Heat in $^{161,162}\text{Dy}$ and $^{171,172}\text{Yb}$
- *S*-Shape related both to pairing interaction and s.p. states around Fermi Energy

Outlook

- Phenomenological Single Particle basis (i.e. Wood-Saxon)
- More general Hamiltonian (quadrupole part,..)
- Including continuum coupling (Exotic Systems)
- From a Canonical to the Microcanonical description

э

メロン メロン メヨン メヨン

Ξ 9 Q (P

Experimental GAP in Mo isotopes

K. kaneko et al., PRC 74, 024325

Odd-Even Entropy Effects

FIG. 9. Entropy difference in 161 Dy compared to 162 Dy (upper panel) and in 171 Yb compared to 172 Yb (lower panel). The lines through the data points indicate the average values found.

M Guttormsen et al., PRC 62, 024306

Pairing Gaps: VAP vs BCS and odd-even features

э

The Entropy...

The calculation of the Entropy is the most difficult task..

- We need the eigenvalues of D^N in the many-body Fock space with N particles
- Each state is characterized by η pairs and I unpaired particles, such as $2\eta+I=N$
- diagonalization of block matrices for each allowed seniority I

Required computational cost

- 1) calculation of the matrix elements (ME) of D^N bit representation of the states, ME are obtained by using logical operations (much faster)
- 2) diagonalization standard QR algorithm is used

The Entropy...A more direct and simple approach

The calculation of the Entropy is the most difficult task..

- We need the eigenvalues of D_N in the many-body Fock space with N particles $|N, i\rangle$
- $\langle N, i | e^{-\beta h} | N, j \rangle$
- High energy configurations are expected to be less important
- We consider only the states |N,i
 angle whose energy is less than E_c
- We increase E_c to study the reliability of the solution

B b d B b

$N=\Omega=10$, G=0.4d

æ

∢ ≣ ≯

$N=\Omega=10$, G=0.4d

æ

∢ ≣ ≯

$N=\Omega=10$, G=0.4d

æ

∢ ≣ ≯

Applications to the Pairing Model (Richardson),

 $N=\Omega=16$, G=0.4d

No Exact Solution

∃ ⊳