Superfluidity in nuclei from ab-initio many-body methods

T. Duguet

CEA, Service de Physique Nucléaire, France

NSCL, Michigan State University, USA

with C. Barbieri, A. Cipollone, G. Hagen, P. Navrátil, A. Signoracci, V. Somà

ESNT workshop, May 27-29 2013, CEA/SPhN, Saclay

- Elements of formalism
- Inclusion of NNN forces
- First results

Question of present interest

Self-consistent Gorkov Green's Function calculations

- Elements of formalism
- Inclusion of NNN forces
- First results

Conclusions

Question of present interest

Fully microscopic description of pairing in nuclei

- Long term challenge
- Quantitative account rely on delicate interplay
- Relevant to structure and reaction properties of (exotic) nuclei

Non-perturbative many-body physics

- Necessary to account quantitatively for
 - **)** Particle motion \Leftrightarrow shell structure and fragmentation
 - Pair attraction ⇔ direct and induced processes
- Ab-initio methods for mid-mass open-shell nuclei
 - Self-consistent Gorkov Green's Function theory = in place [V. Somà, C. Barbieri, T. Duguet]
 - Bogoliubov Coupled-Cluster theory = on the way [A. Signoracci, T. Duguet, G. Hagen]

Realistic Hamiltonian

- Nuclear NN and NNN (at least) as well as Coulomb interactions
 - From Chiral Effective Field Theory (χ -EFT)
 - Scaled down through, e.g., Similarity Renormalization Group (SRG) method

Question of present interest

Fully microscopic description of pairing in nuclei

- Long term challenge
- Quantitative account rely on delicate interplay
- Relevant to structure and reaction properties of (exotic) nuclei

Non-perturbative many-body physics

- Necessary to account quantitatively for
 - **Q** Particle motion \Leftrightarrow shell structure and fragmentation
 - ❷ Pair attraction ⇔ direct and induced processes
- Ab-initio methods for mid-mass open-shell nuclei
 - Self-consistent Gorkov Green's Function theory = in place [V. Somà, C. Barbieri, T. Duguet]
 - Bogoliubov Coupled-Cluster theory = on the way [A. Signoracci, T. Duguet, G. Hagen]

Realistic Hamiltonian

- Nuclear NN and NNN (at least) as well as Coulomb interactions
 - If From Chiral Effective Field Theory (χ -EFT)
 - Scaled down through, e.g., Similarity Renormalization Group (SRG) method

Question of present interest

Fully microscopic description of pairing in nuclei

- Long term challenge
- Quantitative account rely on delicate interplay
- Relevant to structure and reaction properties of (exotic) nuclei

Non-perturbative many-body physics

- Necessary to account quantitatively for
 - **Q** Particle motion \Leftrightarrow shell structure and fragmentation
 - Pair attraction ⇔ direct and induced processes
- Ab-initio methods for mid-mass open-shell nuclei
 - Self-consistent Gorkov Green's Function theory = in place [V. Somà, C. Barbieri, T. Duguet]
 - Bogoliubov Coupled-Cluster theory = on the way [A. Signoracci, T. Duguet, G. Hagen]

Realistic Hamiltonian

- Nuclear NN and NNN (at least) as well as Coulomb interactions
 - From Chiral Effective Field Theory (χ -EFT)
 - Scaled down through, e.g., Similarity Renormalization Group (SRG) method

- Elements of formalism
- Inclusion of NNN forces
- First results

Question of present interest

- Elements of formalism
- Inclusion of NNN forces
- First results

Ab-initio theory for mid-mass open-shell nuclei

Gorkov self-consistent Green's function method

- Extends Dyson SCGF to open-shell nuclei
- Solution Extends reach from $\sim 10^1$ to $\sim 10^2$ nuclei
- Treatment of superfluidity built in

[V. Somà, T. Duguet, C. Barbieri, PRC 84 (2011) 064317]

Green's functions		[L. P. Gorkov, JETP 7 (1958) 505]
$i G^{11}_{ab}(t,t')$	≡	$\langle \Psi_0 T \left\{ a_a(t) a_b^{\dagger}(t') \right\} \Psi_0 \rangle$
$i G^{12}_{ab}(t,t')$	≡	$\langle \Psi_0 T \{ a_a(t) \bar{a}_b(t') \} \Psi_0 \rangle$
$i G^{21}_{ab}(t,t')$	≡	$\langle \Psi_0 T \left\{ \bar{a}_a^{\dagger}(t) a_b^{\dagger}(t') \right\} \Psi_0 \rangle$
$i G^{22}_{ab}(t,t')$	≡	$\langle \Psi_0 T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} \Psi_0 \rangle$

whose poles provide $\omega_k \equiv \Omega_k - \Omega_0$

Gorkov's equation of motion

$$G_{ab}(\omega) = G^{(0)}_{ab}(\omega) + \sum_{cd} G^{(0)}_{ac}(\omega) \Sigma_{cd}(\omega) G_{db}(\omega)$$

T = 0 grand potential $\Omega \equiv H_{\text{int}} - \mu A$ Eigenstates $\Omega |\Psi_k\rangle = \Omega_k |\Psi_k\rangle$ Irreducible self-energy

$$\Sigma_{ab}(\omega) \equiv \left(\begin{array}{cc} \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \\ \\ \Sigma_{ab}^{21}(\omega) & \Sigma_{ab}^{22}(\omega) \end{array} \right)$$

Observables

$$E_0^A = \sum_{ab} \int \frac{d\omega}{4\pi i} G_{ab}^{11}(\omega) [T_{ba} + \omega \delta_{ab}]$$

$$r^2 = \sum_{ab} \int \frac{d\omega}{2\pi i} G_{ab}^{11}(\omega) r_{ba}^2$$

$$E_k^{\pm} \equiv \pm [E_k^{A\pm 1} - E_0^A] = \mu \pm \omega_k$$

$$Q^{(3)}(A) = (-1)^A [E_0^+ - E_0^-]/2$$

Ab-initio theory for mid-mass open-shell nuclei

Gorkov self-consistent Green's function method

- Extends Dyson SCGF to open-shell nuclei
- Solution Extends reach from $\sim 10^1$ to $\sim 10^2$ nuclei
- Treatment of superfluidity built in

[V. Somà, T. Duguet, C. Barbieri, PRC 84 (2011) 064317]

Luttinger-Ward potential $\Omega_0[G] \equiv \langle \Psi_0 | \Omega | \Psi_0 \rangle$

 $\Omega_0[G] \equiv \operatorname{Tr} \{ G^{(0)-1} G - 1 \} - \operatorname{Tr} \{ \ln G \} + \Phi[G]$

Two-particle irreducible Φ -functional

$$\Phi[G] \equiv \sum_{n=1}^{\infty} \Phi^{(n)}[G]$$

Variational principle

$$\frac{\delta\Omega_0[G]}{\delta G(\omega)} = 0 \Longrightarrow \begin{cases} G(\omega) = G^{(0)}(\omega) + G^{(0)}(\omega)\Sigma(\omega)G(\omega) \\ \\ \Sigma_{ab}^{gg'}(\omega) \equiv -\delta\Phi[G]/\delta G_{ba}^{g'g}(\omega) \end{cases}$$

Superfluidity in nuclei from ab-initio many-body methods

Kadanoff-Baym Φ -derivable scheme

- Thermodynamically consistent
- ✓ Symmetry conserving
- ✗ Ward-Takahashi identities

Ab-initio theory for mid-mass open-shell nuclei Kadanoff-Baym Φ -derivable scheme Gorkov self-consistent Green's function method Thermodynamically consistent Extends Dyson SCGF to open-shell nuclei Symmetry conserving Extends reach from $\sim 10^1$ to $\sim 10^2$ nuclei Ward-Takahashi identities Treatment of superfluidity built in [V. Somà, T. Duguet, C. Barbieri, PRC 84 (2011) 064317] Self-consistent second-order Luttinger-Ward potential $\Omega_0[G] \equiv \langle \Psi_0 | \Omega | \Psi_0 \rangle$ $\Phi^{(1)}[G] =$ $\Omega_0[G] \equiv \operatorname{Tr} \{ G^{(0)-1} G - 1 \} - \operatorname{Tr} \{ \ln G \} + \Phi[G]$ $\Phi^{(2)}[G] =$ Two-particle irreducible Φ -functional $\Phi[G] \equiv \sum_{1}^{\infty} \Phi^{(n)}[G]$ Variational principle $\frac{\delta\Omega_0[G]}{\delta G(\omega)} = 0 \Longrightarrow \begin{cases} G(\omega) = G^{(0)}(\omega) + G^{(0)}(\omega)\Sigma(\omega)G(\omega) \\ \\ \Sigma^{gg'}_{ab}(\omega) \equiv -\delta\Phi[G]/\delta G^{g'g}_{ha}(\omega) \end{cases}$

Eigenvalue problem

Lehmann representation

$$\begin{split} G_{ab}^{11}(\omega) &= \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\} \quad , \quad G_{ab}^{12}(\omega) &= \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{V}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{U}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\} \quad , \quad G_{ab}^{12}(\omega) &= \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{V}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{U}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\} \quad , \quad G_{ab}^{22}(\omega) &= \sum_{k} \left\{ \frac{\mathcal{V}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{U}}_{a}^{k*} \bar{\mathcal{U}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\} \quad , \quad G_{ab}^{22}(\omega) &= \sum_{k} \left\{ \frac{\mathcal{V}_{a}^{k} \mathcal{V}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{U}}_{a}^{k*} \bar{\mathcal{U}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\} \quad \end{split}$$

Gorkov's equation as an energy-dependent eigenvalue problem

$$\sum_{b} \begin{pmatrix} T_{ab} - \mu \delta_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -T_{ab} + \mu \delta_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{+\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$$

Practical implementation [V. Somà, C. Barbieri, T. Duguet, in preparation]

- Transform into energy-*independent* eigenvalue problem of large dimension
- Tame dimension growth through iterations via Krylov projection technique
- Check independence of results on number of Lanczos iterations

Question of present interest

- Elements of formalism
- Inclusion of NNN forces
- First results

Effective two-body interaction (I)

Nuclear Hamiltonian with NN and NNN forces

$$H = \sum_{\alpha\beta} t_{\alpha\beta} a^{\dagger}_{\alpha} a_{\beta} + \frac{1}{(2!)^2} \sum_{\alpha\beta\gamma\delta} v_{\alpha\gamma\beta\delta} a^{\dagger}_{\alpha} a^{\dagger}_{\gamma} a_{\delta} a_{\beta} + \frac{1}{(3!)^2} \sum_{\alpha\beta\gamma\delta\epsilon\zeta} w_{\alpha\gamma\epsilon\beta\delta\zeta} a^{\dagger}_{\alpha} a^{\dagger}_{\gamma} a^{\dagger}_{\epsilon} a_{\zeta} a_{\delta} a_{\beta}$$

Normal ordering with respect to, e.g., Hartree-Fock Slater determinant $|\Phi\rangle$

$$X = \tilde{x}^{0B} + \sum_{\alpha\beta} \tilde{x}^{1B}_{\alpha\beta} : a^{\dagger}_{\alpha} a_{\beta} : + \frac{1}{(2!)^2} \sum_{\alpha\beta\gamma\delta} \tilde{x}^{2B}_{\alpha\gamma\beta\delta} : a^{\dagger}_{\alpha} a^{\dagger}_{\gamma} a_{\delta} a_{\beta} : + \frac{1}{(3!)^2} \sum_{\alpha\beta\gamma\delta\epsilon\zeta} \tilde{x}^{3B}_{\alpha\gamma\epsilon\beta\delta\zeta} : a^{\dagger}_{\alpha} a^{\dagger}_{\gamma} a^{\dagger}_{\epsilon} a_{\zeta} a_{\delta} a_{\beta} :$$

$$\begin{split} \tilde{t}^{0B} &\equiv (1!)^{-1} \sum_{\alpha\beta} t_{\alpha\beta} \quad \tilde{v}^{0B} \equiv (2!)^{-1} \sum_{\alpha\beta\gamma\delta} v_{\alpha\gamma\beta\delta} \rho_{\beta\alpha} \rho_{\delta\gamma} \quad \tilde{w}^{0B} \equiv (3!)^{-1} \sum_{\alpha\beta\gamma\delta\epsilon\zeta} w_{\alpha\gamma\epsilon\beta\delta\zeta} \rho_{\beta\alpha} \rho_{\delta\gamma} \rho_{\zeta\epsilon} \\ \tilde{t}^{1B}_{\alpha\beta} &\equiv (0!)^{-1} t_{\alpha\beta} \quad \tilde{v}^{1B}_{\alpha\beta} \equiv (1!)^{-1} \sum_{\gamma\delta} v_{\alpha\gamma\beta\delta} \rho_{\delta\gamma} \quad \tilde{w}^{1B}_{\alpha\beta} \equiv (2!)^{-1} \sum_{\gamma\delta\epsilon\zeta} w_{\alpha\gamma\epsilon\beta\delta\zeta} \rho_{\delta\gamma} \rho_{\zeta\epsilon} \\ \tilde{t}^{2B}_{\alpha\beta\gamma\delta} &\equiv 0 \quad \tilde{v}^{2B}_{\alpha\beta\gamma\delta} \equiv (0!)^{-1} v_{\alpha\beta\gamma\delta} \quad \tilde{w}^{2B}_{\alpha\beta\gamma\delta} \equiv (1!)^{-1} \sum_{\epsilon\zeta} w_{\alpha\gamma\epsilon\beta\delta\zeta} \rho_{\zeta\epsilon} \\ \tilde{t}^{3B}_{\alpha\beta\gamma\delta\epsilon\zeta} &\equiv 0 \quad \tilde{v}^{3B}_{\alpha\beta\gamma\delta\epsilon\zeta} \equiv 0 \quad \tilde{w}^{3B}_{\alpha\beta\gamma\delta\epsilon\zeta} \equiv (0!)^{-1} w_{\alpha\beta\gamma\delta\epsilon\zeta} \end{split}$$

SCGGF

Effective two-body interaction (I)

Nuclear Hamiltonian with NN and NNN forces

Effective two-body interaction (II)

2B approx beyond normal ordering [A.Carbone, A. Cipollone, C. Barbieri, A. Rios, A. Polls, unpublished]

Define effective one- and two-body vertices

Retain one-fermion-line AND one-interaction-line irreducible diagrams

Effective two-body interaction (III)

Current implementation of 2B approx beyond normal ordering

Results

Further corrections to be investigated

Open shell - present status

- dd0 in normal state with filling approx
- Procedure withing superfluid state soon

[A. Cipollone, C. Barbieri, P. Navrátil, unpublished]

Question of present interest

- Elements of formalism
- Inclusion of NNN forces
- First results

IT.

Quantities of interest

Odd-even mass staggering $E_0^N \equiv \frac{\bar{E}_0^N}{\text{smooth}} + \frac{\Delta(N)}{\text{odd N only}}$ Odd N N+1 +- 1 Binding energy EN Odd nucleus (2) $\Delta(N)$ Virtual odd nucleus Even nucleus Three point mass difference $\Delta_{\rm p}^{(3)}(N)$ - $(-1)^{N}$ [E^{N+1} 2 E^{N} + E^{N-1}]

$$\begin{array}{l} \Gamma(N) &\equiv & \frac{1}{2} \left[E_0^{++} - 2E_0^{+} + E_0^{-+} \right] \\ &= & (-1)^N [E_0^+ - E_0^-]/2 \\ &= & \frac{(-1)^N}{2} \frac{\partial^2 \bar{E}_0^N}{\partial^2 N} + \frac{\Delta(N)}{\text{dominates}} \\ \\ \text{Duguet et al., PRC 65 (2002) 014311]} \end{array}$$

Ground-state energies

Interactions

- NN = χ -N³LO (500 MeV) SRG-evolved to 2.0 fm⁻¹ [D. R. Entem, R. Machleidt, PRC 68 (2003) 041001]
- NNN = χ -N²LO (400 MeV) SRG-evolved to 2.0 fm⁻¹ [P. Navràtil, FBS 41 (2007) 117]
 - Fit to three- and four-body systems only
 - Lowered cutoff to reduce induced 4N contributions [R. Roth et al., PRL 109 (2012) 052501]

Absolute energies

- First such ab initio calculations of Ca
- NN+NN brings energy in the ballpark
- Trend improved by initial NNN
- NNN runs out of steam for $N \gtrsim 34$
- Anticipated agreement with IM-SRG
- Large uncertainty on the interaction side

[V. Somà, A. Cipollone, C. Barbieri, T. Duguet, P. Navrátil,

unpublished]

Ground-state energies

Interactions

- NN = χ -N³LO (500 MeV) SRG-evolved to 2.0 fm⁻¹ [D. R. Entem, R. Machleidt, PRC 68 (2003) 041001]
- NNN = χ -N²LO (400 MeV) SRG-evolved to 2.0 fm⁻¹ [P. Navràtil, FBS 41 (2007) 117]
 - Fit to three- and four-body systems only
 - Lowered cutoff to reduce induced 4N contributions [R. Roth et al., PRL 109 (2012) 052501]

Absolute energies

- First such ab initio calculations of Ca
- NN+NN brings energy in the ballpark
- Trend improved by initial NNN
- NNN runs out of steam for $N \gtrsim 34$
- Anticipated agreement with IM-SRG
- Large uncertainty on the interaction side

Ground-state energies

Interactions

- NN = χ -N³LO (500 MeV) SRG-evolved to 2.0 fm⁻¹ [D. R. Entem, R. Machleidt, PRC 68 (2003) 041001]
- NNN = χ -N²LO (400 MeV) SRG-evolved to 2.0 fm⁻¹ [P. Navràtil, FBS 41 (2007) 117]
 - Fit to three- and four-body systems only
 - Lowered cutoff to reduce induced 4N contributions [R. Roth et al., PRL 109 (2012) 052501]

[V. Somà et al., unpublished]

Spectroscopy of odd-even isotopes and shell structure

- NNN strongly increase density of states
- Still too spread out

Centroids

- Non-observable quantity
 - T. Duguet, G. Hagen, PRC 85 (2012) 034330]

Pairing gaps (I)

Overall scale of $\Delta_n^{(3)}(N)$

- Significantly reduced by induced NNN
- Original NNN
 - Essential for magic gaps
 - No impact on *pairing* gaps
- Too low pairing gaps
 - Too low density of states
 - O Too weak pairing vertex

Oscillation of $\Delta_n^{(3)}(N)$

[V. Somà et al., unpublished]

- From curvature of \bar{E}_0^N (symmetry energy)
- NNN improves over NN only
- 2nd-order mandatory for correct sign
- Not quantitatively sufficient

T. Duguet, 50 years of nuclear BCS theory, p. 229, WS, 2013]

Pairing gaps (II)

Microscopic shell model

- 3rd-order *ladders* qualitatively consistent with our HFB results
 - Reduction from NNN (~ 300 500 keV)
 - Inverted oscillation compared to experiment
- Remaining 3^{rd} -order contribution provides significant increase of $\Delta_n^{(3)}(N)$
- Need to incorporate (at least) coupling to 3rd-order particle-hole fluctuations

[J. D. Holt, J. Menendez, A. Schwenk, arXiv:1304.0434]

Question of present interest

- Elements of formalism
- Inclusion of NNN forces
- First results

Summary and perspectives

Ab initio calculation of superfluid properties of nuclei

- Self-consistent Gorkov Green's function (SCGGF) theory
 - First ab-initio access to pairing gaps in mid-mass nuclei
 - Ontribution of (induced) NNN interaction essential
 - Soon go to ADC(3) self-energy expansion to reach quantitative description
- Bogoliubov Coupled-Cluster (BCC) theory [A. Signoracci, T. Duguet, G. Hagen, unpublished]
 - Powerful alternative to Self-consistent Gorkov Green's function theory
 - Formalism fully developed
 - Implementation in m-scheme to singles and doubles close to completion
- Symmetry-restored SCGGF and BCC theories [T. Duguet, G. Ripka, unpublished]