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Prelude: superfluidity in neutron-star crusts

Describing superfluidity in neutron-star crusts requires a unified
understanding of nuclear pairing in both atomic nuclei and
nuclear matter.

Chamel&Haensel, Living Reviews in Relativity 11 (2008), 10
http://relativity.livingreviews.org/Articles/lrr-2008-10/



Why studying superfluidity in neutron stars?

The interpretation of various observed neutron-star phenomena
is affected by superfluidity: pulsar glitches, cooling, pulsar
free-precession, quasiperiodic oscillations in soft gamma-ray
repeaters, etc.

Page et al., in "Novel Superfluids", Eds. K. H. Bennemann and J. B.
Ketterson (2013); arXiv preprint:1302.6626



Outline

1 Nuclear energy density functionals for astrophysics

⊲ fitting protocole of the Brussels-Montreal functionals
⊲ improved pairing functionals (BSk16-17)
⊲ (spin-isospin instabilities (BSk18))
⊲ neutron-matter stiffness (BSk19-21)

2 Applications to neutron-star crusts
⊲ equilibrium composition
⊲ superfluidity
⊲ collective excitations

3 Astrophysical implications
⊲ nuclear superfluidity and pulsar glitches



Nuclear energy density functionals for
astrophysics



Why not using existing Skyrme functionals?

Most of existing Skyrme functionals are not suitable for
astrophysics.

They were adjusted to a few selected nuclei (mostly in the
stability valley)
→ not suited for investigating stellar nucleosynthesis and
the outer crust of neutron stars.

They were not fitted to the neutron-matter EoS
→ not suited for the inner crust of neutron stars.

It is difficult to get physical insight on how to optimize the
functional because each one was constructed using a different
fitting procedure.



Brussels-Montreal Skyrme functionals (BSk)
Experimental data :

2149 atomic masses with Z ,N ≥ 8 from 2003 AME

compressibility 230 ≤ Kv ≤ 250 MeV

charge radius of 208Pb, Rc = 5.501 ± 0.001 fm

symmetry energy J = 30 MeV

N-body calculations with realistic forces :

isoscalar effective mass M∗
s/M = 0.8

equation of state of pure neutron matter

Landau parameters, stability against spurious spin and
spin-isospin instabilities
1S0 pairing gaps in symmetric and neutron matter

Goriely, Chamel, Pearson, Phys.Rev.C82,035804 (2010).

With these constraints, the functional is well suited for
astrophysical applications.



Local pairing energy density functionals

The pairing EDF is very poorly constrained by fitting nuclear
masses.
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1S0 pairing gaps in neutron
matter for two EDFs, both fitted
to nuclear masses: BSk8 (not
constrained) and BSk16
(constrained).
Chamel, Goriely, Pearson, Nucl.
Phys.A812,72 (2008).

Instead, fit directly the pairing EDF to realistic pairing gaps in
infinite nuclear matter.



Empirical pairing energy density functionals
The pairing functional is generally parametrized as

Epair =
1
4
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This functional has to be supplemented with a cutoff
prescription.

Drawbacks
not enough flexibility to fit realistic pairing gaps in infinite
nuclear matter and in finite nuclei (⇒ isospin dependence)

the global fit to nuclear masses would be computationally
very expensive



Pairing functionals from nuclear matter calculations

Instead, fit directly realistic pairing gaps ∆q(ρn, ρp) in nuclear
matter for each densities ρn and ρp.

Inverting the HFB equations for a given pairing gap function ∆q
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s.p. energy cutoff εΛ above the Fermi level
Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).



Analytical expression of the pairing strength

In the “weak-coupling approximation” ∆q ≪ µq and ∆q ≪ εΛ

vπq = − 8π2
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Λ(x) = log(16x) + 2
√
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(
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√

1 + x
)

− 4

s.p. energy cutoff εΛ above the Fermi level
Chamel, Phys. Rev. C 82, 014313 (2010)

one-to-one correspondence between pairing in nuclei
and homogeneous nuclear matter

no free parameters apart from the cutoff

automatic renormalization of the pairing strength with εΛ



Accuracy of the weak-coupling approximation

This approximation remains very accurate at low densities
because the s.p. density of states is not replaced by a constant
as usually done.

symmetric nuclear matter
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Pairing gaps from contact interactions

Conversely, this approximation can be used to obtain the
pairing gaps in homogeneous matter from any given contact
interaction

∆ = 2µ exp

(

2
g(µ)vπ

reg

)

µ is the chemical potential, g(µ) is the density of states and vπ
Λ

is a regularized interaction

1
vπ

reg
=

1
vπ

+
1

vπ
Λ

vπ
Λ =

4
g(µ)Λ(εΛ/µ)



Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

vπq[ρ → 0] = − 4π2

√
εΛ

(

~
2

2Mq

)3/2

should coincide with the bare force in the 1S0 channel.

A fit to the experimental 1S0 NN phase shifts yields
εΛ ∼ 7 − 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).
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On the other hand, a better mass fit
can be obtained with εΛ ∼ 16 MeV
Goriely et al., Nucl.Phys.A773(2006),279.
Chamel et al., arXiv:1204.2076



Other contributions to pairing

In order to take into account

Coulomb and charge symmetry breaking effects

polarization effects in odd nuclei (we use the equal filling
approximation)

coupling to surface vibrations

we introduce renormalization factors f±q fitted to nuclear masses

vπ n −→ f±n vπ n ,

vπ p −→ f±p vπ p .

Typically f±q ≃ 1 − 1.2 and f−q > f+q .



HFB-16 and HFB-17 mass models
HFB-16

vπq[ρn, ρp] = vπ[ρq]

BCS pairing gaps
(no medium)

vπ calculated using
M∗

q

Chamel, Goriely, Pearson,
Nucl. Phys.A812,72 (2008).

HFB-17

vπq[ρn, ρp] = vπq[∆q(ρn, ρp)]

Brueckner pairing gaps (medium
polarization) +interpolation

vπ calculated using M (no
self-energy effects on the gap)

Goriely, Chamel, Pearson,
PRL102,152503 (2009).

Results of the fit on the 2149 measured masses with Z ,N ≥ 8
from the 2003 Atomic Mass Evaluation:

HFB-16 HFB-17
σ(2149 M) 0.632 0.581
ǭ(2149 M) -0.001 -0.019



Neutron-matter equation of state at high densities
We have constructed a family of generalized Skyrme
functionals fitted to realistic neutron-matter equations of state
with different degrees of stiffness.
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Neutron-matter equation of state at low densities
All three functionals yield similar neutron-matter equations of
state at subsaturation densities consistent with microscopic
calculations using realistic NN interactions



Nuclear-matter equation of state

Our functionals are also in very good agreement with BHF
calculations not only in neutron matter but also in symmetric
nuclear matter (not fitted).



HFB-19,HFB-20 and HFB-21 mass tables

Results of the fit on the 2149 measured masses with Z ,N ≥ 8
from the 2003 Atomic Mass Evaluation
http://www.astro.ulb.ac.be/bruslib/

HFB-19 HFB-20 HFB-21
σ(M) [MeV] 0.583 0.583 0.577
ǭ(M) [MeV] -0.038 0.021 -0.054
σ(Mnr ) [MeV] 0.803 0.790 0.762
ǭ(Mnr ) [MeV] 0.243 0.217 -0.086
σ(Rc) [fm] 0.0283 0.0274 0.0270
ǭ(Rc) [fm] -0.0032 0.0009 -0.0014

Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).

http://www.astro.ulb.ac.be/bruslib/


Comparison with the latest experimental data

Experimental data from the 2011 AME favor HFB-21 (the same
trend is observed in the 2012 AME):
http://www-nds.iaea.org/amdc/

data set model ǭ(M) [MeV] σ(M) [MeV]

2011 AME all HFB-21 -0.031 0.574
(2294) HFB-20 -0.010 0.595

HFB-19 0.051 0.593
2011 AME new HFB-21 0.185 0.681

(154) HFB-20 0.375 0.803
HFB-19 0.310 0.824

HFB-21 is also favored by recent neutron-star mass
measurements.
Chamel, Fantina, Pearson, Goriely, Phys.Rev.C84,062802(R)(2011).

http://www-nds.iaea.org/amdc/


Effective masses
Our functionals predict a qualitatively correct splitting of
effective masses (M∗

n > M∗
p in neutron-rich matter) in

agreement with giant resonances and many-body calculations
using realistic forces.

M
M∗

q
=

2ρq

ρ

M
M∗

s
+
(

1 − 2ρq

ρ

) M
M∗

v

BSk19 BSk20 BSk21 EBHF
M∗

s/M 0.80 0.80 0.80 0.825
M∗

v/M 0.61 0.65 0.71 0.727

BSk21 is also in good quantitative agreement with Extended
Brueckner Hartree-Fock calculations.
Cao et al.,Phys.Rev.C73,014313(2006).



Applications to neutron star crusts



Description of neutron star crust below neutron drip

Cold catalyzed matter
The interior of a neutron is supposed to be in full
thermodynamic equilibrium at zero temperature.

We have determined the equilibrium structure of the outer crust
of a neutron star for ρ & 104 g cm−3 using the BPS model:

fully ionized atoms arranged in a bcc lattice

relativistic electron Fermi gas.

The only microscopic inputs are nuclear masses. We have
made use of the experimental data from the 2011 Atomic Mass
Evaluation complemented with our HFB mass tables.
Pearson,Goriely,Chamel,Phys.Rev.C83,065810(2011).



Composition of the outer crust of a neutron star

Sequence of equilibrium nuclides with increasing depth:
HFB-19 HFB-20 HFB-21

56Fe 56Fe 56Fe
62Ni 62Ni 62Ni
64Ni 64Ni 64Ni
66Ni 66Ni 66Ni
86Kr 86Kr 86Kr
84Se 84Se 84Se
82Ge 82Ge 82Ge
80Zn 80Zn 80Zn
82Zn 82Zn -

- - 79Cu
78Ni 78Ni

80Ni 80Ni 80Ni
126Ru 126Ru -
124Mo 124Mo 124Mo

- 122Mo -
122Zr 122Zr 122Zr
124Zr 124Zr -

- - 121Y
120Sr 120Sr 120Sr
122Sr 122Sr 122Sr
124Sr 124Sr 124Sr
126Sr 126Sr -

The first 8 nuclides are determined
by experimental masses.

Predominance of N ∼ 50 and ∼ 82
nuclei.

Deeper (below ∼ 200 m for a 1.4M⊙ neutron
star with a 10 km radius) the composition is
more model-dependent. Measurements of
neutron-rich nuclei are crucially needed.
Pearson,Goriely,Chamel,Phys.Rev.C83,065810.
Wolf et al.,PRL110,041101.



Description of neutron star crust beyond neutron drip
We have determined the equilibrium structure of the inner crust
of a neutron star for ρ & 4 × 1011g cm−3 using the Extended
Thomas-Fermi+Strutinsky Integral method (ETFSI):

spherical neutron-proton clusters coexisting with a neutron
liquid (Wigner-Seitz approximation used to compute the
Coulomb energy)

relativistic electron Fermi gas.

Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).

Advantages of ETFSI method
very fast approximation to the full Hartree-Fock method

avoids the difficulties related to boundary conditions but
include proton shell effects (neutron shell effects are much
smaller and are therefore omitted)
Chamel et al.,Phys.Rev.C75(2007),055806.



Structure of the inner crust of a neutron star (I)
nucleon distributions

With increasing density, the clusters keep essentially the same
size but become more and more dilute:

Crust-core transition properties

n̄cc (fm−3) Pcc (MeV fm−3)
BSk19 0.0885 0.428
BSk20 0.0854 0.365
BSk21 0.0809 0.268
SLy4 0.0798 0.361
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The crust-core transition is very smooth: the crust dissolves
continuously into a uniform mixture of nucleons and electrons.



Structure of the inner crust of a neutron star (II)
composition

ETFSI calculations for two different functionals

with BSk14

n̄ (fm−3) Z A
0.0003 50 200
0.001 50 460
0.005 50 1140
0.01 40 1215
0.02 40 1485
0.03 40 1590
0.04 40 1610
0.05 20 800
0.06 20 780

with BSk17

n̄ (fm−3) Z A
0.0003 50 190
0.001 50 432
0.005 50 1022
0.01 50 1314
0.02 40 1258
0.03 40 1334
0.04 40 1354
0.05 40 1344
0.06 40 1308

With BSk19, BSk20 and BSk21, only Z = 40 is found.



Structure of the inner crust of a neutron star (II)
composition

The ordinary nuclear shell structure seems to be
preserved apart from Z = 40 (quenched spin-orbit?).
The energy differences between different configurations
become very small as the density increases:
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In a real neutron star, a large range of values of Z can be
expected due to thermal effects.



Structure of the inner crust of a neutron star (III)
composition

Impact of proton pairing (BCS approximation) - preliminary
results with BSk21
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Even though pairing smoothes out shell effects, it does not
change appreciably the composition.



Superfluidity in neutron-star crusts with the
Wigner-Seitz approximation

Pairing properties have been already
studied using the HFB method and the
Wigner-Seitz approximation.

However, this approach is not well suited for treating the deep
region of the crust
Chamel et al., Phys.Rev.C75(2007)055806.
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Spurious shell effects ∝ 1/R2 can be
very large at the crust bottom and are
enhanced by the self-consistency.
Baldo et al., Eur.Phys.J. A 32, 97(2007).



Nuclear band theory

Long-range correlations can be taken into account using the
band theory of solids
Chamel et al., Phys.Rev.C75(2007)055806.

Band theory of solids in a nut shell:

ϕαkkk (rrr) = eikkk ·rrr uαkkk (rrr)

uαkkk (rrr +TTT ) = uαkkk (rrr)

α → rotational symmetry around lattice sites (clusters)

kkk → translational symmetry (unbound neutrons)



Example of neutron band structure

Body-centered cubic crystal of zirconium like clusters with
N = 160 (70 unbound) and ρ̄ = 7 × 1011 g.cm−3

W-S approximation band theory
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Anisotropic multi-band neutron superfluidity

In the decoupling approximation, the Hartree-Fock-Bogoliubov
equations reduce to the BCS equations

∆αkkk = −1
2

∑

β

∑

k ′k ′k ′

v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′

∆βk ′k ′k ′

Eβk ′k ′k ′

tanh
Eβk ′k ′k ′

2T

v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′ =

∫

d3r vπ[ρn(rrr), ρp(rrr)] |ϕαkkk (rrr)|2|ϕβk ′k ′k ′(rrr)|2

Eαkkk =
√

(εαkkk − µ)2 +∆2
αkkk

εαkkk , µ and ϕαkkk (rrr) are obtained from band structure calculations

Chamel et al., Phys.Rev.C81,045804 (2010).



Analogy with terrestrial multi-band superconductors
Multi-band superconductors were first studied by Suhl et al. in
1959 but clear evidence were found only in 2001 with the
discovery of MgB2 (two-band superconductor)

In neutron-star crusts,

the number of bands can be huge ∼ up to a thousand!

both intra- and inter-band couplings must be taken into
account



Neutron pairing gaps

Example at n̄ = 0.06 fm−3 with BSk16
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∆αkkk (T )/∆αkkk (0) is a universal function of T

The critical temperature is approximately given by the
usual BCS relation Tc ≃ 0.567∆F



Neutron pairing gaps vs density

nf
n is the density of unbound neutrons

∆u is the gap in neutron matter at density nf
n

∆̄u is the gap in neutron matter at density nn

n̄ [fm−3] Z A nf
n [fm−3] ∆F [MeV] ∆u [MeV] ∆̄u [MeV]

0.07 40 1218 0.060 1.44 1.79 1.43
0.065 40 1264 0.056 1.65 1.99 1.65
0.06 40 1260 0.051 1.86 2.20 1.87

0.055 40 1254 0.047 2.08 2.40 2.10
0.05 40 1264 0.043 2.29 2.59 2.33

the nuclear clusters lower the gap by 10 − 20%

both bound and unbound neutrons contribute to the gap



Pairing field and local density approximation
The effects of inhomogeneities on neutron superfluidity can be
directly seen in the pairing field

∆n(rrr) = −1
2

vπn[ρn(rrr), ρp(rrr)]ρ̃n(rrr) , ρ̃n(rrr) =
Λ
∑

α,kkk

|ϕαkkk (rrr)|2
∆αkkk

Eαkkk

Neutron pairing field for n̄ = 0.06 fm−3 at T = 0
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Chamel et al., Phys.Rev.C81(2010)045804.



Impact of the pairing cutoff
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n̄ [fm−3] ∆F0(16) [MeV] ∆F0(8) ∆F0(4) ∆F0(2) ∆F0(1)
0.070 1.39 1.38 1.37 1.36 1.29
0.050 2.27 2.25 2.27 2.26 2.24

Pairing gaps (hence also critical temperatures) are very weakly
dependent on the pairing cutoff.



Pairing in the shallow region of the inner crust
3D HFB calculations using the fixed (ETFSI) mean field with
Bloch boundary conditions. Preliminary results.

Example for 185Sn at n̄ = 0.0003 fm−3 with BSk16
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Pairing is enhanced for T > Tc ! This agrees with recent
calculations from Margueron& Khan, Phys.Rev.C86,065801(2012).



Entrainment

Despite the absence of viscous drag, the crust can still resist
the flow of the neutron superfluid due to non-local and
non-dissipative entrainment effects.
Carter, Chamel and Haensel, Nucl.Phys.A748,675(2005).

Neutrons with specific wavevectors kkk
can be elastically scattered by the
lattice: this is Bragg diffraction. This
occurs if

2d sin θ = Nλ

Neutrons that are reflected do not propagate: vvv = 0

Others do propagate but with vvv = ~kkk/m⋆
n



How “free” are neutrons in neutron-star crusts?

On average m⋆
n ≫ 1 so that most neutrons are actually

entrained by the crust
Chamel,Phys.Rev.C85,035801(2012).

nb (fm−3) nf
n/nn (%) nc

n/nf
n (%)

0.0003 20.0 82.6
0.001 68.6 27.3
0.005 86.4 17.5
0.01 88.9 15.5
0.02 90.3 7.37
0.03 91.4 7.33
0.04 88.8 10.6
0.05 91.4 30.0
0.06 91.5 45.9
0.08 104 64.8

The density nc
n = nf

n/m⋆
n of

“conduction” neutrons (i.e.
superfluid neutron density) can
be much smaller than the
density nf

n of free neutrons!



Low-energy collective excitations
Due to entrainment, the Bogoliubov-Anderson bosons are
strongly mixed with lattice phonons.
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The contribution of superfluid neutrons to the crustal specific
heat is neglibly small. But with entrainment, the contribution of
longitudinal modes can be nonnegligible.
Chamel,Page,Reddy,Phys.Rev.C87,035803(2013).



Astrophysical implications



Pulsar glitches and superfluidity

Sometimes pulsars may suddenly spin up. These glitches are
followed by a relaxation over days to years thus hinting at the
superfluidity in neutron stars.

Superfluidity is also expected to play a key role in the
mechanism of large glitches (e.g. catastrophic unpinning of
superfluid vortices).
Anderson and Itoh, Nature 256, 25 (1975)



Pulsar glitches and entrainment
Glitches are usually interpreted as sudden tranfers of angular
momentum between the superfluid in the crust and the
rest of star . However this superfluid is also entrained !

Js = IssΩf + IscΩc

Jc = IccΩc + IscΩf
⇒ (Is)2

IssI
≥ Ag

Ω

|Ω̇|
, Ag =

1
t

∑

i

∆Ωi

Ω

Chamel&Carter,MNRAS368,796(2006)

Application to the Vela pulsar:

Ag ≃ 2.25 × 10−14 s−1
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Pulsar glitch constraint
Shaded areas are excluded if Vela pulsar glitches originate in
the crust.

The inferred mass of Vela is unrealistically low M < M⊙.

Due to entrainment, the superfluid in the crust does not carry
enough angular momentum to explain large glitches.
Chamel, PRL 110, 011101(2013).



Summary
In order to study pairing in neutron-star crusts,

1 we have developed generalized Skyrme EDF constrained
by experiments and N-body calculations:

they give an excellent fit to essentially all mass data
(σ . 0.6 MeV)
they reproduce various properties of homogeneous nuclear
matter (EoS, 1S0 pairing gaps, effective masses etc)

2 we have implemented the band theory of solids
(long-range correlations).

We find that the neutron superfluid and the crust are strongly
coupled, and this has astrophysical implications.

Open issues: contribution of collective excitations to pairing,
impact of quantum and thermal fluctuations, impurities, lattice
defects etc.


