Experimental methods to study pairing in nuclei

n-n pairing in light nuclei close to drip lines

n-p pairing in N=Z nuclei

M. Assié, IPN Orsay

1

n-n pairing in light nuclei close to drip-lines

- **Borromean nuclei**
- **Charge radius measurements**
- **Coulomb dissociation (E1 soft-dipole)**
- **Break-up methods**
- **Knock-out experiments**
- **Transfer methods**

Experimental studies of pairing

The n-n pairing at the drip-line for light nuclei

➟ *M. Matsuo, PRC 73 (2006), N. Pillet et al, PRC (2007)*

The n-n pairing at the drip-line for light nuclei

➟ *Zhukov, Phys. Rep. (1993)*

rc-nn = 3.6 fm ; rnn = 4.6 fm 6 He <θ₁₂>=66.3° 11 **Li** $\langle \theta_{12} \rangle = 65.29^\circ$

Charge radius measurements

correlated neutrons

From ⁶He to ⁸He

- *matter radius* increases (neutrons added)
- *charge radius* decreases (neutrons spend more time close to each other \rightarrow recoil motion of alpha core)

Radiative capture

⁶He (p,γ) @ 40 A.MeV λ_{p} = 0.7 fm γ not sensitive to FSI

➙ **probe for clusterization in nuclei**

Use lower energy probe?

 \rightarrow **E. Sauvan, Phys. Rev. Lett. 87 (2001)** \rightarrow **Conserved and 2n+p** channel observed and \rightarrow

Coulomb dissociation B(E1)

Coulomb dissociation B(E1)

➟ *T. Aumann, Phys. Rev. C 59 (1999)*

dB(E1)/dE* for ⁶He

• equivalent photon method • non-energy wieghted E1 cluster sum rule :

$$
B(E1) = \frac{3}{4\pi} \left(\frac{Ze}{A}\right)^2 < r_{c, 2n}^2 > 0
$$

$$
\sqrt{F_{c,2n}^2} > 3.36(39) fm
$$

$$
<\theta_{12}>=83^{+20}_{-10}
$$

Coulomb dissociation B(E1)

dB(E1)/dE for **¹¹Li**

- equivalent photon method
- non-energy wieghted E1 cluster sum rule :
 $B(E1) = \frac{3}{4\pi} \left(\frac{Ze}{A}\right)^2 < r_{c,2n}^2 >$

$$
\sqrt{F_{c,2n}^2} > 3.36(39) fm
$$

$$
<\theta_{12}>=83^{+20}_{-10}
$$

11

Coulomb dissociation B(E1)

$$
\frac{11 \text{Li}}{\sqrt{r_1}} < \theta_{12} > = 48^{+14}_{-18}
$$
\n
$$
\frac{6 \text{He}}{r_1} < \theta_{12} > = 83^{+20}_{-10}
$$
\n
$$
\frac{1}{r_1} \left[\Psi(^{11}\text{Li}) \right] = Core \otimes \left[\alpha \right] (1s)^2 + \beta \left[(0p)^2 \right]
$$
\nMixing of s(+ parity) and p(-parity) orbitals

\n
$$
\left\langle \cos \theta_{12} \right\rangle = \alpha^2 \left\langle (1s)^2 \right| \cos \theta_{12} \left[(1s)^2 \right\rangle + \beta^2 \left\langle (0p)^2 \right| \cos \theta_{12} \left[(0p)^2 \right\rangle + 2\alpha \beta \left\langle (0p)^2 \right| \cos \theta_{12} \left| (1s)^2 \right\rangle
$$
\n
$$
= 2\alpha \beta \left\langle (0p)^2 \right| \cos \theta_{12} \left| (1s)^2 \right\rangle
$$
\nIf only (1s)² or (0p)² $\implies \left\langle \cos \theta_{12} \right\rangle = 0, \quad \left\langle \theta_{12} \right\rangle = 90^\circ$ \nIf full overlap (1s)² & (0p)² $\implies \left\langle \cos \theta_{12} \right\rangle = 1/\sqrt{3}, \quad \left\langle \theta_{12} \right\rangle = 55^\circ$ \nIf 50% overlap integral $\implies \left\langle \cos \theta_{12} \right\rangle = 1/(2\sqrt{3}), \quad \left\langle \theta_{12} \right\rangle = 73^\circ$

Mixture of different parity states is essential !

➟ *T. Nakamura, Phys. Rev. Lett 96 (2006)*

Coulomb dissociation B(E1) : limitation (⁶He case)

➟ *Y. Kikuchi* ¹² *, Phys. Rev. C 81 (2010)*

Coulomb dissociation : Angular correlations

Conditions to observe initial correlations :

(1)
$$
p_{y} \ll p_{9Li} \& p_{y} \ll p_{n}
$$

 p_{91} ~30 MeV/c $p_n \sim 20$ MeV/c $p_{\gamma} \sim 1$ MeV/c

(2) sudden absorption of the γ

interaction time \sim 100 fm/c rotation period of neutrons \sim 1000 fm/c

$$
\rightarrow
$$
 K. Ieki et al, Phys. Rev. C (1993)

Coulomb Break-up : Principle of intensity interferometry

 $C_{nn}(p_1, p_2)$

experiment

event mixing

 d^2n/dp_1dp_2

- **stellar interfeormetry: `** source = star
- **nuclear interferometry :** source= interaction region with evolution in time

$$
C_{nn}
$$
 governed by **FSI**
\n*(attractive for neutrons)*
\nand **QSS**
\n*(repulsive for fermions)*

If the emission is simultaneous : C_{nn} isolates n-n configurations

➟ *M. Marquès et al, Phys. Lett. B 476 (2000)*

Coulomb Break-up : Principle of intensity interferometry

experiment

$C_{nn}(p_1, p_2)$ =

C_{nn} governed by **FSI** (attractive for neutrons) and **QSS** (repulsive for fermions)

If the emission is simultaneous : C_{nn} isolates n-n configurations

➟ *M. Marquès et al, Phys. Lett. B 476 (2000)*

Coulomb Break-up : Measurements by interferometry

Coulomb Break-up : Measurements by interferometry

17

Coulomb Break-up : Measurements by interferometry

Continuum structure of 6He*: limits of the approach (I)

*** B Danilin *et al.,* PRC69 (2004)

LIIUC CI UP I IUITIUILUIIUI : IIITIIIJ UI IITU
Article Source Effect of normalization : limits of the approach (I)

2 neutrons =coherent source

nn FSI + 3 body for the halo nucleus

FSI distort the relative motion of the 2n and creates a minimum in the correlation function

➟ *Yamashita et al, Phys. Rev. C 72(2004) Data : Marquès et al, Phys Lett. B (2000)*

Angular correlations : coulomb BU vs. nuclear BU

Coulomb break-up Nuclear break-up

Angular correlations with nuclear break-up

Angular correlations with nuclear break-up

Case of ⁶He

Correlation function

experimental distribution : emission of correlated neutrons

 C_{12} = $P(n_1, n_2)$ $P(n_1) P(n_2)$

independent emission

208Pb(6He,4He+n+n) @ 20 MeV

Comparison with theoretical models :

• **4b CDCC** :

excitation energy up to 30 MeV

• **TDDM^P**:

few nucleons, very tightly bound

➟ *MA et al, Eur. Phys. J. A (2009)*

Two-nucleon transfer experiments

$4He$ ⁽⁶He, $4He$)⁶He (g.s.), Elab= 151 MeV

\rightarrow Y. Oganessian, Phys. Rev. Lett. & Phys. Rev. C (1999) $_{25}$

Two-nucleon transfer experiments

➟ *A. Chatterjee, Phys. Rev. Lett. (2008)*

Experimental studies of pairing

Knock-out : parallel momentum

¹¹Li knock-out @ 66 A. MeV on several targets Several phenomena lead to break-up

- diffraction (nuclear break-up)
- absorption by target
- coulomb dissociation

+ FSI

:

Transverse momentum distributions:

sensitive to the reaction mechanism (deviation of the core by the target)

P// independent of mechanism

Direct probe of neutrons distribution $\langle r^2 \rangle^{1/2} = 6$ fm

➟ *K. Wimmer Phys. Rev. Lett. 109(2012)* ²⁹

n-p pairing in N=Z nuclei

- **Spectrocopy of ⁹²Pd**
- **Deuteron-transfer experiments**

n-p pairing

- n-p pairing can occur in 2 different states: **T=0** and T=1. The former is unique to n-p.
- Can be best studied in **N=Z** nuclei through :
	- **spectroscopy** $92Pd \rightarrow B$. Cerderwall, Nature 469 (2011) 68
	- **2-nucleon transfer reactions** $T=1'$ A. Macchiavelli ⁴⁴T (³He,p), J. Lee (sd-shell nuclei)

n-p pairing with **transfer reactions**

- If n-p pairing is important, one should see an enhancement of the np transfer probability
- \bullet $\sigma(0+) / \sigma(1+)$ reveals pairing
- The transfer can take place in
	- the T=0, S=1 state (**deuteron transfer**)
	- \cdot the T=1, S=0 state
- Two reactions can be studied

 $(p,{}^{3}He)$ $\Delta T = 0.1$

 (d,α) $\Delta T = 0$ selective

-> study both the T=0 and T=1 pairing

n-p pairing : best candidate for transfer studies

- **middle-shell nucleus + doubly magic nucleus.**
- simultaneously measure other reactions: (p,d), (d,t), (d,p), (d,³He) and (p,t) -> constraints on the **reaction mechanism.**

Which nuclei to study ?

n-p pairing will manifest itself the most in **N=Z nuclei**. best region: from ⁵⁶Ni up to mid-shell $9_{9/2}$ **⁴⁸Cr + doubly magic ⁵⁶Ni** p n

➟ **Experiment to be performed @ GANIL, end of 2013**

Systematic of (³He,p) and (t,p) reactions in stable N=Z nuclei

Single-particle estimate \sim (spin)x(3 He)x(LS -> jj)

Conclusions & Perspectives

• **Experimental study of pairing T=1:**

several reaction mechanism + formalism limits in all methods

difficult to conclude about nn correlations in light halo nuclei

• **Experimental study of pairing T=0:**

very beginning of the experimental study. Is transfer the best approach ?