Two nucleons system for $l \leq 1$

With new power counting of chiral EFT

Chieh-Jen (Jerry) Yang University of Arizona CEA workshop 2013

Collaborator: Bingwei Long

Support: U. van Kolck, D. R. Phillips, B. Barrett

Chiral EFT at NN sector

- Infinitely many diagrams contribute, most of them require renormalization.
- Need to arrange a way to include them based on their importance (there maybe more than one consistent way).
- Weinberg counting is correct up to the potential level.
- Pure perturbation doesn't work.

Definitions

Ours	Conventional (German)
O(1) or O(Q ⁻¹)	LO
O(Q)	
O(Q ²)	NLO
O(Q ³)	NNLO
O(Q ⁴)	N ³ LO

Current status of chiral NN potential

- Diagrams calculated up to $O(Q^4)$, Entem, Machliedt, Epelbaum, ..., etc.
- =>Starting at $O(Q^3)$, has problem with the value of c1,c3,c4; particularly => c3 (will come back to it).
- $\Delta(1232)$ included up to $O(Q^3)$ Kreb, et al 07. $\Rightarrow \pi N\Delta$ -constant $h_A(1.05-1.34)$ not well-determined. => Less importantly, there are also redundancy of L.E.C.s.

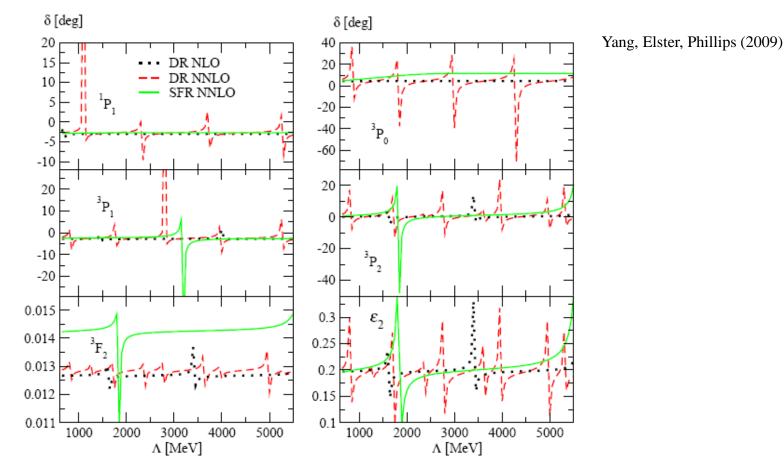
Conventional power counting

- Arrange diagrams base on Weinberg's power counting (WPC): each derivative on the Lagrangian terms is always suppressed by the underlying scale of chiral EFT, M_{hi}~m_σ.
- Iterate potential to all order (L.S. or Schrodinger eq.), with an ultraviolet Λ .

Carried out to N³LO(Q⁴/M⁴_{hi}) Epelbaum, Entem, Machleidt, Kaiser, Valderrama, ... etc.

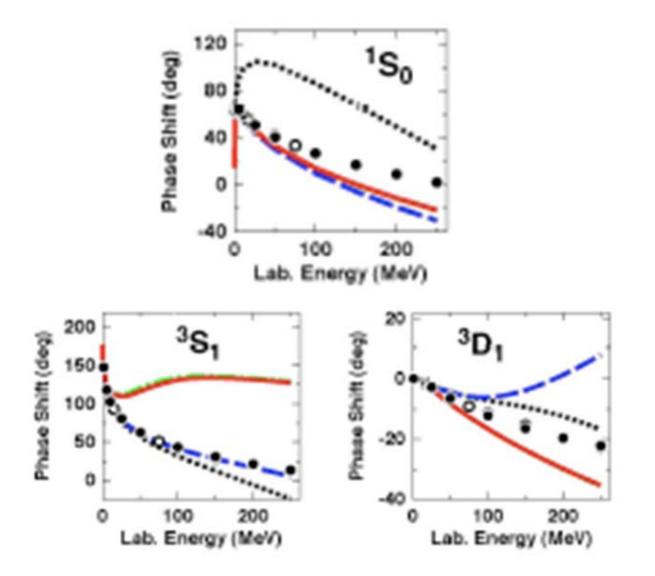
Problems of conventional way

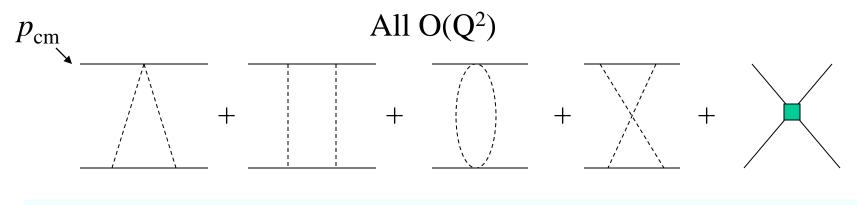
- Singular attractive potentials demand contact terms. (Nogga, Timmermans, van Kolck (2005))
- Beyond LO: Has RG problem at $\Lambda > 1 \text{ GeV}$ (due to iterate to all order)



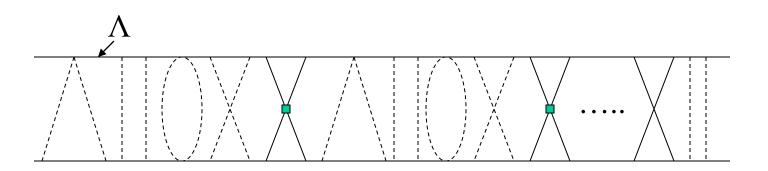
Problems persist at $O(Q^4)$!

Ch. Zeoli R. Machleidt D. R. Entem (2012)





O.k., as long as $p_{\rm cm}$ is small enough, so that $\frac{p_{\rm cm}}{M_{\rm hi}} < 1$



Has problem, as Λ -dependence enter here.

The expansion parameter is no longer $\frac{p_{cm}}{M_{\mu i}}$.

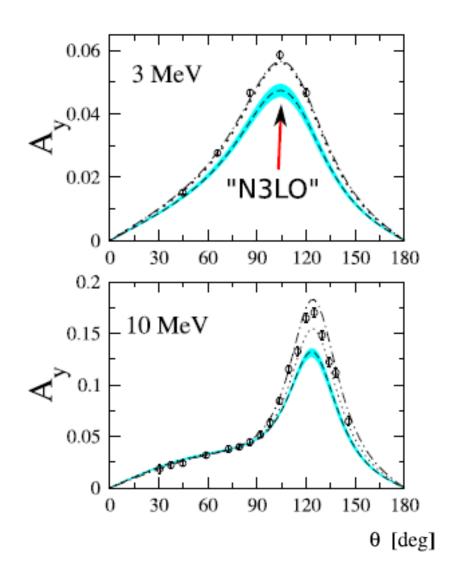
The counter terms are just not enough in this case, reflected in problem at $\Lambda > 1$ GeV.

In the window of $500 < \Lambda < 875$ MeV

- Whether the conventional way happens to represent the reality, or, the problem just got hidden in the apparently o.k. fit of phase shifts ?
- It is safest/more reasonable, to develop a new power counting, which is more EFT.
- The ultimate way to check is through few-body and ab-initio nuclear structure calculations.

Some indications

In the window: $500 < \Lambda < 875 \text{ MeV}$



Entem et al, 2001

New power counting

Our Strategy

Assumptions: RG behavior (at large Λ) won't change w.r.t the detail of c_i 's, or whether $\Delta(1232)$ is included.

Ignore those difficulties and **focus on a consistent power counting**.

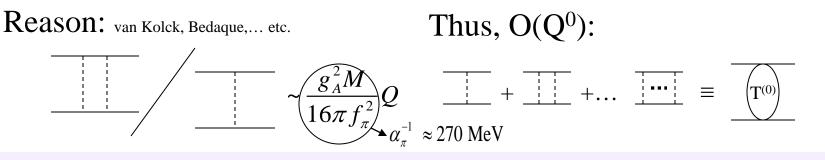
- We use Δ -less potential, with c_i 's from *Epelbaum or Entem & Machliedt* (fitted by conventional, non-per. way).
- Evaluated up to NNLO so far.

Basic idea

- Identify what's M_{hi} ($M_N, M_\rho, 4\pi f_\pi$, or scales $\geq 600 MeV$), and M_{lo} (Q, m_π , or scales $\leq 250 MeV$).
- Whenever a term scales $\begin{cases} \leq O(1), \text{ iterate to all order} \\ > O(1), \text{ do perturbation} \end{cases}$
- Power counting of counter terms: use RG as a guide to determine (Nogga, Timmerman, van Kolck (2005)).
- Power counting of the pion-exchange part and their accompany counter terms (Primordial) unchanged.
 (i.e., Weinberg's counter terms do not get demoted by any RG argument)

New power counting Long & Yang, (2010-2012)

LO: Still iterate to all order (at least for l < 2).



Start at NLO, do perturbation. $(T = T^{(0)} + T^{(1)} + T^{(2)} + T^{(3)} + ...)$

If V⁽¹⁾ is absent: (all *l*<2 channels except ¹S₀.) $T^{(2)} = V^{(2)} + 2V^{(2)}GT^{(0)} + T^{(0)}GV^{(2)}GT^{(0)}.$ $V^{(2)} = V^{(2)} + 2V^{(2)}GT^{(0)} + T^{(0)}GV^{(2)}GT^{(0)}.$ $G = \frac{2M_N}{\pi} \int_0^{\Lambda} \frac{p^2 dp}{p_0^2 - p^2 + i\varepsilon}$

 $\mathbf{T}^{(3)} = \mathbf{V}^{(3)} + 2\mathbf{V}^{(3)}\mathbf{G}\mathbf{T}^{(0)} + \mathbf{T}^{(0)}\mathbf{G}\mathbf{V}^{(3)}\mathbf{G}\mathbf{T}^{(0)}.$

$$V^{(n)} = V_{Long}^{(n)} + V_{Short}^{(n)};$$

$$V_{Long}^{(n)}: \text{ pion-exchange at } O\left(\left(\frac{Q}{M_{hi}}\right)^{n}\right)$$

$$V_{Short}^{(n)}: \text{ counter terms,} \qquad \underbrace{C_{0} + C_{2}q^{2} + C_{4}q^{4}}_{\text{value of } \mathbf{C}'\text{s decided from renormalization}}$$

3 types of counter terms

. . .

- Primordial: Those renormalize the pion-exchange diagrams. (always there if survived from partial-wave decomposition)
 Distorted –wave counter terms: Required due to the divergence of <ψ_{LO}|V^(sub)|ψ_{LO}>, e.g., (T⁽⁰⁾) (V⁽²⁾) (T⁽⁰⁾) could diverge more than O(Q²)
- 3. Residual counter terms: Decided by the requirement from RG.

e.g., if
$$|T^{(n)}(k;\Lambda) - T^{(n)}(k;\infty)| \ge O(\frac{Q^{n+2}}{M_{hi}^{n+2}})$$
, then need V_{Short}^{n+1} at order n+1.

General Results:

(Power counting of counter terms)

- 1. If V_{Long} at LO is repulsive, then primordial counter terms is enough (WPC).
- 2. If V_{Long} at LO is attractive:
- a. Need to promote a counter term to LO if it's absent originally.
- b. Due to the divergence of the distorted-wave matrix element, all counter terms are promoted one order earlier starting at NLO. (distorted-wave counter term)

e.x.
$$\psi_{LO}(r) \sim (\frac{\lambda}{r})^{1/4} \left[u_0 + k^2 r^2 u_1 + O(k^4) \right], u_{0,1}$$
: oscillatory wave, amplitude < 1.
 $\langle \psi_{LO} | V_{Long}^{(2)} | \psi_{LO} \rangle \sim \int_{-1/\Lambda} dr r^2 | \psi_{LO}(r) |^2 \frac{1}{r^5} \sim \underbrace{\alpha(\Lambda) \Lambda^{5/2} + \beta(\Lambda) k^2}_{2 \text{ divergent terms !}} + O(k^4 \Lambda^{-5/2}),$

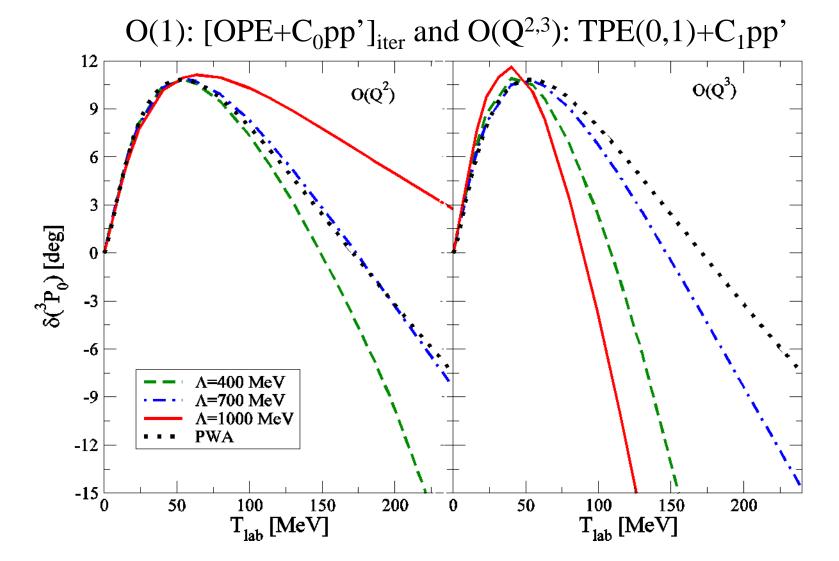
 $(\alpha(\Lambda), \beta(\Lambda))$ are oscillatory function diverging slower than Λ .)

3. Residue counter term enters in ${}^{1}S_{0}$ channel at O(Q).

Results

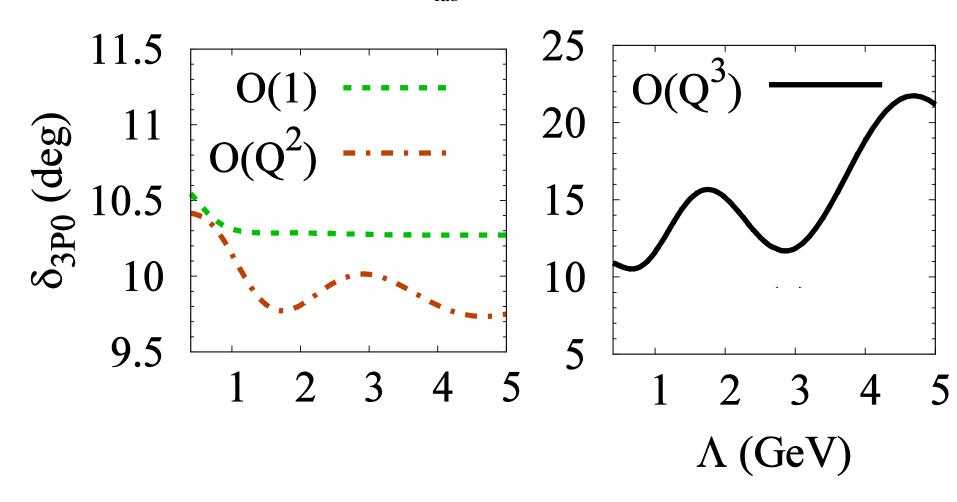
Table: Power counting of counter terms

${}^{3}P_{0}$ (singular and attractive at LO), not promoting the next counter term



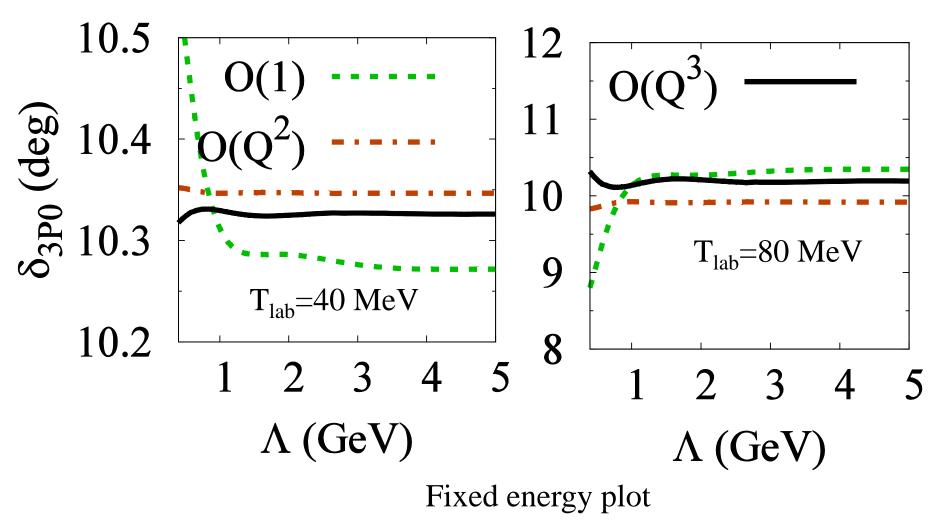
Fixed energy plot

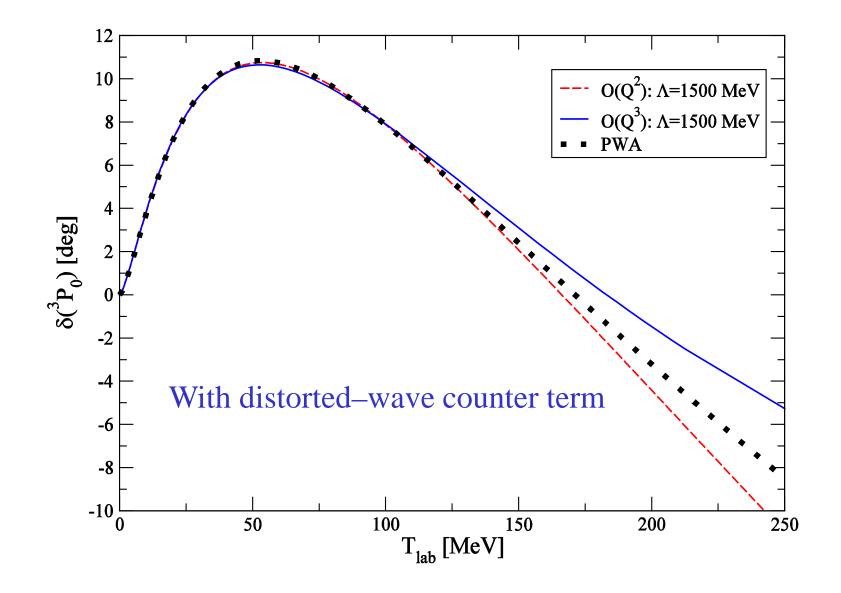
T_{lab}=40 MeV



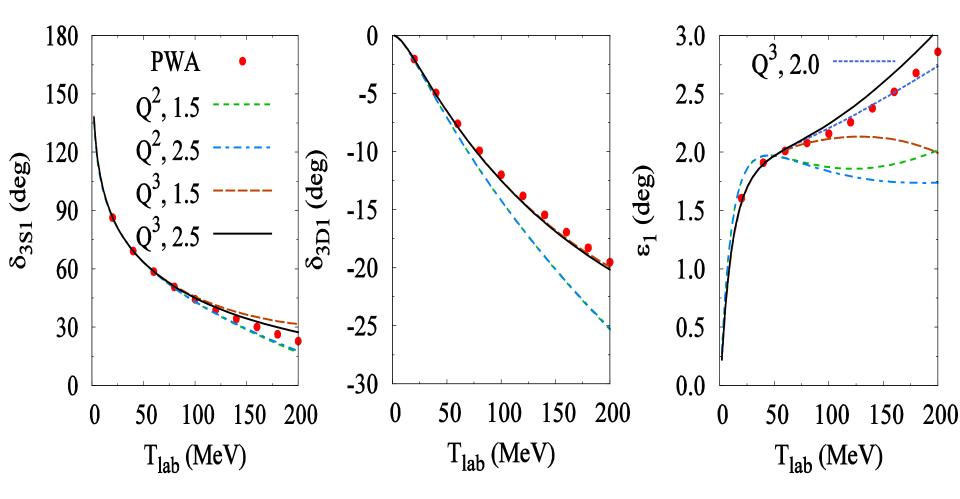
With distorted-wave counter term

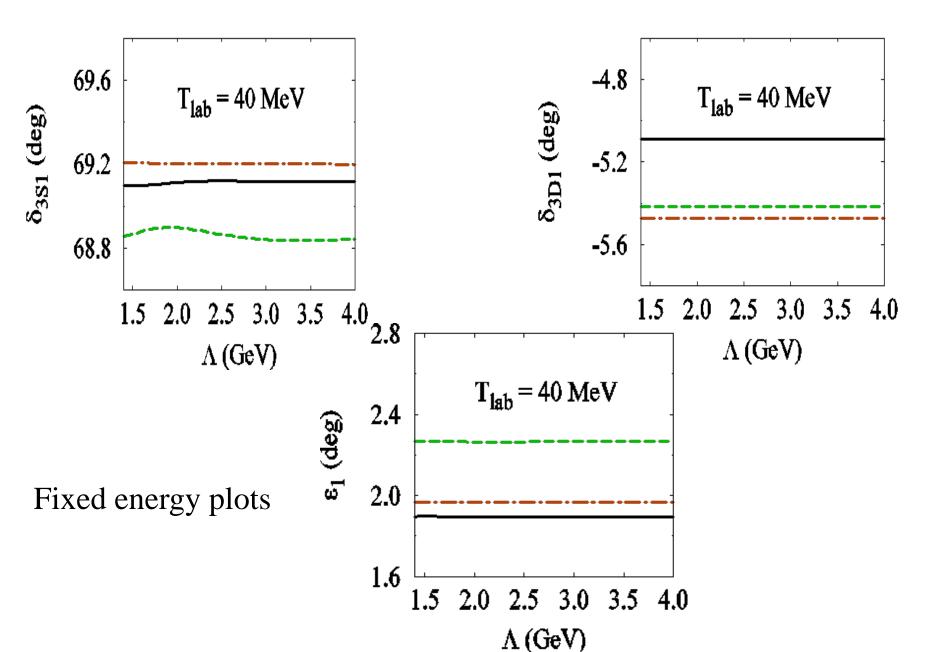
O(Q^{2,3}): TPE(0,1)+C_{1,2}pp'+D_{1,2}pp'(p'²+p²)

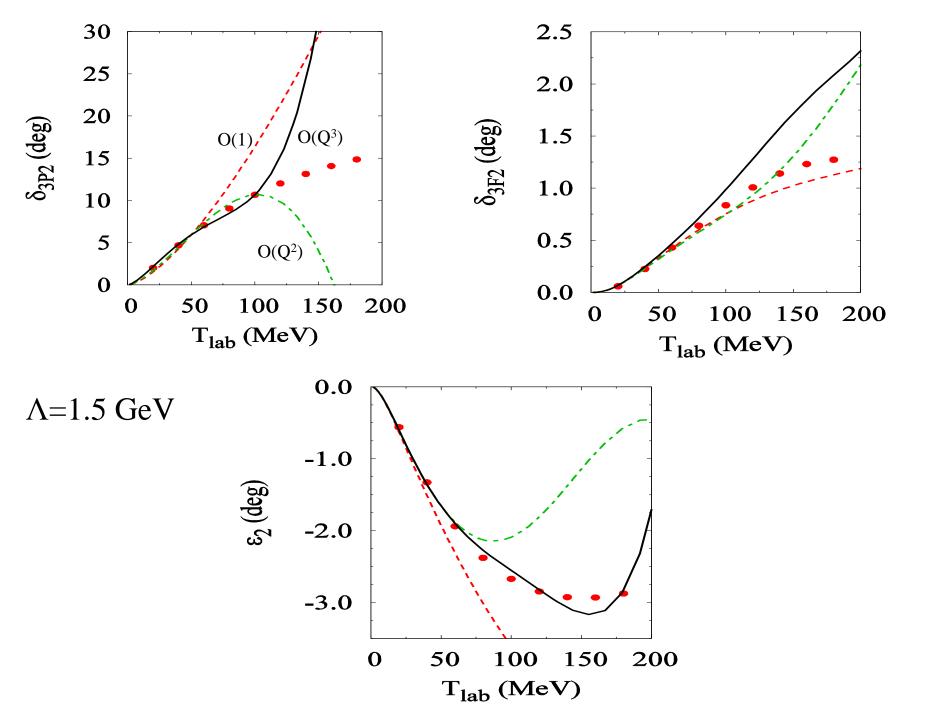


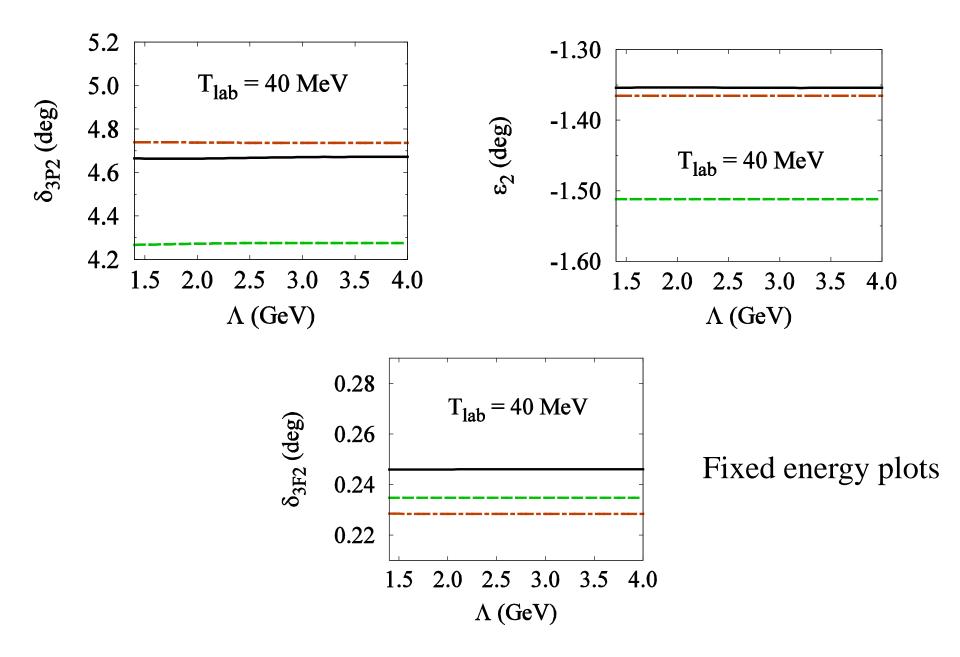


Same applies to coupled channels



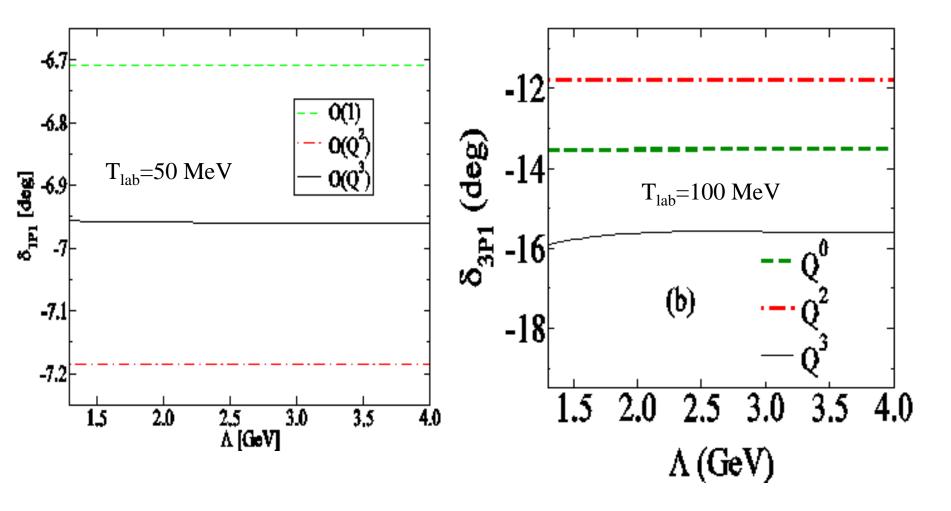


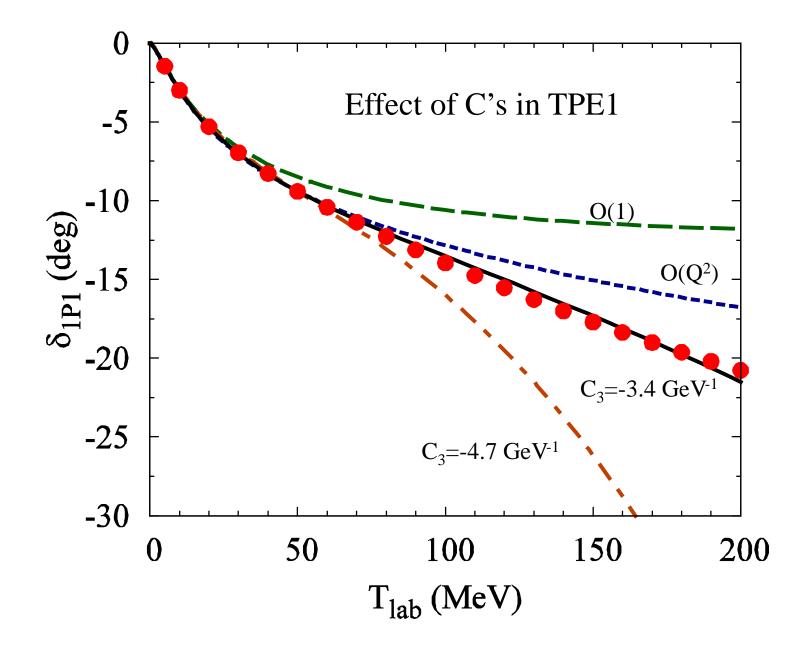


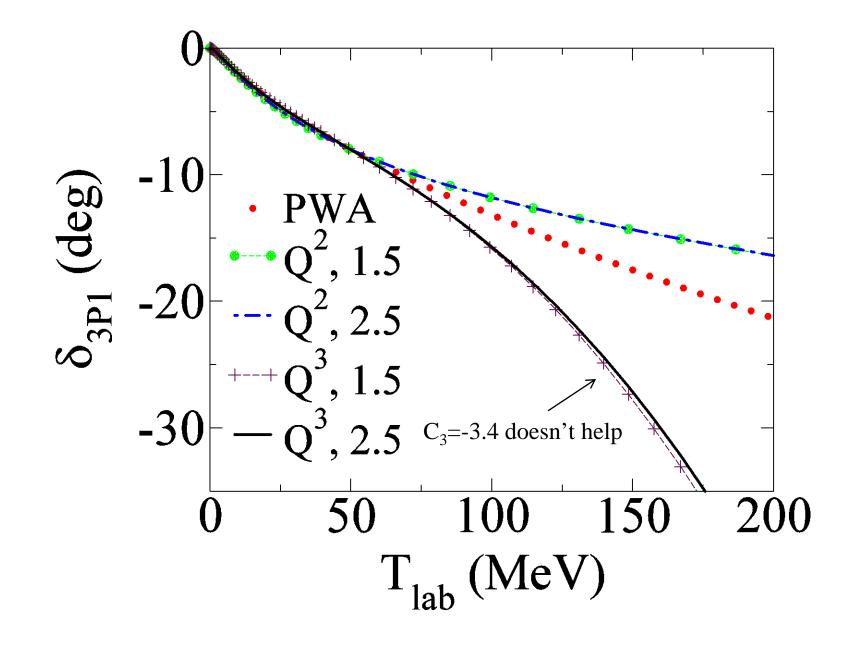


Replusive P-waves

Renormaization O.K.





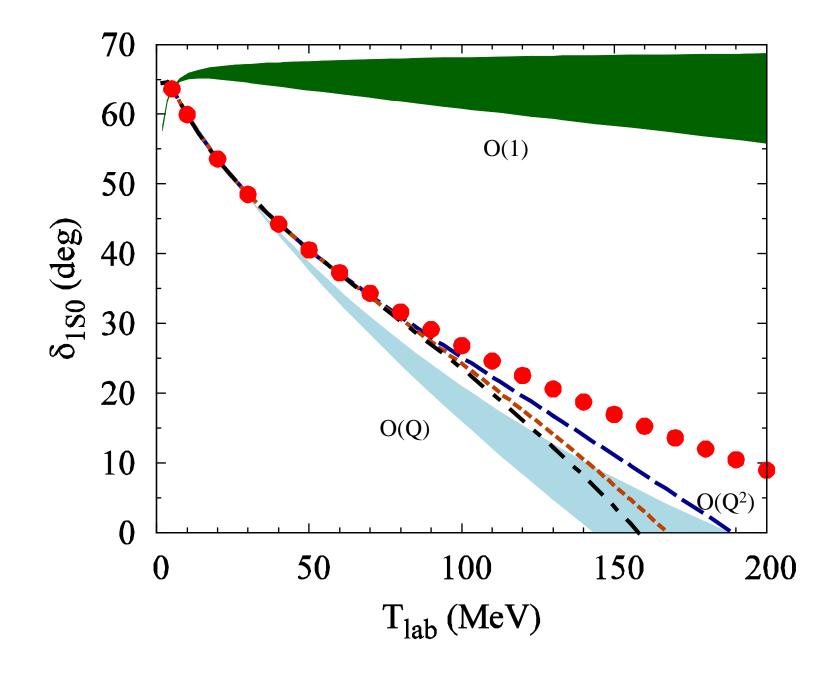


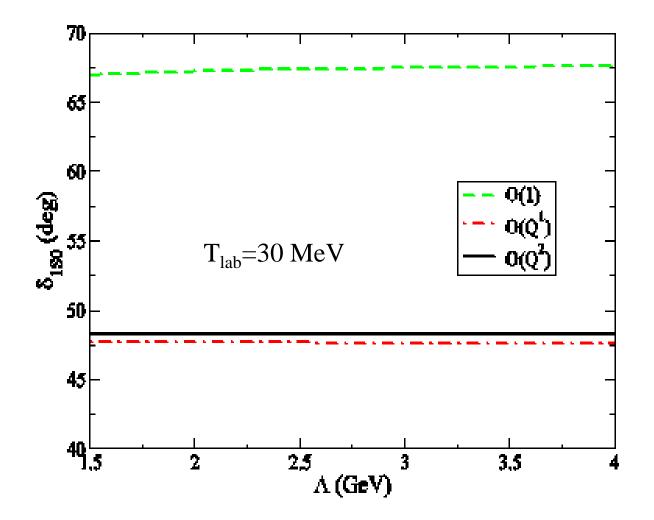
¹ S_0 : Residue counter term enters at O(Q)

Main reason: ${}^{1}S_{0}$ is non-singular

 $V_{150} = -\frac{4\pi}{M_N} \frac{\alpha_\pi m_\pi^2}{q^2 + m_\pi^2} + C_0, \text{ where } \alpha_\pi = \frac{g_A^2 M_N}{16\pi f_\pi^2} \sim \frac{1}{273} MeV^{-1}$ \downarrow Leading order counter term scales as $C_0 \sim \frac{4\pi}{M_N} \frac{1}{\alpha_\pi^{-1}} = \frac{4\pi}{M_N} \frac{1}{M_{lo}}.$ \downarrow This causes $|T^{(0)}(k;\Lambda) - T^{(0)}(k;\infty)| \sim \frac{k^2}{M_{lo}\Lambda} \ge \frac{k^2}{\Lambda^2},$ Thus, there should be counter term before the order of TPE0

=> Promote $C_2(k^2+k'^2)$ to O(Q).





Fixed energy plot

Future works

- Include $\Delta(1232)$, and re-fit $\pi N\Delta$ L.E.C.s.
- Decide at what angular momentum *l/J* can we start to do perturbative pion?
- => ${}^{1}D_{2}$ per. doesn't work (Preliminary), other D-waves seems to work.
- Go to 3N force.
- Final goal: Test the NN force in ab-initio calculation.

Thank you!

Order	NN
Q^{-1}	${}^{1}S_{0}$, ${}^{3}S_{1}$ C_{0} 's, LO OPE
$Q^{-1/2}$	${}^{3}P_{J}, {}^{3}D_{J} C_{0}$'s
\tilde{Q}^0	${}^{1}S_{0} C_{2}$
$Q^{1/2} Q^{5/4}$	${}^{3}S_{1}C_{2}$
$Q^{5/4}$	
$O^{3/2}$	${}^{3}P_{J}$, ${}^{3}D_{J}$ C_{2} 's
$\widetilde{Q}^{7/4}$	
Q^2	${}^{1}S_{0} C_{4}$, ${}^{1}P_{1} C_{0}$, NLO OPE, LO TPE
$Q^{5/2}$	${}^{3}S_{1}C_{4}$
Q^3	NLO TPE
Birse CD09	

$$\begin{split} W_S^{OPE} &= \frac{g^2 m^3}{48 \pi f^2} \frac{e^{-x}}{x} \,, \\ W_T^{OPE} &= \frac{g^2 m^3}{48 \pi f^2} \frac{e^{-x}}{x} \left(3 + \frac{3}{x} + \frac{1}{x^2}\right) \end{split}$$

$$\begin{split} V_{C}^{TPE}(r) &= \frac{3g^2m^6}{32\pi^2f^4} \frac{e^{-2x}}{x^6} \Big\{ \left(2c_1 + \frac{3g^2}{16M} \right) x^2 (1+x)^2 + \frac{g^5x^5}{32M} + \left(c_3 + \frac{3g^2}{16M} \right) \left(6 + 12x + 10x^2 + 4x^3 + x^4 \right) \Big\} \\ W_{T}^{TPE}(r) &= \frac{g^2m^6}{48\pi^2f^4} \frac{e^{-2x}}{x^6} \Big\{ - \left(c_4 + \frac{1}{4M} \right) (1+x) (3+3x+x^2) + \frac{g^2}{32M} \left(36+72x+52x^2+17x^3+2x^4 \right) \Big\} , \\ V_{T}^{TPE}(r) &= \frac{g^4m^5}{128\pi^3f^4x^4} \Big\{ - 12K_0(2x) - (15+4x^2)K_1(2x) + \frac{3\pi m e^{-2x}}{8Mx} \left(12x^{-1} + 24 + 20x + 9x^2 + 2x^3 \right) \Big\} , \\ W_{C}^{TPE}(r) &= \frac{g^4m^5}{128\pi^3f^4x^4} \Big\{ \left[1+2g^2(5+2x^2) - g^4(23+12x^2) \right] K_1(2x) + x \left[1+10g^2 - g^4(23+4x^2) \right] K_0(2x) , \\ &+ \frac{g^2m\pi e^{-2x}}{4Mx} \left[2(3g^2-2) \left(6x^{-1} + 12 + 10x + 4x^2 + x^3 \right) \right] + g^2x \left(2+4x+2x^2+3x^2 \right) \Big\} , \\ V_{S}^{TPE}(r) &= \frac{g^4m^5}{32\pi^3f^4} \Big\{ 3xK_0(2x) + (3+2x^2)K_1(2x) - \frac{3\pi m e^{-2x}}{16Mx} \left(6x^{-1} + 12 + 11x + 6x^2 + 2x^3 \right) \Big\} , \\ W_{S}^{TPE}(r) &= \frac{g^2m^6}{48\pi^2f^4} \frac{e^{-2x}}{x^6} \Big\{ \left(c_4 + \frac{1}{4M} \right) \left(1+x \right) \left(3+3x+2x^2 \right) - \frac{g^2}{16M} \left(18+36x+31x^2 + 14x^3 + 2x^4 \right) \Big\} , \\ V_{LS}^{TPE}(r) &= -\frac{3g^4m^6}{64\pi^2Mf^4} \frac{e^{-2x}}{x^6} (1+x) \left(2+2x+x^2 \right) , \\ W_{LS}^{TPE}(r) &= \frac{g^2(g^2-1)m^6}{32\pi^2Mf^4} \frac{e^{-2x}}{x^6} (1+x)^2 , \end{aligned}$$

$$\begin{split} U_{jj}^{0j}(r) &= M \left[(V_C - 3V_S) + \tau (W_C - 3W_S) \right], \\ U_{jj}^{1j}(r) &= M \left[(V_C + V_S - V_{LS}) \\ &+ \tau (W_C + W_S - W_{LS}) + 2(V_T + \tau W_T) \right] \\ U_{j-1,j-1}^{1j} &= M \left[(V_C + \tau W_C + V_S + \tau W_S) \\ &+ (j-1) \left(V_{LS} + \tau W_{LS} \right) \\ &- \frac{2(j-1)}{2j+1} \left(V_T + \tau W_T \right) \right], \\ U_{j-1,j+1}^{1j} &= -\frac{6\sqrt{j(j+1)}}{2j+1} M \left(V_T + \tau W_T \right) , \\ U_{j+1,j+1}^{1j} &= M \left[\left(V_C + \tau W_C + V_S + \tau W_S \right) \\ &- 2(j+2) \left(V_{LS} + \tau W_{LS} \right) \\ &- \frac{2(j+2)}{2j+1} \left(V_T + \tau W_T \right) \right], \end{split}$$