ESNT workshop CEA/SPhN March 4-5, 2013

Connections between chiral forces and the Nijmegen PWA*

Rob G.E. Timmermans KVI, University of Groningen

* Title assigned by the organizers

university of KVI theory groningen

OF Lessons from the Nijmegen SE NN PWA for serious people

Rob G.E. Timmermans KVI, University of Groningen

* Title assigned by the organizers

university of KVI theory groningen

Abundance plots of the NN scattering data

Q1: What information is in these data?

Q2: Is there a need for more experiments?

The database of the PWA (below 350 MeV)

Proton-proton

Type # data σ_{tot} , $\Delta\sigma_L$, $\Delta\sigma_T$ $d\sigma/d\Omega$ 947 816 A_v A_{ii}, C_{nn} 876 D, D_t 114 R, R', A, A' 237 36 Rest All 3026

High quality

Neutron-proton

Туре # data 275 σ_{tot} , $\Delta\sigma_L$, $\Delta\sigma_T$ $d\sigma/d\Omega$ 1475 1213 A_v 327 A_{yy} , A_{zz} 122 D_{t} R_t , R_t ', A_t , A_t ' 162 Rest 78 All 3652 Good quality

No shortage of NN data...

This is the "true" database after some serious data doctoring!

- NN data = every experimental data set (points + errors, statistical & systematic) published in a regular physics journal since 1955

- Theory input = as model independent as possible, Coulomb *etc.*

I. The Nijmegen NN PWAs

A.k.a. Those who do not know history...

Siege of Nijmegen, 1591

H.A. Bethe, "Nuclear physics," centenary review, Rev. Mod. Phys. **71**, S6 (1999).

Awakenings: 0.3-3 MeV pp PWA

Motivation:

- New *pp* data at very low energy ("Basel" & "Zürich" data)
- Better treatment of long-range interaction (EM & OPE)
- $_{\odot}$ Consistent use of statistical methods in data analysis

"A more personal reason to do a PSA is the fact that for many years we have been a regular user of the PSAs of Arndt *et al*. We felt that in order to understand and appreciate this and related work better we needed to do this work ourselves."

- PWA is impossible without *theory input*, cannot parametrize $\delta_L(E)$
- Need good theory for the energy dependence of the amplitudes

Strategy:

- (i) Calculate long-range interaction V_L from field theory
- (ii) Treat short-range interaction V_S completely general

W.A. van der Sanden, A.H. Emmen, and J.J. de Swart, THEF-NYM-83.11

Analyticity of the S matrix

Cut structure of the S matrix in the complex T_{lab} plane

Rapid energy dependence \leftarrow nearby cuts \leftarrow long-range interaction Slow energy dependence \leftarrow far-away cuts \leftarrow short-range interaction

Coulomb	1/r	Vac. pol.	$exp(-2m_er)/r^{3/2}$
Rel. corr. + 2γ	1/r ²	OPE	$exp(-m_{\pi}r)/r$
Magn. mom.	1/r ³	TPE	$exp(-2m_{\pi}r)/r^{5/2}$

Modified effective-range expansion

Separate
$$V = V_L + V_S$$
 $\delta_\ell = (\delta_L)_\ell + (\delta_S)_\ell$
Effective-range function: $(F_L)_0 = A_0^L k \cot(\delta_S)_0 + B_0^L$

Standard:
$$V_L = 0$$
 $(\delta_L)_0 = 0, A_0^L = 1, B_0^L = 0$
 $F_0 = k \cot(\delta_0)$

Coulomb: $V_L = V_C \ (F_C)_0 = C_0^2(\eta) k \cot(\delta_0) + 2k\eta \ h(\eta)$

$$\begin{cases} C_0^2(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1} & \eta = \alpha/v_{\text{lab}} \\ h(\eta) = \operatorname{Re}\left[\Psi(1 + i\eta)\right] - \ln(\eta) \end{cases}$$

G.J.M. Austen, PhD thesis, University of Nijmegen (1982).

"Shape":
$$(S_{\rm EM})_0 = (F_{\rm EM})_0 - \left[-\frac{1}{a_{\rm EM}} + \frac{1}{2} r_{\rm EM} k^2 \right]$$

Effective-range approx. accurate below ~1 MeV, ~2% below 30 MeV

Hard to achieve numerical accuracy (artificial problem...)

$T_{ m lab}$ (MeV)	Institute, Reference	Number, Type of data ^a	% norm error	Deleted data	Predicted norm ^b	χ^2_{me}	χ^2_{sg}	sg phases	me phases	Comments
0.337 66, , 0.405 17	Los Alamos64 70	5σ	8	0.372 83 MeV	1.0162	3.79	3.52	${}^{1}S_{0} = 14.5127 \pm 0.0068$ at 0.38254 MeV	14.5096	d
0.35003, ,	Zürich78	36 <i>o</i>	œ		0.9976	38.79	38.76	${}^{1}S_{0} = 14.5100 \pm 0.0033$ at 0.382.54 MeV	14.5096	c
0.350 09	Zürich78	17σ	0.16		0.9993	25.18	25.06	${}^{1}S_{0} = 13.190 \pm 0.027$	13.199	c,e
0.400 04	Zürich78 3	3σ	0.21		1.0009	1.05	0.88	$^{1}S_{0} = 15.26 \pm 0.14$	15.20	
0.420 06	Zürich78 3	22σ	0.16		0.9993	38.06	37.88	$^{1}S_{0} = 15.987 \pm 0.025$	15.976	c,e
0.499 23	Zürich78 3	39 <i>σ</i>	0.16		0.9990	31.78	28.18	$^{1}S_{0} = 18.8916 \pm 0.0060$ $\Delta_{C} = -0.0600 \pm 0.0039$	18.8979 	c
0.499 25	Basel73 4,5	3σ	0.03	all				-		f
0.749 96	Zürich78 3	26σ	0.16		0.9988	16.14	14.04	${}^{1}S_{0} = 26.691 \pm 0.011$ $\Delta_{C} = -0.0619 \pm 0.0042$	26.684 	с
0.991 83	Zürich78 3	310	0.16		0.9989	25.45	22.12	$^{1}S_{0} = 32.443 \pm 0.014$ $\Delta_{C} = -0.0580 \pm 0.0040$	32.418 	c
0.9919	Basel73 4,5	3σ	0.03	all				-		f
1.397, , 3.037	Wisconsin66 69	51σ		all	a[fm]					
1.8806	Basel73 4,5	3σ	0.03	all	-781 -					2
4.978	Kyoto75 75	17σ	0.4							
5.05	Wisconsin82 6,7	11 <i>P</i>	1.0		- 7 80	L			·W	
6.141	Erlangen79 9	6 <i>P</i>	0.0	all			L		/	
6.141	Berkeley68 68	17σ	0.4	all	- 7.79 -			• B	and the second sec	
6.968	Kyoto75 75	17σ	0.4		_	<u> </u>	in in the second	le l'anne	~~ [~]	
)	2.76		2.78	2.80	r[fm]

TABLE III. Data reference table. me=multienergy, sg=single group. All phase shifts tabulated are with respect to Coulomb functions in degrees (from the bar decomposition of the total S matrix).

First album: 0-30 MeV pp PWA

J.R. Bergervoet *et al.*, PRC **38**, 15 (1988).

The *P*-matrix method

Radial Schrödinger equation:
$$\begin{pmatrix} \frac{d^2}{dr^2} + k^2 - \frac{L^2}{r^2} - 2\mu V(r) \end{pmatrix} \chi(r) = 0$$

Boundary condition:
$$P(b; \ k^2) = b \left(\frac{d\chi}{dr} \cdot \chi^{-1} \right)_{r=b}$$

Sum of poles:
$$P(b; k^2) = c + k^2 \sum_{n=1}^{\infty} \frac{r_n}{k^2 - k_n^2}$$

Cut structure of the *P* matrix in the complex T_{lab} plane

Wigner, Breit; H. Feshbach and E.L. Lomon, AP **29**, 19 (1964); R.L. Jaffe and F.E. Low, PRD **19**, 2105 (1979).

¹S₀:
$$P(k^2) = c_0 + \frac{r_0 k^2}{k^2 - k_0^2}$$

³P₀, ³P₁: $P(k^2) = c_{1J} + d_{1J}k^2$
³P₂- ε_2 -³F₂: $P(k^2) = \begin{pmatrix} c_{12} + d_{12}k^2 & 0 \\ 0 & c_{32} \end{pmatrix}$ $c_{32} = 4$
¹D₂: $P(k^2) = c_2$

10 parameters

Partial wave	Parameter	Fitted value	Free value
	$g_{pp\pi^{0}}^{2}/4\pi$	14.5±1.2	
${}^{1}S_{0}$	<i>c</i> ₀	0.230±0.013	1
	<i>r</i> ₀	1.58±0.86	2
	k ₀ ²	3.3±1.5	5.0
${}^{3}P_{0}$	c ₁₀	3.39±0.77	2
	<i>d</i> ₁₀	-2.9 ± 1.5	-0.4
${}^{3}P_{1}$	c11	1.70±0.48	2
	<i>d</i> ₁₁	-0.25 ± 0.86	-0.39
${}^{3}P_{2}$ - ϵ_{2} - ${}^{3}F_{2}$	c ₁₂	1.355 ± 0.030	2
	<i>d</i> ₁₂	-0.20 ± 0.16	-0.39
$^{1}D_{2}$	<i>c</i> ₂	1.01±0.31	3

Free P matrix:
$$c=\ell+1$$
 , $r_n=2$, $k_n=z_n/b$

II. PWA93: the power & the glory

"All phase shifts and mixing parameters can be determined accurately"

"A local pp potential model"

J.R. Bergervoet, PhD thesis, University of Nijmegen (1987).

The details of the short-range physics do not matter

O(20) parameters

"PWA93": 0-350 MeV pp & np PWA

- P-matrix parametrization
- energy-dependent, *r*-independent square wells
- database up to $T_{lab} = 350 \text{ MeV}$
- first pp PWA 0-350 MeV
- *np* PWA, I=0 and ${}^{1}S_{0}(np)$ waves searched other I=1 waves corrected from *pp* for EM and pion mass

Intermediate-range physics required:

- Nijmegen "soft-core" OBE potential Nijm78
- check model dependence: Paris80 potential

"EFT is like the Antarctic, cold and barren: freeze out everything, only nucleons and pions... no ρ, ω, φ, η, η', ε, no pomeron, no extended nucleon..."

"All phase shifts and mixing parameters can be determined accurately"

J.R. Bergervoet *et al.*, PRC **41**, 1435 (1990); V.G.J. Stoks *et al.*, PRC **48**, 792 (1993).

The ${}^{3}S_{1}$ - ${}^{3}D_{1}$ mixing parameter ε_{1} before the PWA

Energy-dependent (multi-energy) versus single-energy PWA

Example 1:

50.04 MeV $pp A_v$ data

Constrains the ${}^{3}P_{J}$ phases *i.e.* tensor & spin-orbit

		Δ_{T}	Δ_{LS}
m.e.	w/o	-3.745°(22)	2.601°(34)
	with	-3.733°(12)	2.606°(21)
s.e.	w/o	-3.759°(43)	2.509°(87)
	with	-3.741°(14)	2.592°(28)

Example 2:

67.5 MeV *np* A_{zz} & $\Delta\sigma_L$ data

Constrains the ${}^{1}P_{1}$ phase & the mixing parameter ε_{1}

		$\delta({}^{1}P_{1})$	ε
m.e.	w/o	-9.78°(11)	2.15°(34)
	with	-9.67°(08)	2.11°(21)
s.e.	w/o		5.69°(64)
	with		2.57°(36)

More stable, accurate, and precise

Energy dependence of the short-range interaction for ${}^{3}P_{0}$

Radial dependence of the potential for the ${}^{3}P_{0}$ wave

Generation II "HQ" (High-Quality) potential models Nijm-I,II ('93), Reid93, AV18 ('95), CD-Bonn ('96)

III. χ PWA: the long & the short

A.k.a. what about QCD?

"You know, young man, symmetries are overrated in physics..."

Coulomb + two-photon exchange:

$$V_{C1} = \frac{\alpha'}{r}$$
$$V_{C2} = -\frac{1}{2M_p^2} \left[(\Delta + k^2) \frac{\alpha}{r} + \frac{\alpha}{r} (\Delta + k^2) \right] \simeq -\frac{\alpha \alpha'}{M_p r^2}$$

Higher partial waves $J \ge 5$ treated in CDWBA

Long-range EM effects

Vacuum polarization (enhances V_C): long-range: $1/2m_e \approx 200$ fm relevant in proton-proton 1S_0 wave

$$V_{\rm VP} = \frac{2\alpha}{3\pi} \frac{\alpha'}{r} \int_{1}^{\infty} dx e^{-2m_e rx} \left(1 + \frac{1}{2x^2}\right) \frac{\sqrt{x^2 - 1}}{x^2}$$

Effect in $pp \chi PWA$: $\Delta \chi^2_{min} \approx -215$, so 15 s.d.

M.C.M. Rentmeester et al., PRL 82, 4992 (1999).

One-pion exchange: the "glue" of nuclei

$$V(m) = \frac{1}{3} \left(\frac{m}{m_{\pi^{\pm}}}\right)^2 \frac{e^{-mr}}{r} \left[\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + S_{12} \left(1 + \frac{3}{(mr)} + \frac{3}{(mr)^2}\right)\right]$$

Charge-dependent OPE:

$$V_{\pi}(pp) = f_p^2 V(m_{\pi^0})$$

$$V_{\pi}(np) = -f_0^2 V(m_{\pi^0}) + (-)^{I+1} 2f_c^2 V(m_{\pi^+})$$

Recommended value:

$$f^2 = 0.0750(9)$$

Goldberger-Treiman relation:

$$\sqrt{4\pi}f = g_A m_{\pi^+} / F_{\pi}$$

i.e. the "discrepancy" $\approx 1.2\% = O(m_{\pi}^2/\Lambda^2)$

R.G.E. Timmermans *et al.*, PRL **67**, 1074 (1991); U. van Kolck *et al.*, PLB **371**, 169 (1996).

"Seeing" one-pion exchange

The coupling constant is determined *at the pion pole* from long-range OPE

Fit the pion masses from the *pp* and the *np* data:

$$m_{\pi^0} = 135.6(10) \text{ MeV}$$

 $m_{\pi^{\pm}} = 139.6(13) \text{ MeV}$

No significant evidence, yet, for isospin violation: $f(pp\pi^0) \approx f(nn\pi^0) \approx f(np\pi^{\pm})$

Λ_0 (MeV)	500.0		750.0 1000.0			1250.0	∞
$\frac{10^3 f_{pp\pi^0}^2}{\chi^2_{\min}}$)	75.2(0.5) 1786.3		75.0(0.5) 1786.4	5) 75.0(0.5) 7 1786.4		5.0(0.5) 1786.4	75.0(0.5) 1786.4
				D	103 (2)		103 (2(2
				Partial wa	$10^{\circ} f^2$ (wa	ave)	$10^{\circ} f^{2}$ (rest)	χ_{\min}
No dep	ender	nce on:		${}^{1}S_{0}$	79.7(1.9)))	74.5(0.6)	1779.8
- cutof	f in <i>Ni</i>	Nπ form f	actor	${}^{1}D_{2}$	74.6(0.8	3)	74.6(0.6)	1786.0
- enerc	ıv ran	ae of the	fit د	$^{1}G_{4}$	74.6(2.1)	1)	74.6(0.6)	1786.0
	ofob	sonvoblo		$^{3}P_{0}$	72.7(1.7)	7)	74.8(0.6)	1784.6
- type		servable		$^{3}P_{1}$	74.9(0.7)	74.9(0.7) 74.7(0.8) 73.3(1.3)		1785.6
- partia	al wav	ve		${}^{3}P_{2} - {}^{3}F_{2}$	74.7(0.8			1786.0
				${}^{3}F_{3}$	73.3(1.3)			1784.8
				${}^{3}F_{4}-{}^{3}H_{4}$	5.1(0.	9)	74.5(0.6)	1785.6
Туре	N_{dat}	$\chi^2(\min)$	$10^3 f_p^2$	$p_{\pi^0}(\min)$	Type	N_{dat}	$\chi^2(\min)$	$10^3 f_c^2(\min)$
$d\sigma/d\Omega$	821	822.7	76.	5(0.9)	$\sigma_{\rm tot}, \Delta \sigma_{\rm L}, \Delta \sigma_{\rm T}$	252	229.5	75.1(1.1)
A_{ν}	558	580.0	75.	0(0.9)	$d\sigma/d\Omega$	$d\sigma/d\Omega$ 1350		75.6(0.6)
L_{ii}, C_{nn}	66	51.9	71.	0(2.1)	A_y	\dot{A}_{y} 738		74.8(0.4)
D, D_t	97	104.9	72.	0(1.9)	A_{yy}, A_{zz}	A_{yy}, A_{zz} 86		74.4(0.6)
R', A, A'	209	193.1	74.	9(1.6)	D_t	D_t 43		75.1(1.1)
rest	36			. ,	R_t, R'_t, A_t, A'_t		54.7	73.1(1.0)
all	1787	1786.4	75.	0(0.5)	all	all 2512		74.8(0.3)

V. Stoks, R. Timmermans, and J.J. de Swart, PRC 47, 512 (1993).

M.C.M. Rentmeester et al., PRL 80, 4386 (1998).

	<i>b</i> =	= 1.4 fm	$b = 1.8 {\rm fm}$		
	N _{par}	$\chi^2_{\rm min}$	N _{par}	$\chi^2_{\rm min}$	
Nijm78	19	1968.7			
ÕPE	31	2026.2	29	1956.6	
OPE + TPE(1.0.)	28	1984.7	26	1965.9	
$OPE + \chi TPE$	23	1934.5	22	1937.8	
			N _{da}	_{ta} =1951	

With long-range OPE+ χ TPE, a ~perfect χ^2/N_{data} ~1 is possible

M.C.M. Rentmeester *et al.*, PRL **82**, 4992 (1999).

"Seeing" two-pion exchange

M.C.M. Rentmeester et al., PRL 82, 4992 (1999); PRC 67, 044001 (2003).

Heuristic power counting $V_L \leftrightarrow V_S$

P matrix: state- and energy-dependent, short-range square wells $(J \le 4)$:

$P_{\beta}(b;k^2) = P_{\text{free},l}(b;k^2 - 2M_r V_{S,\beta})$) with	$V_{S,\beta}(k^2) =$	$\frac{1}{2M_r} \sum_{n=0}^N a_{n,\beta} (A_r)$	$(k^2)^n$
--	--------	----------------------	---	-----------

рр	# PWA	N ² LO	N ³ LO	np	# PWA	N ² LO	N ³ LO
${}^{1}S_{0}$	4	2	4	${}^{1}S_{0}$	(3)	-	(1)
³ <i>P</i> ₀ *	3	1	2	¹ P ₁	3	1	2
³ P ₁	2	1	2	${}^{3}S_{1}-\varepsilon_{1}-{}^{3}D_{1}$	3-2-2	2-1-0	4-2-1
${}^{1}D_{2}$	2	0	1	³ D ₂ *	2	0	1
${}^{3}P_{2}$ - ϵ_{2} - ${}^{3}F_{2}^{*}$	3-2-1	1-0-0	2-1-0	¹ <i>F</i> ₃	1	0	0
³ F ₃	1	0	0	${}^{3}D_{3}$ - ϵ_{3} - ${}^{3}G_{3}$	1-1-0	0-0-0	1-0-0
${}^{1}G_{4}$	1	0	0	${}^{3}G_{4}^{*}$	0	0	0
${}^{3}F_{4}-\epsilon_{4}-{}^{3}H_{4}^{*}$	2-0-0	0-0-0	0-0-0				
Total	21	5	12	Total	15+(3)	4	11+(1)

* Attractive $1/r^3$ tensor force

A. Nogga et al., PRC 72, 054006 (2005); M.C. Birse, PRC 74, 014003 (2006).

IV. "Doctoring data": the sound & the fury...

A.k.a. χ^2 -paranoia...

Lies, damned lies & statistics

We do not determine if expt's are right or wrong, but we do decide whether they are statistically acceptable, yes or no.

We apply *standard* rejection criteria based on *standard* statistics, to make sure that the database is a *statistical ensemble* and that the errors we quote are really statistical!

 $P_{1,analysis}(\chi^2)$

0.883 2.24

8.5

1.46

3.9

18.3

40

Measurement of the Absolute np Scattering Differential Cross Section at 194 MeV

M. Sarsour,¹ T. Peterson,^{1,*} M. Planinic,^{1,†} S. E. Vigdor,¹ C. Allgower,¹ B. Bergenwall,² J. Blomgren,² T. Hossbach,¹

W. W. Jacobs,¹ C. Johansson,² J. Klug,² A. V. Klyachko,¹ P. Nadel-Turonski,² L. Nilsson,² N. Olsson,² S. Pomp,²

J. Rapaport,³ T. Rinckel,¹ E. J. Stephenson,¹ U. Tippawan,^{2,4} S. W. Wissink,¹ and Y. Zhou¹

¹Indiana University Cyclotron Facility and Department of Physics, Bloomington, Indiana 47408, USA ²Uppsala University, Uppsala, Sweden

"The neutron-proton elastic scattering database at intermediate energies is plagued by experimental inconsistencies and cross section normalization difficulties. These problems have led the most sophisticated partial-wave analyses (PWA) of the data to *ignore* the majority (*including the most recent*) of measured cross sections, while the literature is filled with heated debates over experimental and theoretical methods, including *radical* "*doctoring*" (angle-dependent renormalization) *to* "*salvage*" *allegedly flawed data*.* Meanwhile, an empirical evaluation of a fundamental parameter of meson-exchange theories of the nuclear force - the charged-pion coupling constant - hangs in the balance."

* J.J. de Swart & R.G.E. Timmermans, PRC 66, 064002 (2002).

T_{lab}(MeV)

"Our values support an *NN* tensor force that is stronger than predicted by all modern *NN* potential models and PWAs ... *new concepts* are needed..." *

These TUNL data were incorrectly normalized; they were *doctored*!

* Raichle *et al.*, PRL **83**, 2711 (1999); Walston *et al.*, PRC **63**, 014004 (2000); PRC **65**, 047002 (2002).

A very famous experiment @ Uppsala

T.E.O. Ericson *et al.*, PRL **75**, 1046 (1995); J. Rahm *et al.*, PRC **57**, 1077 (1998).

The data were "doctored" by the experimentalists...

10 years down the road...

M. Sarsour et al. (IUCF), PRL 94, 082303 (2005); PRC 74, 044003 (2006).

The parable* of the three baseball umpires

First umpire: "I calls 'em the way I sees 'em."

Second umpire: "I calls 'em the way they *are* !"

Third umpire: "They ain't *nothin'* until I calls 'em!"

Experimentalists may have no doubt that their data are right, but the PWA, and not any fact of the matter, decides whether a dataset is a "ball" or a "strike."

*A short fictitious story that illustrates a moral attitude [Merriam-Webster].

The fate of new experiments in the PWA

- Q: Don't we have enough NN data ?!
- A: That depends on the ambition: to really study CIB, one certainly needs better *np* data.

New expt's should aim to improve the PWA.

Three possible outcomes:

- (i) the expt has to be rejected on statistical grounds...
- (ii) the expt is correct but irrelevant...
- (iii) the expt is correct and contains new information!

Unfortunately, cases (i) and (ii) occur often in recent years.

High counting rates \rightarrow systematic errors start to dominate... Bad for PWA! We need new methods* to handle syst. errors.

* R.L. Kelly and R.E. Cutkosky, PRD **20**, 2782 (1979); J.J. de Swart and R.G.E. Timmermans, PRC **66**, 064002 (2002).

V. Outlook: What is left to keep us off the streets?

Old laptop of M.C.M. Rentmeester, unknown location...

Isospin violation, pp vs. np, in χ PWA

Isospin violation is due to EM and the up-down quarkmass difference in QCD.

In χ PWA we can study CIB for all low partial waves not just for the ${}^{1}S_{0}$ wave, but also *e.g.* the ${}^{3}P$ waves.

The long-range interaction contains the most relevant isospin violation predicted by χ PT, *i.e.* EM and in OPE, but not yet in TPE.

U. van Kolck *et al.*, PLB **371**, 169 (1996); J. Friar *et al.*, PRC **60**, 034006 (1999), *ibid.* **68**, 024003 (2003).

Different intermediate-range interaction: HBE versus TPE

Old laptop of M.C.M. Rentmeester, unknown location..., possibly Mexico...

PWA as bridge between exp't and theory

K. Sekiguchi *et al.*, PRL **95**, 162301 (2005).

* D. Zhou and R.G.E. Timmermans, PRC 86, 044003 (2012).

Full circle: A new 0.3-3 MeV pp PWA?

Coulomb-nuclear interference minimum @ $T_{lab} = 382.54 \text{ keV}$ - based on Los Alamos (1964) & Zürich (1978) *pp* data

- normalizes the Sun: pp fusion reaction $p+p \rightarrow d+e+v$

H. Dombrowski *et al*., NPA **619**, 97 (1997).

$PWA83 \rightarrow PWA93 \rightarrow PWA03 \rightarrow PWA13 \rightarrow PWA23$

(Our) PWA is a high-precision tool to:

- improve models / test theories for the NN interaction
- study & improve the database, plan new expt's
- study the long-range interaction V_L

Input into the PWA:

- the "raw" database (over 5000 pp and 5000 np points)
- theory (model independent): EM interaction, OPE + χ TPE

Output of the PWA:

- phase-shift parameters, inelasticities + errors: $\delta_L(E)$, $\eta_L(E)$
- correlations (χ^2 -hypersurface)
- parameters in V_L , e.g. the pion coupling constant $f_{NN\pi}$
- "true" database + rejected data sets

Ultimately, one has to fit the data with χ EFT, or QCD, of course!

Some open questions & final thoughts

o Q: Is anything relevant still missing in the long-range potential?

- $\Delta(1232)$, isospin violation, three-pion exchange, ...

o Q: Is it worthwhile to reformulate χ PWA as χ EFT?

- consistency of the power counting, V_L versus V_S

o Q: Is the χ PWA with its *r*-space regulator cutoff independent?

- "cutoff" b was varied within 1-2 fm
- highly singular potentials, $V \sim 1/r^{6,7}$
- o Q: Should one apply Bayesian fitting strategies*?
 - energy range (breakdown scale)? <350 MeV?</p>

Thank you for your attention!

* M.R. Schindler & D.R. Phillips, AP **324**, 682 (2009).