Chiral effective field theory for the NN system: a brief (?) introduction

Daniel Phillips
Ohio University

OHIO
UNIVERSITY

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

Outline

- What constitutes a χ EFT for NN interactions?
- Applying χ PT directly to T_{NN} : what works straightforwardly?
- The proposal: Weinberg's counting for the NN potential, aka naive dimensional analysis for V
- One-pion exchange and renormalization: how strong interactions taught us to be not-quite-as-naïve
- What is leading order? And what happens at higher orders?
- Conclusion

Effective field theory

- Low-momentum theory that matches onto full theory
- Short-distance details irrelevant for long-distance (lowmomentum) physics, e.g. multipole expansion
- Symmetries of underlying theory limit possibilities: all allowed terms up to a given order present in EFT
\rightarrow Model independence
- E.g., chiral perturbation theory: EFT of QCD at low energies. Pions determine long-distance physics

Weinberg (1979); Gaseer and Leutwyler (1984); Bernard, Kaiser, and Meissner (1991)

- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes

EFT with NDA: the algorithm

1. Identify the relevant degrees of freedom
2. Identify high- and low-energy scales \rightarrow expansion parameters x
3. Identify symmetries of low-energy theory
4. Choose the accuracy required. This, together with the size of x , tells you the order, n , to which you must calculate.
5. Write down all possible local operators, that have naive dimensions up that order, and are consistent with symmetries
"NDA"
6. Derive the behaviour of loops, and calculate them.

All operators needed for renormalization at this order should be present \rightarrow Model independence

$\chi \mathrm{PT} \mathcal{L}$ with nucleons: first 2 orders

- Expansion in $P=\left(p, m_{\pi}\right) / M \chi$ SB
- Leading order for $\pi \mathrm{N}: \mathcal{L}_{\pi N}^{(1)}=\bar{\psi}\left(i \gamma_{\mu} D^{\mu}-M+\frac{g_{A}}{2} \gamma_{\mu} \gamma_{5} u^{\mu}\right) \psi$
- Next-order corrections from:

$$
u_{\mu}=-\frac{\tau^{a} \partial_{\mu} \pi^{a}}{f_{\pi}}+\ldots
$$

$$
\begin{aligned}
& \mathcal{L}_{\pi N}^{(2)}=2 B c_{1} \bar{\psi}\left(u^{\dagger} \mathcal{M} u^{\dagger}+u \mathcal{M}^{\dagger} u\right) \psi+\frac{c_{2}}{M^{2}} \partial_{\mu} \bar{\psi} u^{\mu} u^{\nu} \partial_{\nu} \psi \\
& \quad+c_{3} \bar{\psi} u^{\mu} u_{\mu} \psi+\frac{i c_{4}}{2} \bar{\psi} \sigma_{\mu \nu} u^{\mu} u^{\nu} \bar{\psi}+c_{6} \bar{\psi} \sigma_{\mu \nu} f_{\mu \nu}^{+} \psi+c_{7} \bar{\psi} \sigma^{\mu \nu} f_{\mu \nu}^{+} \psi
\end{aligned}
$$

- Note appearance of LECs: $g_{A}, M, c_{1}-c_{7}$
- Encode effects of other degrees of freedom, should be fit to data (lattice or lab) to retain model independence
- M of order breakdown scale, so non-relativistic expansion ("heavy-baryon χ PT") is natural. But not essential

Jenkins and Manohar; Bernard, Kaiser, Kambor and Meissner

Power counting in $\mathrm{HB} \chi$ PT

Counting not just for Lagrangian, but for loops too:

1. $1 / \mathrm{P}$ for each nucleon propagator
2. $1 / \mathrm{P}^{2}$ for each pion propagator

$$
\mathrm{P}=\left(\mathrm{p}, \mathrm{~m}_{\pi}\right) / \mathrm{M} \chi \mathrm{SB}
$$

3. P^{n} for a vertex from $\mathcal{L}^{(n)}$

Role of Delta(1232)?
4. P^{4} for each loop momentum

- Graphs with more loops, higher-derivative interactions are suppressed
- Applied successfully to many processes with $\mathrm{A}=0$ and $\mathrm{A}=1$

Chiral EFT for nuclear physics: goals

- Consequences of QCD's spontaneously and explicitly broken chiral symmetry for $A \geq 2$
- Expansion in $\mathrm{M}_{10} / \mathrm{M}_{\mathrm{hi}}$
- Renormalizable order-by-order in this expansion parameter
- χ PT: low scales: m_{π}, p; high scales: $m_{\rho}, M_{N}, M_{\Delta}-M_{N} \equiv \Lambda_{\chi S B}$
- Clean living \rightarrow error estimates, model-independent results

The NN amplitude in $\chi \mathrm{PT}$

Weinberg; Ordonez, Ray, van Kolck; Brockmann, Kaiser, Weise

- Consider NN scattering with incoming momenta p

$$
\begin{aligned}
p_{0}=\frac{\mathbf{p}^{2}}{2 M} ; & p_{0}^{\prime}=\frac{\mathbf{p}^{\prime 2}}{2 M} \\
E=\frac{\mathbf{p}^{2}}{M} & =\frac{\mathbf{p}^{\prime 2}}{M} \\
\mathbf{q} & =\mathbf{p}-\mathbf{p}^{\prime}
\end{aligned}
$$

- Possible structures:

$$
\begin{align*}
\mathcal{T}_{N N}= & V_{C}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{C}+\left[V_{S}+\tau_{1} \cdot \boldsymbol{\tau}_{2} W_{S}\right] \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}+\left[V_{T}+\boldsymbol{\tau}_{1} \cdot \tau_{2} W_{T}\right] \boldsymbol{\sigma}_{1} \cdot \boldsymbol{q} \boldsymbol{\sigma}_{2} \cdot \boldsymbol{q} \\
& +\left[V_{\mathrm{SO}}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{\mathrm{SO}}\right] i\left(\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right) \cdot(\boldsymbol{q} \times \boldsymbol{p}) \\
& +\left[V_{Q}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{Q}\right] \boldsymbol{\sigma}_{1} \cdot(\boldsymbol{q} \times \boldsymbol{p}) \boldsymbol{\sigma}_{2} \cdot(\boldsymbol{q} \times \boldsymbol{p}) \tag{4}
\end{align*}
$$

Let's calculate: tree level

$O\left(P^{0}\right)$

$$
\begin{aligned}
i \mathcal{M}^{O P E} & =-\tau_{1}^{a} \tau_{2}^{a}\left(\frac{g_{A}}{2 f_{\pi}}\right)^{2} \frac{i \sigma_{1} \cdot \mathbf{q} \sigma_{2} \cdot \mathbf{q}}{q^{2}-m_{\pi}^{2}} \\
& =\tau_{1}^{a} \tau_{2}^{a}\left(\frac{g_{A}}{2 f_{\pi}}\right)^{2} \frac{i \sigma_{1} \cdot \mathbf{q} \sigma_{2} \cdot \mathbf{q}}{\mathbf{q}^{2}+m_{\pi}^{2}}
\end{aligned}
$$

- Fourier transform gives $\mathrm{V}(\mathrm{r})$, through $i \mathcal{M}=-i V$

$$
V(\mathbf{r})=\int \frac{d^{3} q}{(2 \pi)^{3}} V(\mathbf{q}) e^{-i \mathbf{q} \cdot \mathbf{r}} \sim-\frac{g_{A}^{2} m_{\pi}^{2}}{16 \pi f_{\pi}^{2}} \frac{e^{-m_{\pi} r}}{r}
$$

Calculating T_{NN} at lowest order

- Supplement OPE with $\mathcal{L}_{\mathrm{NN}}$

$$
\mathcal{L}_{N N}^{(0)}=-\frac{C_{T}}{2}\left(B^{\dagger} \sigma B\right) \cdot\left(B^{\dagger} \sigma B\right)-\frac{C_{S}}{2}\left(B^{\dagger} B\right)^{2}
$$

- Short-range S-wave force + One-pion exchange

$$
\begin{gather*}
V^{(0)} \\
T^{(0)}(\mathbf{p}, \mathbf{q})=C-\tau_{1}^{a} \tau_{2}^{a} \frac{g_{A}^{2}}{4 f_{\pi}^{2}} \frac{\sigma_{1} \cdot \mathbf{q} \sigma_{2} \cdot \mathbf{q}}{\mathbf{q}^{2}+m_{\pi}^{2}} \quad O\left(\mathbf{P}^{\circ}\right. \tag{0}\\
W_{T}=\frac{g_{\pi N}^{2}}{4 M^{2}} \frac{1}{m_{\pi}^{2}+\mathbf{q}^{2}} \quad g_{\pi N}=\frac{M g_{A}}{f_{\pi}} \quad \text { Goldberger- } \\
\text { Treiman relation }
\end{gather*}
$$

$T_{\text {NN }}$ at $O\left(\mathrm{P}^{2}\right)$: loop graphs

From Kaiser, Brockmann, Weise NPA 625, 758 (1997)

$$
\left|\begin{array}{c}
\underline{l}+q \\
-\frac{l}{2} \\
-\frac{l}{p_{1}}
\end{array}\right|
$$

- All vertices from $\mathcal{L}_{\pi \mathrm{N}}{ }^{(1)}$
- Yields "leading" two-pion exchange, e.g.

$$
\begin{aligned}
V_{T}= & -\frac{1}{q^{2}} V_{s}=\frac{3 g_{A}^{4}}{64 \pi^{2} f_{\pi}^{4}}\left\{\ln \frac{m_{\pi}}{\lambda}-\frac{1}{2}+L(q)\right\}, \\
& \text { ALL } O\left(\mathrm{P}^{2}\right) \quad L(q)=\frac{w}{q} \ln \frac{w+q}{2 m_{\pi}}, \quad w=\sqrt{4 m_{\pi}^{2}+q^{2}} .
\end{aligned}
$$

$T_{N N}$ at $O\left(P^{3}\right)$

Fewer, simpler diagrams

$$
|c-1|=-\infty
$$

- No divergences (in dim. reg. with MS)

$$
\begin{aligned}
V_{C}= & \frac{3 g_{A}^{2}}{16 \pi f_{\pi}^{4}}\left\{4\left(c_{1}-c_{3}\right) m_{\pi}^{3}-\frac{g_{A}^{2} m_{\pi}}{16 M}\left(m_{\pi}^{2}+3 q^{2}\right)-\frac{g_{A}^{2} m_{\pi}^{5}}{16 M\left(4 m_{\pi}^{2}+q^{2}\right)}\right. \\
& \left.-c_{3} m_{\pi} q^{2}+\left[2 m_{\pi}^{2}\left(2 c_{1}-c_{3}\right)-q^{2}\left(c_{3}+\frac{3 g_{A}^{2}}{16 M}\right)\right]\left(2 m_{\pi}^{2}+q^{2}\right) A(q)\right\},
\end{aligned}
$$

$$
\operatorname{ALL} \mathbf{O}\left(\mathbf{P}^{3}\right) \quad A(q)=\frac{1}{2|\mathbf{q}|} \arctan \left(\frac{|\mathbf{q}|}{2 m_{\pi}}\right)
$$

Summary: $T_{\text {Nv }}$ to $O\left(P^{3}\right)$ in NDA

- Need $\mathcal{L}_{\mathrm{NN}}$ with two derivatives $C_{2}\left[\left(B^{\dagger} \nabla^{2} B\right)\left(B^{\dagger} B\right)+\right.$ h.c. $]$
- These short-distance operators (and LECs) appear in tree diagrams at $\mathrm{O}\left(\mathrm{P}^{2}\right)$
- Thereby renormalizing one-loop graphs at $\mathrm{O}\left(\mathrm{P}^{2}\right)$
- One loop with vertices from second-order $\mathcal{L}_{\pi N}$: c_{i} 's appear, no (logarithmic) divergences
- No new NN parameters going from $\mathrm{O}\left(\mathrm{P}^{2}\right)$ to $\mathrm{O}\left(\mathrm{P}^{3}\right)$

"Pure predictions" for NN

- Decompose (elastic scattering)

$$
\begin{aligned}
T_{N N}(\mathbf{p}, \mathbf{q}) & =\sum T_{L}(p) P_{L}(\cos \theta)(2 L+1) \\
T_{L}(k) & =-\frac{4 \pi}{M k} \exp \left(i \delta_{L}(k)\right) \sin \left(\delta_{L}(k)\right) \\
& \approx-\frac{4 \pi}{M k} \delta_{L} \quad \text { if } \boldsymbol{\delta}_{\mathbf{L}} \text { is small }
\end{aligned}
$$

- Key point: TL goes like $\mathrm{p}^{2 \mathrm{~L}}$ at small p

$$
\mathcal{L}_{N N}^{(2 L)} \sim\left(B^{\dagger} D^{2 L} B\right) B^{\dagger} B+\ldots
$$

- So $\mathcal{L}_{\mathrm{NN}}$ can affect Lth partial wave only at $\mathrm{O}\left(\mathrm{P}^{2 \mathrm{~L}}\right)$

Short-range force affects

- Predictions for higher partial waves primarily the partial waves of low L

G Waves

F Waves

D Waves

The story so far...

- χ PT Lagrangian in $\pi \mathrm{N}$ sector up to order 2 predicts NN amplitude in high ($L \geq 2$?) partial waves
- L=0 and 1: contact terms + non-perturbative nature of NN; the rest of this talk...
- The proposal: Weinberg's counting for the NN potential, aka naive dimensional analysis for V
- One-pion exchange and renormalization: how strong interactions taught us to be not-quite-as-naïve
- A "new leading order" and its discontents
- Higher orders in χ EFT: what comes where?

χ PT for nuclear forces

- $\chi \mathrm{PT} \Rightarrow$ pion interactions are weak at low energy.

Weinberg (1990), apply χ PT to V, i.e. expand it in $\mathrm{P}=\left(\mathrm{p} / \wedge_{\chi \mathrm{SB}}, \mathrm{m}_{\pi} / \wedge_{\chi \mathrm{SB}}\right)$

$$
\begin{gathered}
\left(E-H_{0}\right)|\psi\rangle=V|\psi\rangle \\
V=V^{(0)}+V^{(2)}+V^{(3)}+\ldots
\end{gathered}
$$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

- Leading-order V:

$$
\left\langle\mathbf{p}^{\prime}\right| V|\mathbf{p}\rangle=C^{3 S 1} P_{3 S 1}+C^{1 S 0} P_{1 S 0}+V_{1 \pi}\left(\mathbf{p}^{\prime}-\mathbf{p}\right)
$$

Higher orders in V

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

	Two-nucleon force	Three-nucleon force	Four-nucleon force
\mathbf{P}^{0}			
\mathbf{P}^{2}		CONSISTEN \qquad	$\text { NFS, } 4 \text { NFS }$ $工$
\mathbf{P}^{3}			\qquad
\mathbf{P}^{4}		work in progress...	Courtesy E. Epelbaum

2 nucleon force $\gg 3$ nucleon force $\gg 4$ nucleon force...

"Weinberg" counting to $\mathrm{O}\left(\mathrm{P}^{4}\right)\left[\mathrm{N}^{3} \mathrm{LO}\right]$

Epelbaum, Meissner, Gloeckle (2005)

Successes in A=2-4

Epelbaum, Meissner, Gloeckle (2005)

1 Cowitety E. Epelhawm

- N^{3} LO potential, $\chi^{2} /$ dof comparable to AV18

Entem, Machleidt (2003)

- ${ }^{2}$ LO used to perform PSA to pp and np data

Timmermans' talk

- Reproduce $\mathrm{A}=3$ and 4 observables

Epelbaum, Nogga, et al.(2002)

- Applications to systems of higher A

But is it a (chiral) EFT?

- Existence of perturbative expansion?
- Renormalized?
- A priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

- Note: don't need $\Lambda \rightarrow \infty$, just Λ varied by a factor ~ 2 around $\Lambda_{x S B}$

Goal: once we understand what terms are present in $\chi E F T$ up to some order, we can include them in a potential, and use it with a low cutoff in order to do nuclear physics calculations

Fun facts about one-pion exchange

$$
\begin{array}{r}
V(\mathbf{r})=\tau_{1}^{a} \tau_{2}^{a}\left[\sigma_{1} \cdot \sigma_{2} Y(r)+S_{12}(\hat{r}) T(r)\right] \\
S_{12}(\hat{r})=3\left(\sigma_{1} \cdot \hat{r}\right)\left(\sigma_{2} \cdot \hat{r}\right)-\sigma_{1} \cdot \sigma_{2} \\
Y(r)=\frac{g_{A}^{2} m_{\pi}^{2}}{48 \pi f_{\pi}^{2}} \frac{e^{-m_{\pi} r}}{r} \\
T(r)=\frac{g_{A}^{2}}{16 \pi f_{\pi}^{2}} e^{-m_{\pi} r}\left[\frac{m_{\pi}^{2}}{3 r}+\frac{m_{\pi}}{r^{2}}+\frac{1}{r^{3}}\right]
\end{array}
$$

- Momentum scales present: m_{π} and $\Lambda_{N N}=\frac{16 \pi f_{\pi}^{2}}{g_{A}^{2} M} \approx 300 \mathrm{MeV}$
- χ SB predicts $1 / r^{3}$ potential that couples waves with $\Delta \mathrm{L}=2$
- Tensor part of 1π exchange does not appear for $S=0$
- $1 / r^{3}$ part of 1π exchange "screened" by centrifugal barrier for large L

The quest for leading order I

- Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for $p \sim \Lambda_{\text {NN }}$ need to iterate (tensor part of) one-pion exchange to obtain the LO result
- $\Lambda_{N N}$ is a new low-energy scale, thus this is not $\chi \mathrm{PT}$. But, higherorder pieces of chiral potential suppressed by $\Lambda_{\mathrm{NN}} / \Lambda_{\chi \mathrm{SB}}$.
- Perturbation theory should also be OK for: (a) higher partial waves; (b) 1π exchange in singlet waves; (c) $p \ll \Lambda_{N N}$

The quest II: to iterate or not to iterate

- "Sum up" $V_{\text {OPE }}+V_{\text {OPE }} G_{0} V_{\text {OPE }}+\ldots$.

Lippmann-Schwinger equation for T

- Do this in ${ }^{3} S_{1},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}$, and possibly D waves
- In "high" partial waves, series for T dominated by first term
\rightarrow Standard $\chi \mathrm{PT}$ results already discussed

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

Stable for wide range of cutoffs

Subtractive renormalization numerically efficient

Yang, Elster, Phillips (2007)
One-pion exchange weak in ${ }^{1}$ So

χ EFT deuteron wave functions at leading order

Pavon Valderrama, Nogga, Ruiz Arriola,DP, EPJA 36, 315 (2008)

The quest IV: solving the $1 / r^{3}$ potential

- Attractive case, for $r<1 / \Lambda_{N N}$

$$
u_{1}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \cos \left(4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right) ; u_{2}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \sin \left(4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right)
$$

- Equally regular solutions, need boundary condition to fix phase
- c.f. $j_{l}(k r)$ and $n_{l}(k r)$ for plane waves as $r \rightarrow 0$
- Repulsive, for $r \ll 1 / \Lambda_{\mathrm{NN}}$
$u_{1}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \exp \left(4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right) ; u_{2}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \exp \left(-4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right)$
- Still need boundary condition to fix "phase", but results insensitive to choice

The quest V: power counting

- Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.
Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)
- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 1S0.
- Renormalization-group analysis

Birse
Moral: NDA doesn't predict scaling of short-distance operators needed for renormalization if LO wave functions are not plane waves

Attempts to circumvent

- Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite
- Can even make it soft enough that it appears perturbative.
- Worked out for ${ }^{3} S_{1}-{ }^{3} D_{1}-\varepsilon_{1}$ up to NNLO
- Employ relativistic propagator in NN scattering equation \Rightarrow integrals in scattering equation are also softened
- In UV problem becomes solution of $1 / r^{2}$ potential in 2 d
- Still some additional contact terms required, e.g. in ${ }^{3} P_{0}$
- Argue that cutoff should never get above m_{ρ} Epelbaum, Meissner (2006)

Sub-leading orders

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least $O\left(\mathrm{P}^{2}\right)$ in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions
- But, need to ensure these are renormalized, i.e. matrix elements have regulator dependence removed. What NN contact interactions are necessary to do that?
- Analysis tool: co-ordinate space matrix elements of $\mathrm{V}^{(3)}$ (say) between $\left|\psi^{(0)}\right\rangle$
- Equivalent momentum-space formulation

An example: sub-leading TPE in 3S1

$$
\frac{d}{d r_{c}}
$$

G	-

- As $r \rightarrow 0$, sub-leading 2π exchange $M V^{(3)}(r) \sim \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}}$

$$
\begin{array}{rl}
\left\langle\psi^{(0)}\right| M V^{(3)}\left|\psi^{(0)}\right\rangle \sim \int_{r_{c}} & d r\left(\Lambda_{N N} r\right)^{3 / 2}\left(1+\alpha_{2} k^{2} r^{2}+\ldots\right) \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}} \\
& \sim \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{7 / 2}}+\tilde{\alpha}_{2} k^{2} \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{3 / 2}}+\text { finite }
\end{array}
$$

- Need two counterterms, same as in NDA, although scaling of matrix element with r_{c} modified
- Real difference in P waves, where $\sim r^{2}$ gets replaced by $\sim r^{3 / 4}$

Birse (2006)

- Two NN contact interactions needed to renormalize $\mathrm{V}^{(3)}$ in attractive triplet P waves

Shallow poles: why the ${ }^{1} S_{0}$ is special

- Let's talk about the ${ }^{1} \mathrm{~S}_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be $\mathrm{O}\left(\mathrm{P}^{-1}\right)$, stronger than indicated by NDA
- $\left|\psi^{(0)}\right\rangle \sim 1 / r$ at short distances \Rightarrow matrix elements very divergent

> Birse (2009, 2010), Pavon Valderrama (2010), Long \& Yang (2011)

- $\mathrm{C}_{2} \mathrm{p}^{2}, \mathrm{C}_{4} \mathrm{p}^{4}$, etc. enhanced by two orders c.f. NDA
- Since deuteron is also fine-tuned there is a similar (but not the same!) enhancement of contact interactions in the 3S1 channel

Summary of results I

ORDER	INCLUDED
P^{-1}	$\mathrm{C}^{150}, \mathrm{C}^{3 S 1}, 1 \pi$ exchange
$\mathrm{P}^{-1 / 2}$	$\mathrm{C}^{3 \mathrm{PO}}, \mathrm{C}^{3 P 2}$
P^{0}	$\mathrm{C}_{2}{ }^{150}$
$\mathrm{P}^{1 / 2}$	$\mathrm{C}_{2}{ }^{3 S 1}$
$\mathrm{P}^{3 / 2}$	$\mathrm{C}_{2}{ }^{3 \mathrm{PO}}, \mathrm{C}_{2}{ }^{3 \mathrm{P} 2}$
P^{2}	Renormalized leading 2π exchange, $\mathrm{C}^{1 \mathrm{P}^{1}}, \mathrm{C}^{3 P 1}, \mathrm{C}_{4}{ }^{1 S 0}, \mathrm{C}^{\varepsilon 1}$
$\mathrm{P}^{5 / 2}$	$\mathrm{C}_{4}{ }^{3 S 1}$
P^{3}	Renormalized sub-leading 2π exchange

