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Deriving Nuclear Forces from QCD

The nuclear force is the fundamental problem of nuclear physics.

• There are excellent descriptions, but phenomenological.

• As theoreticians we don’t want to describe nuclear forces. We
want to understand them!

That is, we want to derive nuclear forces from QCD.

What are the alternatives?
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Deriving Nuclear Forces from QCD

Plan A: Lattice QCD, which will eventually do the job

It will bridge the gap between nuclear physics and QCD, but I’m not so
sure that it will help us to understand the relationship.
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Deriving Nuclear Forces from QCD

Plan B: Low energy EFT of nuclear forces

• Includes low energy degrees of freedom (pion, nucleon) and
symmetries (yet χSB is not only QCD, but EW SB too).

• Write all interactions compatible with this.

• Important: Renormalizability
• Orders all interactions from more to less important.
• Bridges the gap between nuclear physics and QCD.

Works well in the zero- and one-nucleon sector, but once we have two
nucleon, there are problems: fine-tuning, non-perturbative physics,
singular interactions, and so on.

We didn’t know how to renormalize! But don’t panic, help is at hand!
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The Construction of Nuclear EFT (I)

Weinberg: nucleons are heavy and we can define a NR potential,
which is perturbative by the way (and thus renormalizable)

• In EFT we have a separation of scales

|~q| ∼ p ∼ mπ ∼
︸ ︷︷ ︸

the known physics

Q ≪ M ∼ mρ ∼ MN ∼ 4πfπ
︸ ︷︷ ︸

the unknown physics

• And we want to express the scattering amplitude as

T =

νmax∑

ν=νmin

T (ν) +O
(

Q

M

)νmax+1

but we can only do that if we know how to renormalize.
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The Construction of Nuclear EFT (II)

• Yet we can express the potential as

V =

νmax∑

ν=νmin

V (ν) +O
(

Q

M

)νmax+1

or, in terms of Feynman diagrams, as

. . .

• Here’s the idea: let’s iterate the potential, as usual

T = V + V G0T

and cross fingers, so T =
∑νmax

ν=νmin
T (ν) +O

(
Q
M

)νmax+1

happens!

Weinberg (90); Ray, Ordoñez, van Kolck (93,94); etc.

Nuclear EFT – p. 5



The Two Sides of Power Counting

What can go wrong? Well, power counting works in two directions:
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and at short enough distances it works the wrong way!
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Scattering Observables (I)

What about scattering amplitudes? What can go wrong?

• We plug the potential into the Lippmann-Schwinger equation

T = V + V G0 T

• The loops are probing the short range structure of the potential
and power counting in T :

is far from trivial, unless renormalization is done the right way.
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Scattering Observables (II)

What can fail in the power counting of the scattering amplitude?

We are iterating the full potential. Subleading interactions may
dominate the calculations if:

• We are using a too hard cut-off, Λ ≥ Λ0.

• We are not including enough contact range operators to
guarantee the preservation of power counting in T .

In either case we can end up with something in the line of:

that is, an anti-counting. Lepage (98); Epelbaum and Gegelia (09). This could be

happening to the N3LO potentials!
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Scattering Observables (III)

Let’s start all over again, but now we will be careful.

There is a fool proof way of respecting power counting in T:

• We begin with T = V + V G0 T

• But now, we re-expand it according to counting, that is, we treat
the subleading pieces of V as a perturbation.

T (0) = V (0) + V (0) G0 T
(0) ,

T (2) = (1 + T (0) G0)V
(2) (G0 T

(2) + 1) , etc.

• Perturbations are small, so we expect power counting to hold.

And now we can give a general recipe for constructing a power
counting for nuclear EFT...
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Constructing a Power Counting

The Power Counting Algorithm (simplified version):

• Choose a minimal set of diagrams (the lowest order potential):
this is the only piece of the potential we iterate!

• Higher order diagrams enter as perturbations

• At each step check for cut-off independence

• If not, include new counterterms to properly the results.
• Once cut-off independence is achieved, we are finaly done!

(Well, actually not. There are additional subtleties I didn’t mention.)
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The Leading Order EFT

• What to iterate? Two (a posteriori obvious) candidates:

• Plus amendments to naive power counting in attractive triplets:
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Kaplan, Savage, Wise (98); van Kolck (98); Gegelia (98); Birse et al. (98); Nogga,

Timmermans, van Kolck (06); Valderrama, Arriola (06); Birse (06)
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The Subleading Order EFT

• TPE enters in the picture as a perturbation

• Plus new amendments to naive power counting:
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though not everone agrees on the fine print!

Birse (06); Valderrama (11); Long, Yang (11).
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Nuclear EFT: Power Counting

Partial wave LO NLO N2LO N3LO

1S0 1 3 3 4

3S1 − 3D1 1 6 6 6

1P1 0 1 1 2

3P0 1 2 2 2

3P1 0 1 1 2

3P2 − 3F2 1 6 6 6

1D2 0 0 0 1

3D2 1 2 2 2

3D3 − 3G3 0 0 0 1

All 5 21 21 27

Weinberg 2 9 9 24

i) dependent on counterterm representation; ii) there are variations and fugues over this

theme; iii) equivalent to Birse’s RGA of 2006 and Long, Yang 2011 modulo i) and ii).
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Nuclear EFT: Phase Shifts

S, P and D-Waves

The following values have been taken:

fπ = 92.4MeV, mπ = 138.04MeV, d18 = −0.97GeV2

c1 = −0.81GeV−1, c3 = −3.4GeV−1, c4 = 3.4GeV−1

1/MN corrections included at N2LO

Comparison with N2LO Weinberg results of Epelbaum and Meißner.
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Nuclear EFT: S-Wave Phase Shifts
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Nuclear EFT: P-Wave Phase Shifts
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Nuclear EFT: D-Wave Phase Shifts
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Nuclear EFT: Remarks

• S-waves are in general well-reproduced up to k ∼ 350− 400MeV.

• P-waves seem to fail earlier (at k ∼ 300MeV).

• There is a defined convergence pattern.
• Results are very sensitive to the value of c3 and c4.
• The apparent convergence is worse than the real one due to

the previous detail. Solved by inclusion of Delta isobar.

• Resulting power counting very similar to Birse’s 06.
(but a bit different from Long and Yang 11)

• I use the cut-off window rc = 0.6− 0.9 fm.
• Except for the 1S0, smaller cut-offs are equally good.
• Higher cut-offs are also good, especially in the P-waves.
• Yet, there is no reason to go below rc < 0.7− 0.8 fm.
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Convergence

The Convergence of Nuclear EFT

• Which is the hard scale?
• Deconstruction
• New Physics
• Analyticity
• Running

• Is there a preferred cut-off window?
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The Expansion Parameter

We know that the EFT expansion of the amplitude takes the form

T =

ν=νmax∑

ν=−1

T (ν) +O
(

Q

M

)νmax+1

which is merely a power series in the expansion parameter Q
M , so...

What is the value of M in nuclear EFT?

This interesting question requires thinking out of the box.

We are going to look for signs of physics beyond nuclear EFT!

But first let’s see an interesting approach due to Birse

Nuclear EFT – p. 20



Deconstruction

Deconstruction is merely obtaining the short range potential

• We begin with experimental phase shifts

• We remove the long range pion effects according to the counting

What is left is a short range potential (a sort of modified effective range
expansion) that is amenable to a power series expansion

KS(p) = v0 + v1

( p

M

)2

+ v2

( p

M

)4

+ . . .

In the uncoupled channels, we roughly obtain the following

• Singlets: Ms ≃ 270MeV

• Triplets: Mt ≃ 340MeV

and a expansion parameter of around 1/2.
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What if we didn’t know about QCD?

Let’s try a mental experiment:

What if we have discovered nuclear EFT before QCD?

With no high-energy nucleon-nucleon data, how would be find out the
scale at which new physics appears?

Plan A: we look for the equivalent of gµ − 2 in nuclear physics.

Plan B: we begin by assuming that nuclear EFT is valid at any scale
and try to find something that does not add up at a certain scale.
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Looking for new physics beyond the pion (I)

A: We solve the deuteron with one pion exchange and a cut-off

• For Λ ∼ 800MeV a new bound state appears! But we now it does
not exists. Otherwise the deuteron will decay.

• Therefore M ≤ 800MeV

New physics: there is the two pion exchange potential!

B: We solve the deuteron with one and two pion exchange and a cut-off

• The unphysical states appear now at Λ ∼ 450MeV

• More stringent bound for new physics M ≤ 450MeV

More new physics: three pion exchange? anything beyond pions?

Just a reversal of why we ignore the deeply bound states.
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Looking for new physics beyond the pion (II)

Finally, there’s even a more stringent bound:

C: We include partial infinite series of diagrams in the potential

• Epelbaum resummed a class of diagrams containing c3

• For rc ∼ 0.6− 0.9 fm the nucleon-nucleon potential diverges

• Either M ≤ 350− 500MeV or towers of deeply bound states.

At this point the bounds have not changeg much: we’re reaching M .

And the expansion parameter is:

Q

M
∼ 1

3
− 1

2

Nothing we really didn’t know since the Fleming, Mehen, Stuart paper,
even though we pretended not to!
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Numerical Factors and the Hard Scale (I)

M ∼ 400MeV is disappointingly low, have we done something wrong?

We forgot about nasty numerical factors!

Assume there is a new meson at the scale M : up to which momenta
can we mimic this meson with contact range interactions?

〈ΨEFT|VC |ΨEFT〉 ∼ 〈Ψ|VS |Ψ〉

with VC the EFT contact range interaction, and VS the actual short
range potential (featuring heavy meson M ).

And now we recover a very old argument about analyticity...
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Numerical Factors and the Hard Scale (II)

• The matrix elements of the EFT’s contact are a Taylor expansion

〈ΨEFT|VC |ΨEFT〉 = C0 + C2 k
2 + C4 k

4 + . . .

• But the true matrix elements of the short range potential develop
a branch cut at k = ±iM/2:

〈Ψ|VS |Ψ〉 ∼
∫ ∞

dr rm e2ikr e−Mr ∼
∑

n

c2n

[
k

(M/2)

]2n

,

• Thus, the actual expansion of the two-nucleon scattering matrix is

T =

ν=νmax∑

ν=−1

T (ν) +O
(

Q

M/2

)νmax+1

we forgot a factor of 2! By the way, the true breakdown scale M is
now of the order of the ρ meson mass or the nucleon mass MN .
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Numerical Factors and the Hard Scale (III)

• We can apply the same argument to deuteron EM reactions

〈ΨEFT|Jµ
C(q)|ΨEFT〉 ∼ 〈Ψ|Jµ

S (q)|Ψ〉
• In which case we have an extended range of applicabilty

〈Ψ|Jµ
S (q)|Ψ〉 ∼

∫ ∞

dr rm ei
q

2
r e−Mr e−2γr ∼

∑

n

c2n

[ q

2M

]2n

,

• And the actual expansion of form factors is

G(q) =

ν=νmax∑

ν=−1

G(ν)(q) +O
(

Q

2M

)νmax+1

So they should work well above 1GeV!!
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The Rho and Sigma mesons

Actually, all the previous boils down to

• In the singlet, we have the σ meson

• In the triplet, we have the ρ meson

and this mesons cannot be reproduced within ChPT.

At the end, nuclear EFT in the two-body sector is merely a modified
effective range expansion, which is valid up to

• k < mσ/2 in the singlet

• k < mρ/2 in the triplet

almost the same values as with the previous arguments!

Apart, we obtain again the factor of 2...
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Counterterms and the Hard Scale (I)

There is another path to connect M
2 with the deeply bound states.

We begin with the counterintuitive idea that Λ is a soft scale: Λ ∈ Q

Why Λ ∈ Q? Well, a consistency argument:

• Power counting is a property of the rescaling Q → λQ:

A(ν) ∼ Qν ⇐⇒ A(ν)(λQ) = λνAν(Q)

• Rescaling is analogous (and equivalent) to what is done in RGA.

• Each choice of Q leads to a different power counting, for instance:
• Q = {p} is the pionless trivial fixed point
• Q = {p, 1

a} is the pionless non-trivial fixed point
• Q = {p,mπ,

1
as
, 1
at
} is Kaplan, Savage and Wise

• Q = {p,mπ,
1
as
,ΛNN} is Nogga, Timermanns, van Kolck
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Counterterms and the Hard Scale (I)

There is another path to connect M
2 with the deeply bound states.

We begin with the counterintuitive idea that Λ is a soft scale: Λ ∈ Q

Why Λ ∈ Q? Well, a consistency argument:

• Now we consider the unregularized loop integral

I0(λk) =

∫
d3~q

(2π)3
2µ

(λk)2 − q2
= λ

∫
d3~q

(2π)3
2µ

k2 − q2
= λ I0(k)

• And now we regularize it. What happens with Λ?

• If Λ ∈ Q, we have I0(λk, λΛ) = λI0(k,Λ)

• If Λ /∈ Q, we generate a spurious order Q0 piece in I0

Its order is lower than that of I0! (OK, it’s non-observable)
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Counterterms and the Hard Scale (II)

The same as identifying power counting by the anomalous dimension:

C(Λ) ∼ Λν
⇒ C ∼ Qν

What’s next? We consider the running of the C0(rc) counterterm

C0(rc) =

∞
∑

ν=0

(

Q

M

)ν

Ĉ
(ν)
0 (rc)

No energy dependence: Q/M can only be either mπ/M , 1/Ma0 or
1/Mrc. For small rc only 1/Mrc is important

C0(rc) =

∞
∑

n=0

[

πnC̃
(n)
0

(Mrc)n
+O(

mπ

M
, . . .)

]

A divergence in C0(rc) means that the power series in 1/Mrc diverges

lim
rc→Rdb

C0(rc) → ∞ =⇒ lim
rc→Rdb

∞
∑

n=0

πnC̃
(n)
0

(Mrc)n
→ ∞
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Counterterms and the Hard Scale (III)

Calculus 101:
∑

n anz
n (with an ∼ 1) only converges for |z| < 1.

Meaning that at the cut-off at which the deeply bound state appears

M Rdb = π

yielding M ≃ 600− 800MeV (Rdb ≃ 0.7− 0.8 fm).
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The Soft Side of the Cut-off

The softest value of the cut-off is related to the maximum external
momentum that we expect to describe within EFT (kmax ∝ Λ).

In r-space with delta-shells, the softest cut-off is given by:

rc ≤
π

kmax
=

2π

M
∼ 1.4 fm

• The phase shifts can be described up to kmax.

• If we want to get the most from nuclear EFT, we set kmax = M
2 .

• A softer cut-off will simply reduce kmax.

In momentum space (sharp cut-off), the condition is more stringent:

kmax ≤ Λ ⇒ Λ ≥ M

2
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The Hard Side of the Cut-off

It is not really necessary to explore in the loops the short range regions
where the EFT is no longer applicable.

Well, only one reason to: check for missing short range physics.

In fact, there may be serious issues with hard cut-offs. For example:

Ck(rc) =
∑

n

C2n(rc)k
2n

does not converge well for a delta-shell near rc = Rdb.

In r-space with delta-shells, there is an ideal cut-off window:

0.7 fm ∼ π

M
= Rdb ≤ rc ≤

π

kmax
=

2π

M
∼ 1.4 fm

Analogously, in momentum space we would guess M
2 ≤ Λ ≤ M

2 !
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Power Counting

Power Counting in Nuclear EFT

We will review what we do not understand about power counting.
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Comparing Power Countings: Pions

Author LY V B

Order - - -

Q−1 OPE OPE OPE

Q1 TPE-l − −

Q2 TPE-sl TPE-l TPE-l

Q3 TPE-ssl TPE-sl TPE-sl
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Comparing Power Countings: S-waves

Author LY LY V V B B

Order 1S0
3S1 − 3D1

1S0
3S1 − 3D1

1S0
3S1 − 3D1

Q−1 C0 CS
0 C0 CS

0 C0 CS
0 , CE

0 , CD
0

Q−1/2 − − − CE
0 , CD

0 − −

Q0 C2 − C2 − C2 −

Q1/2 − − − − − CS
2 , CE

2 , CD
2

Q1 C4 CS
2 , CE

0 − − − −

Q3/2 − − − − − −

Q2 C6 − C4 CS
2 , CE

2 , CD
2 C4 −

Q5/2 − − − − − CS
2 , CE

2 , CD
2

Q3 C8 CS
4 , CE

2 , CD
0 − − − −
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Comparing Power Countings: P-waves (I)

Author LY LY LY V V V B B B

Order 1P1
3P0

3P1
1P1

3P0
3P1

1P1
3P0

3P1

Q−1 − C0 − − C0 − − − −

Q−1/2 − − − − − − − C0 C0

Q0 − − − − − − − − −

Q1/2 − − − − − − − − −

Q1 C0 C2 C0 − − − − − −

Q3/2 − − − − − − − C2 C2

Q2 − − − C0 C2 C0 C0 − −

Q5/2 − − − − − − − − −

Q3 C2 C4 C2 − − − − − −
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Comparing Power Countings: P-waves (II)

Author LY V B

Order 3P2 − 3F2
3P2 − 3F2

3P2 − 3F2

Q−1 CP
0 CP

0 −

Q−1/2 − CE
0 , CF

0 CP
0 , CE

0 , CF
0

Q0 − − −

Q1/2 − − −

Q1 CP
2 , CE

0 − −

Q3/2 − − CP
2 , CE

2 , CF
2

Q2 − CP
2 , CE

2 , CF
2 −

Q5/2 − − −

Q3 CP
4 , CE

2 , CF
0 − −
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Power Counting Discrepancies

There are still aspects of power counting that we do not understand:

• Attractive and Repulsive Triplets
• Is there really a stable and unstable fixed point?
• How do we make sense of C0 ∼ Q−1/2?
• How on earth can the power counting of attractive and

repulsive triplets be identical? What’s missing here?

• The Coupled Channels
• How many counterterms are there in the 3S1 − 3D1 channel?

• The Singlet 1S0 channel
• Is C2n ∼ Qn−1 as in KSW or Q2n−2 as dictated by RGA?
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Attractive Triplets (I)

Starting point: if OPE is taken to be non-perturbative, we need a
counterterm in the attractive triplets to renormalize.

Conclusion: if OPE is Q−1, then C0 is necessarily Q−1 too!

Then why is C0 ∼ Q−1/2 in Birse’s RGA?

• RGA takes as input the low energy scales (i.e. what to iterate) and
gives us as output the counting of the short range physics.

Q ⇒ V (−1) ⇒ VS =
∑

ν

V
(ν)
S

(
Q

M

)ν

• Note that V (−1) contains whatever is implicitly implied by Q

• Note that VS is implicitly assumed to be a perturbation
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Attractive Triplets (II)

Then, we must notice the following:

• V (−1) is not only OPE, but also an implicit counterterm.

• The LO wave function contains a semiclassical phase ϕ,
which in turn is set by the LO contact.

• C0 ∼ Q−1/2 relates to the biggest perturbative correction to C
(−1)
0

• That is, the RGA fixed point is always stable because the
scattering length is always “fine-tuned”:

aT (Q) =
2

ΛT
trig(ϕ) + . . .

Perturbing the fixed point only changes ϕ to ϕ′, but we do not
move away to a different FP because there is no other FP.

• Corolary: there is no unstable FP in attractive triplets!
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Repulsive Triplets (I)

• There is a regular and irregular solution in repulsive triplets:

• The regular solution gives rise to a stable FP
• The irregular solution gives rise to an unstable FP

• C0 ∼ Q−1/2 indicates that the stable FP is indeed stable.

• But there is something fishy: if I compute the RGA
eigenvalues of the unstable FP I obtain again C0 ∼ Q−1/2.

Why is that so? Let’s go to the basics:

〈ΨL(k)|VS |ΨL(k)〉 =
[
C0 + C2 k

2 + C4 k
4 + . . .

]

by looking at the scaling of C0, C2, etc. we can deduce the counting.
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Repulsive Triplets (II)

Let’s take a close look at the matrix elements of VS :

〈ΨL(k)|VS |ΨL(k)〉 =
1

k2

∫

druL(r)VS(r)uL(r)

If we have VS(r) = µS fs(Mr) and uL(r) ∼ (Qr)n

〈ΨL(k)|VS |ΨL(k)〉 ∼
µS

M3

(
Q

M

)2n−2

IS(2n)

Matching with C0, we see that C0 ∼ Q2n−2. Examples:

• S-wave regular solution: uL ∼ kr ⇒ C0 ∼ Q0

• S-wave irregular solution: uL ∼ 1 ⇒ C0 ∼ Q−2

• L-wave regular solution: uL ∼ (kr)L ⇒ C0 ∼ Q2L

For the C2n we merely power expand uL: C2n ∼ O(C0)×Q2n.
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Repulsive Triplets (III)

In case we begin with a 1/r3 potential, we have

uL ∼ (ΛTr)
3/4 f(

1√
ΛTr

)

where the function f(x) is given by

• Attractive triplet: f(x) = sin (x+ ϕ)

• Repulsive triplet: f(x) = e−x

In a first approximation f(x) is inessential for power counting:
we obtain the standard C0 = Q−1/2.

But on second though, the repulsive integral is suppressed with
respect to the attractive

〈ΨR
L(k)|VS |ΨR

L(k)〉 ∼ e
−2

√

M
ΛT 〈ΨA

L(k)|VS |ΨA
L(k)〉
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Repulsive Triplets (IV)

In repulsive triplets, short range physics are suppressed by e
−2

√

M
ΛT .

Then, we have the curious scaling C0 ∼ e−1/
√
Q Q−1/2,

at least for very large separation of scales.

However, in the real world we never actually reach the r3/4 wave
function behaviour of the 1/r3 potential for r > π/(2M),
not even in the attractive triplets!

Thus, the suppression will be much much less than e
−2

√

M
ΛT !!
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Repulsive Triplets (V)

Apart from the previous, OPE is perturbative in repulsive triplets:
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though not the best comparison: left panel has non-perturbative OPE,
but uses NDA as counting.
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Coupled Channels (I)

We have a discrepancy in the power counting of 3S1 − 3D1:

• Valderrama: 6 counterterms (as in R=A)

• Long, Yang: 3 counterterms (as in NDA)

The discrepancy can be solved easily by noting that R6=A:

• 3S1 − 3D1 contains R and A eigenchannel (three matrix elements)

• If R=A, at Q2 we have two counterterms in AA, AR, RR

• But if R 6=A, we can shift the counting in AR and RR
• Valderrama: set the shift to Q0

• Long, Yang: set the shift to Q2
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1 − 3D1,
but we need 10-20 GeV to obtain decent results.
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1 − 3D1,
but we need around 10 GeV to obtain decent results.
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1− 3D1 (10GeV).

• 3 counterterms is much better regarding Λ dependence,
begins to look good at 1GeV
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1− 3D1 (10GeV).

• 3 counterterms is much better regarding Λ dependence,
begins to look good at 1GeV
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1− 3D1 (10GeV).

• 3 counterterms is much better regarding Λ dependence (1GeV)

• 8 counterterms sort of do the job below 1GeV, but funny NLO
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1− 3D1 (10GeV).

• 3 counterterms is much better regarding Λ dependence (1GeV)

• 8 counterterms sort of do the job below 1GeV, but funny NLO
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Coupled Channels (II)

But there’s a different argument involving the description of 3S1 − 3D1:
power counting should reproduce the data for Λ ∼ M/2 ∼ 500MeV.

Let’s see different options in momentum space:

• 2 counterterms is the minimum to renormalize 3S1− 3D1 (10GeV).

• 3 counterterms is much better regarding Λ dependence (1GeV)

• 8 counterterms sort of do the job below 1GeV, but funny NLO

Part of the NLO failure is having too many counterterms,
generating an exagerated energy dependence above
k ∼ 300MeV.

Sorry, no definitive conclusion! But feel that in between 3 and 8 will do.
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The Singlet Channel

The idea that C2n ∼ Qn−1 comes from the observation that this scaling
removes all the µ dependence when we use PDS!

But this is regulator dependent thinking. Had I used the delta-shell

VC(r; rc) =
δ(r − rc)

4πr2c

(
C0 + C2k

2 + . . .
)

the conclusion would have been C2n ∼ Q−1!!! The more elaborate

VC(r; rc) =
δ(r − rc)

4π

(
k

sin krc

)2
(
C0 + C2k

2 + . . .
)

leads to C2n ∼ Q0!!! Just accept residual cut-off dependence as a fact
of life and you recover the more sensible C2n ∼ Q2n−2.
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External Probes and Power Counting

The previous ideas can be directly extended to deuteron reactions, in
which case renormalizability controls the counting of counterterms:

= +

+

+

+

+ + . . .
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Conclusions

• Things we understand well
• We know how to construct a systematic nuclear EFT
• We have a fair idea of what’s the expansion parameter

• Things we don’t understand so well
• The role of the cut-off will continue to be polemic

• Epelbaum’s ideas are natural and can be justified in formal
power counting: no removal required!

• There are discrepancies in power counting

• Power counting in nuclear EFT is not uniquely defined:
we must accept a certain degree of uncertainty.

• Attempts to pinpoint it too much might not be the best idea
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