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L Nucleon-nucleon interactions

Introduction

NN interaction is important for nuclear structure, nuclear
reactions, nuclear matter, neutron star, nucleosynthesis, etc ...

Application of Chiral Perturbation Theory (ChPT) to NN
S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3; PLB 295
(1992) 114.

Weinberg's counting: Calculate the two-nucleon irreducible
graphs in ChPT (the NN potential V) and then solve the
Lippmann-Schwinger (LS) equation

Tun(p',p) = VNN(p,ap)+/dPHVNN(P,7P”) Tun(p”, p)

m
p2 _ p//2 + I'E

C. Ordéfiez, L. Ray and U. van Kolck, PRL 72 (1994) 1982; PRC
53 (1996) 2086.
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L Nucleon-nucleon interactions

In 1935 H. Yukawa introduced the pion as the carrier of the strong
nuclear force

The pion mass was inferred from the range of strong nuclear forces

This was estimated from the radius of the atomic nucleus
Relativistic-Quantum-Mechanical argument

Thanks to ChPT we can calculate TPE and its role in NN
scattering is also well established N. Kaiser, R. Brockmann and
W. Weise, Nucl. Phys. A 625 (1997) 758.
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- Nucleon-nucleon interactions

Heisenberg uncertainty principle: AtAE > h

Relativity: Velocity of light is the Maximum velocity ¢

AtAE = A?EAE > B

_ he

AE = —
AV

Al~2fm (1fm=10"15m)

hc
my ~ m ~ 100 MeV

m; = 138 MeV
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- Nucleon-nucleon interactions

e A typical three-momentum cut-off A ~ 600 MeV (fine tuned to
data) is used in order to regularize the Lippmann-Schwinger
equation because chiral potentials are singular.

E.g. The tensor part of One-Pion Exchange (OPE) diverges as
1/r3 forr—0

e NN scattering is nonperturbative: Presence of bound states
(deuteron) in 3S; and anti-bound state in 1Sp.
Spectroscopic notation 25t1[

: [ d*a(a® + i) e i)+ m2) 2 P(a)
P+gq P—q
Infrared enhancement

1/la] — 1/|a| x m/|q].
’ 1/¢° = 1/[¢° — a®/(2m)],
p P non-relativistic nucleon propagator
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- Nucleon-nucleon interactions

Extreme non-relativistic propagator (or Heavy-Baryon propagator)
1
q° + ie
Non-relativistic propagator
1
P — L 4je

2m

"Pinch” singularity
The integration contour cannot
—le be deformed
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- Nucleon-nucleon interactions
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L Nucleon-nucleon interactions

e Vv is calculated up to next-to-next-to-next-to-leading order
(N3LO) and applied with great phenomenological success

Entem and Machleidt, PLB 254 (2002) 93; PRC 66 (2002) 014002; PRC 68 (2003) 041001

Epelbaum, Glockle, MeiBner, NPA 637 (1998) 107; 671 (2000) 195; 747 (2005) 362

e On the cut-off dependence

Chiral counterterms introduced in Vi following naive chiral power
counting are not enough to reabsorb the dependence on cut-off
when solving the LS equation

Nogga, Timmermans and van Kolck, PRC 72 (2005) 054006

Pavén Valderrama and Arriola, PRC 72 (2005) 054002; 74 (2006) 054001; 74 (2006) 064004

Kaplan, Savage, Wise NPB 478 (1996) 629

Birse, PRC 74 (2006) 014003 C.-J. Yang, Elster and Phillips, PRC 80 (2009) 034002; idem 044002

> In Nogga et al. one counterterm is promoted from higher to
lower orders in 3Py, 3P, and 3D, and then stable results for

A < 4 GeV are obtained.

>> Higher order contributions could be treated perturbatively

Pavén Valderrama, PRC 83 (2011) 024003; 84 (2011) 064002
B. Long, C.-J. Yang, PRC 84 (2011) 057001; 85 (2011) 034002; 86 (2012) 024001
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L N/D method

N/D Method

Chew and Mandelstam, Phys. Rev. 119 (1960) 467

A NN partial wave amplitude has two type of cuts:
Unitarity or Right Hand Cut (RHC)

3T = n;lpl Tt |, p2>0
Left Hand Cut (LHC)
p/
1
,,,,, g (p—p)?+m2
2 2 2 2
___x _ 4
P 1 — cos@ p” €] — 00, —mz /4]
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L N/D method

Cr
R — >
RHC
e—0 -
Nys(A
Tus(A) = Nyes(A) N,¢s(A) has Only LHC

- Dus(A) D jis(A) has Only RHC
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L N/D method

e In connection with ChPT this dispersive method was recently
applied to NN scattering in

M. Albaladejo and J.A. Oller, PRC 84 (2011) 054009; 86 (2011) 034005

employing OPE

e An alike N/D method was later used in

A. M. Gasparyan, M. F. M. Lutz and E. Epelbaum, arXiv:1212.3057

Once-iterated OPE and irreducible TPE are considered

They make reasonable assumptions but

o LHC integrals of infinity extension are truncated
This is why there are insensitive to the divergent behavior of A(A)
from TPE when A — —c0

@ Analytical properties are lost

o Particular way to parameterize local terms
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LUncoupled waves: Formalism

Uncoupled Partial Waves

Tyes(A) = Nyis(A)/Dyes(A)
mvVA

%D_/gs(A) = _NJ/S(A)? s A>0
SN ys(A) = Dyes(A)STus(A), A< —m2/4
A=lpf
E.g. taking one subtraction in D(A) and N(A)
Dyes(2) _~_.Dyes(A) — Dyes(D)
7{de(z—A)(z—D)_2m A—D

/ o DJes g%+ i€) — Dys(q® — ie)]
— A+ ie)(g? — D+ ie)

Schwartz’s reflection principle:
If f(z) is real along an interval of the real axis and is analytic then:

f(z*)="~(2)*



NN scattering from the dispersive N/D method including two-pion exchange

L Uncoupled waves: Formalism

Dyes(q® + i€) — Dys(q? — i€) = 2iSD(g> + ie)

‘COUPLED SYSTEM OF LINEAR INTEGRAL EQUATIONS‘

A—D [ NJ/’S(qz)
Dys(A)=1-—"—"[ dqg°
ss(4) = )
A—D/L deAst(k2)Dst(k2)

Nyes(A) = Nygs(D) + - (k2 — A)(k2 — D)

m2

L=—-—-T=
4
= mVA/4r , A>0

A(A) =STus(A), A<L
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L Uncoupled waves: Formalism

A [t A gs(K?)Dyes(k?)
Des(A) =1 — ANys(0)g(A, 0) + W/ dk? 2

oo

g(A, k%)

2 1 [T, p(q%)
g(A k%) = 77/0 dq (g2 — A)(q2 — K2

Convergent, p(A) x VA

CHANGE OF VARIABLE:

L
A=—, x€[1,0]
X
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L Uncoupled waves: Formalism

Fredholm Integral Equation of the Second Kind

Dyis(x) = fres(x / dyK(x,y)D(y)

K(xy) = -8 )

T XYy

@ Not L,

@ Not symmetric
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L Uncoupled waves: Formalism

We discretize the equation:

K(x,y) =ks (Gr<x<i =lay<s) _
f(X) :ﬁ (r;n]_<X§%) (r’ 5—1,2, 7rl)
¢(x) =or (FF <x<71)

We indeed make use of more efficient numerical methods to
calculate integrals !
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LUncoupled waves: Formalism

High-Energy behavior

o Let [D(A)] < A" for A— oo
N(A) = T(A)D(A)
~S(A) -1
TA =50
N(A) < An71/2
We divide N(A) and D(A) by (A— C)™ with m > n

D(A)
Am
L<C<Q0

— 0, when A — 0
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L Uncoupled waves: Formalism

d(4) = (AD—(AC))'”
N
A=

Unsubtracted dispersion relation (DR)

R 1> 5p(q®)n(q?)
_; A— C _7T/0 dq” g — A

= Vi 1 b A(K?)d(k?

n(A):Z(A oy +/Oodk2(k2)_(A)
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LUncoupled waves: Formalism

In terms of the original functions D(A) and N(A)

mei  (A=C)" /“dqz p(¢°)N(q*)
(q?

D(A):Zéi(A*C) = —A)(q2—C)’"

R N S A riror

m =1 1S THE MINIMUM
Once-subtracted DR for N(A) and D(A)

@ C could be taken different in D(A) and N(A)
s N(A): C=0
@ D(A): One subtraction at C = 0 and the rest at C ~ —m?

T
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L Uncoupled waves: Formalism

In our study A(A) is given by _7’ the discontinuity across the LHC:
o OPE
o Leading TPE (irreducible)
@ Once-iterated OPE

Kaiser, Brockmann and Weise, NPA625(1997)758

,,,,,,, § % :

lim A(A) > A

A—o0

A(A) is finite

For once-subtracted DR:
@ D(A) should decrease 1/A% , a > 0, for A — oo

o N(A) should decrease as 1/A"2 for A — oo
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LUncoupled waves: Formalism

Threshold Behavior: ¢ > 2

A partial wave amplitude must vanish at least like A® for A — 0
This implies ¢ constraints on the subtractions

vi=0 (i=m m—=1, ... m+1—1Y)

mi A7 Y 2 AGRID()
Z”'A /_oo"k (k2 — A)(KD)

D(0) = 1
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LUncoupled waves: 150

Once-subtracted DR

D(A) =1 — Avig(A,0) / dk2w g(A k)

K2
Fixed in terms of scattering length: 11 = —4mas/m
Theory: a, fxd Correlation between as and rs
MressrBe
rs = 2.64 fm

3(sp)°

Exp: 2.75+ 0.05 fm
Nijmll: 2.670 fm Arriola,
Pavén, nucl-th/0407113

0 50 100 150 200 250 300
p(MeV)
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LUncoupled waves: 150

A/L dk2%g(;\, ) + D(A) = 1+ A" (A, 0)

D(A) = Do(A) + asD1(A) with Dg 1(A) independent of as

Low-energy theorem:

L o Ak D K2
rs:a0+a1+022, 2/ dk? 1( )\/?
as a: T or
ag = 2.44 fm s m A(
o= a4k [D K2)v/—k2 — Di(K?) }
a_1 = —4.61 fm? | LT on2 (k2 ol i
L
a_p = 5.26 fm? . o[ g A(k ) Do(K?)
212 J_ o (k?)?

Pavén Valderrama, Ruiz Arriola PRC74(2006)054001: solving a
Lippmann-Schwinger equation with Vjyy that includes OPE+TPE +
boundary conditions + orthogonality of wave functions
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LUncoupled waves: 150

Twice-subtracted DR: 2, and r, fixed— v» is fitted
D(A) = 1+A{m 1- %rsmw)+ —= [1+u1m7,g(o —m )]}
g(A, —m2) — g(A, 0)}

2

™

2 2
— A(A+ m) |:l/2g(A7 —m) — v p

A( k2 )D(K?) [ A+ m?

2 2 2 2 2 2 2 2

+2 / = (e [K2g(A, k) + m2 g(A, —m2)] — m2 g(k?, —m?)
2

70 T

Theory: ag, r, fixed
Theory! ag fixed
Nijmegen data ======+

50 |

3('s°

0 50 100 150 200 250 300
p(MeV)



NN scattering from the dispersive N/D method including two-pion exchange

LUncoupled waves: 150

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A+ m7r) 2A(k2)D k?) 2 7*p(q?)
/ dk / YR~ A — )+ m2)

D(k*) — 1
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LUncoupled waves: 150

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A(A+ m72'r) /L dk2A k2 / d 2 q2p(q2)
us —o0 = A)(g* — k*)(q? + m3)

The integral displays the dominant role played by the nearest region in

0 pr=—m
S
R
’ Once \eraled OPE ,,,,,,
- A SEE
o S5 T .
T
g 2
24 ¢
s o5
ES
sl
, |

p(MeV) )
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LUncoupled waves: 3P0

3py: Once-subtracted DR. NO FREE PARAMETERS
v1 = 0 because for a P-wave T(0) =0= N(0), D(0) =1

L > 2 L 2 2
D(A)=1— ;[ dk2%gm? k) N(A) = ?[ dk2i£?kzD_(:))

! T

Theory: No free parameters
Nijmegen data ======+

Theory: OPE =+

3CPo°
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LUncoupled waves: 3P0

Twice-subtracted DR

N(A) = AV2+—/ /8% vy = 4may

, ay = 0.89 m_3

2 2 2
D(A) = 1+ Aj; — A%1,ng(A,0) + A? /Oodk2A(k(k)§(k)g(A, K?)

70 T

T
Theory: OPE

Theory: No free parameters
Nijmegen data
Theory: ay fixed -~
60
50
01 is fitted
40 +

5(Po)°

] 61 =~ —0.30 M,

20 |-

10

! L L L L
0 50 100 150 200 250 300
p(MeV)
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LUncoupled waves: 3P0

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

AA+m2) (B AR [ a°p(q?)
p /_oo"k2 (k2)2/o G A — KO+ )

) 3
25 - B
T Once-iterated OPE ==+~
2 rreducible TPE -
) P
g i T
g or R
: £ 05 .
£ B
S N N
g 2r Y F—
osk
e
N
' 15F e
2 . . )
1 . . . . ! 10 9 8 7 3 E ” E , ;
0 50 100 150 200 250 300 o

p(MeV)
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L Discussion on LHC and chiral counting

Discussion on LHC and chiral counting

AA+m2) L S A(K) [oo 7*p(a?)
/7 dk / d A

w2 (k2)2 Jo (9% — k2)(g% + m2)

1) Low-energy enhancement in the integrand 1/(k?)?

2) From —m2 /4 to —m2 large OPE A(A)
OPE dominates the integral.
Typical value of derivative 1/A? — 16/m2 in an interval of
length 3/4m? relative change ~ 3 (quite steep function)

3) Rapid convergence pattern at low energies:
I >»2r>»3r>...>nm
(e—mwr > e—2mxr > e 3mxr > . ) r> m;l

4) A < —m2 Numeric enhancement of irreducible TPE
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L Discussion on LHC and chiral counting

o E.g. pp — pp: Irre- TPE has a factor 3 relative to VGV

Irreducible TPE

]./2
p

°

T

P P

5) This numerical enhancement makes VGV and Irre-TPE to
have similar size.

6) For a given nm-exchange: Higher order corrections would
share this numerical enhancement. Subleading in the chiral
counting — perturbative treatment.

7) Increasing n in multi-7 ladder: VGV --- VGV
Three-(n-)times iterated OPE gives rise to 3w(nm) cut for
A< —9m? /4 (A < —n?m2/4)— Further suppressed ~ size as
irreducible contributions because of numerical enhancement of
the latter.

8) We advocate for counting in A(A): each iteration GV as
O(p?) ~ extra loop in Irre-TPE
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LUncoupled waves: 3P1

3P; : Once-subtracted DR. No solution. It depends on the
integration numerical limit
Twice-Subtracted DR

4Wav _
vy = , ay = —0.54 m_3
m
0
st ]
0 Theory: OPE e i 01 is fitted
Theory: ay fixed
i? Nijmegen data ====--+
& o
as b 51 ~ 3.6 /W7r
20k
-25 L 1 1 1 L
0 50 100 150 200 250 300

p(MeV)
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LUncoupled waves: 3P1

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A(AJquzT) t 2A(k2) <2 qu(q2)
T / ok (k2>2/o WE =A@ — k)@ T m2)

—0o0

_ o5
£
£l
Al — i OPE —-e-
OPE ---- Once-terated OPE ~-----
nce-terated OPE ----- irreducible TPE —--rrr
25 ireducible TPE --v-rr 15t
)
al
25 |-
as
3 .
4 . . ; - - 10 9 8 7 6 5 4 3 2 1
0 50 100 150 200 250 300 Fmd

p(MeV)
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LUncoupled waves: lPl

1p;: Once-subtracted DR: Twice-Subtracted DR:
No free parameters ay = —0.94 m_3

0 T T T T T o T T T T
OPE Theary: OPE -
Theory: No free parameters Theary: o fee paramete
Nijmegen data V: a fixe

Numegen data =r=eser

5(Py°
a(Py°

L L
0 50 100 150 200 250 300 o 50 100 150 200 250 30
P(MeV) p(MeV)

They are the same!
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LUncoupled waves: lPl

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

—0o0

A(AJquzT) t 2A(k2) <2 qu(q2)
T / ok (k2>2/o WE =A@ — k)@ T m2)

APy

Al ——
PE - -~

ol
Once-iterated OPE ===+~
Ireducible TPE -+

0 50 100 150 200 250 300 Pm?)
p(MeV)
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LUncoupled waves: Higher partial waves £ > 2

A partial wave should vanish as A® in the limit A — 07 (threshold)

Method: /-TIMES SUBTRACTED DR \

A‘/ dsz k2 Dﬂs(k2)
- A)

J\im N(A) — A

—1+Z(5A'+—/ k2 2°)D(KT)

lim D(A) — 1+ O(A)

k2’ £(A )

A—0
Price to pay: ¢ — 1 free
parameters:

i N(A)_>Ag 0 (i=1,....0-1)

A—0 D(A) Tend to become irrelevant as /¢

increases
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LUncoupled waves: 1D2

1D,: Twice-subtracted DR

2 L 2 2
D(A) =1+ Ad + % /Oodk2A(k(k)2[))2(k)g(A, k?)

T
Theory: OPE
Theory: 8,=0.1
Theory: 8,=0.6 ——
Nijmegen data =====-

Results for §; < 0 are
. rejected.
of 1 Low-energy resonance.
’ Allowed Range: 0 < 6; < 0.6

3('Dy)°

0 50 100 150 200 250 300
E(MeV)
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LUncoupled waves: ng

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A2t AR [, p(q)
™ ) ) (k?)? /0 T (@ =A@ -

01 — 1 T T
Al —
o Once-iterated OPE -+----
Once-iterated OPE -~ ) coterated OPE -
Irreducible TPE «++++-+ i ol
008 R
006 1
05
004 b = |
£ a ]
ki
002 |
15 ]
0 A
oozl T | )
3 L L I . . . ) ) .
004 . I " - - - - . . . '
0 50 100 150 200 250 300 doh
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LUncoupled waves: 3D2

3D,: Twice-subtracted DR

2 L 2 2
D(A) =1+ Ad + % /Oodk2A(k(k)2[))2(k)g(A, k?)

@ 5y = —0.17 is fitted to data VA < 200 MeV

Theory: OPE «+r----
Theory: & fited
Nijmegen data =------

5(0,)°
-
]
i

.
0 50 100 150 200 250 300
E(MeV)
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LUncoupled waves: 3D2

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

L YN (5 I p(q?)
/,of’k (k2)? / ey ey

Al —— . g

b Once-iterated OPE -+----
Once-iterated OPE --- ; Irreducible TPE «++-v-+
0s ireducible TPE «++-v-+ e
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LUncoupled waves: 1F3

LF; : Three-times- subtracted DR

D(A) = 1+ Ad; + A%, + —/ dk2A((k))(k2) (A, k?)

® §; = —0.95, 5, = 0.38 is fitted to data VA < 200 MeV

05
N ]
\
ok ] .
\ Cuve with Once-Subtracted
at DR, m=1
= Similar Results
& oasp Theory: OPE «-rrres
Lh.fm";{,e?a%"gr-» F waves are perturbative
s heory: m=1
25
sl
a5 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

p(MeV)
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LUncoupled waves: 1F3

Quantifying contributions to A(A)

A typical integral from three-times-subtracted DR:

At AR [, p(q)
™ ) ) (k?)3 /0 T (@ =A@ -

01 a ;
OPE ——
OP! nce-iterated OPE ----+-
Once-iterated OP Irreducible TPE «+++vex
irreducible TP
4 2
o ° \j
02 2t ,
£
I
03 “4r
6|
04
8|
05
10 .
06 . : L . : 10 -9 8 7 6 5 4 3 2 1
o 50 100 150 200 250 300 Pm?)

E(MeV)
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LUncoupled waves: 3F3

3F; : Three-times- subtracted DR

oA E (K2 D(K?
D(A):1+A51+A202+? dkszg(A,W)

oo (k%)
@ 01 = 1%, 6o = 0.02* FIXED
Smaller &, gives rise to resonances. d; is left undetermined

05
Y 4
o5 4
ab 4
Eol Theory: OPE -+ 1
B Theory: 3, 5
Nijmegen data ==
Theory: m=1
2k
25 -
3l 4
35 . . . . .
0 50 100 150 200 250 300

p(MeV)
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LUncoupled waves: 3F3

Quantifying contributions to A(A)

A typical integral from three-times—subtracted DR:

At AR [, p(q)
™ ) ) (k?)3 /0 T (@ =A@ -

005 1
o [
O [rmrenvsesmterantseannsanans s e ane e e e LS SRS
-0.05
05
01
B
015
15
02 2L
025 25
3 1 .
03 . : L ; . 10 9 8 7 -6 5 4 3 2 1
0 50 100 150 200 250 300 )

p(MeV)
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LUncoupIed waves: Summary figure
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L Coupled waves

Coupled Waves

;plm
4

Sus =1+ T
Along the RHC A >0
Sus - Shs = Shs - Sus =1
cos 2¢ e/21 i sin 2¢ ef(91162) )
- j ; >
Sus <isin D¢ f(d1+02) cos 2¢ /202 ) , [pl*>0

€ is the mixing angle: i=1((=J-1),i=2({(=J+1)

1 % sin® 2¢ -1
Im Ti(A) —r(A) [1 + 1 — cos 2¢ cos 25,-] = —vi(A)
Im— Lt _ _2p(A)M = —u(A)

sin 2¢
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LCoupled waves

N;;(A
= i(A) . (i =11, 12, 22)

Alij Au(kz)Du( )
Nij(A) = N(0)dgz0 + — /_Oodkz(/@)u(WA)

= A(A - C)i- 2 VU q2)/\/u(q2)
_1+2A6— /d @A)
Zu'—l _
A(A - C)Z” ! 2 Di(K )Du(k2)
y /wdqz ij(qz)(qz)e”’1 ”
o (@ =A@~ )= )i

C # 0 to avoid infrared

lim va(A) x A=3/2 : I
divergences for jj = 22

A—0T
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LCoupled waves

One proceeds in a coupled-iterative way:
@ We take an input.
@ Solve the integral equations and get new v;;(A).

© Repeat the process until convergence is obtained.

Typically, C = —m?2




NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3P2 — 3F2

3P2 _3,_-2

@ 3P,: f11 =1 Two types of DR are included:

© Minimal: Once-subtracted DR

@ Twice-subtracted DR
47ra\/

vy = , ay = 0.0964 m3

o 3P, —3F,: ¢, =2 = Twice-subtracted DR
50 _ Dix(C) -1
! C

@ 3F,: 0o = 3 — Three-times subtracted DR

6(22) _ 2—2D22(C)—|— CDé2(C)
o C

1— Dy(C) + CDW(C) DJ,(C) 5 —1 and insensitive to
= C? D22(C) fixed to 1*

Results are very similar for

5&22)



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3P2 — 3F2

Phase shifts

From fit to data: Dy;(—m?2) ~ 0.1 ,

25
20 - Theory: ay fixed, Dyy(-mY=0.1 ——
Theory: Once subtracted DR - -
Theory: OPE
Nijmegen data ---
15 |
N
X
i
b-3
10 [
51
0




NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3P, — 3F2

14 0
o5 1
12
1
15t 1
s Theary: a fixed, D(my)=0.1 ——
Theory: Once subtractéd DR 2 Th fived, Dy, (mp)=0.1 7]
i cory: a fxed, Dy, (mp=01 ——
i e OFE - Theonynce itz o
Nu“ S 2sf Nimegen data -~
£ 3
sl ]
st
s
asf
02 . . . . . s , . . .

150 200 250 300 ) 50 100 150 200 250 300
EMev) E(vev)



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3P2 — 3F2

Quantifying contributions to A(A):

A2

w2

L
dk®

—oo

o megra

pvey)

opE -

wing)

A(K?)
(k2)?

oo
Jy e
0 (g

v11(q?)
2 — A)q?

k2)




NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3P, — 3F2

@ The OPE contribution to A(A) for 3P, has an anomalously
small size compared to the other P-waves

e 3F
AA+ mi)? /L 2 A(k /oo vaa()(@?)?
- N A)(a? — K2)(q? + m2)?
p—
. 14 Ote'ue ';d(%gé ,,,,,,

a0F;)
ACF ) integral

s
Pmd)



NN scattering from the dispersive N/D method including two-pion exchange
3
— F2

LCoupled waves: ~

"] 3P2 — 3F2

AA+m2) (L S A(K) [oo p(a?)d?
7/7 dk / d @

w2 ()2 — A — K + )

1 T T T T T T T T T 008 T T T T
prp—
ore
Onceierated OPE ------
05 007 b P reducie TPE A
o 006 |- 1
00s |- 1
05 _
I g ooaf 4
Y z
< w003 4
15 <
o0z |- 1
2
oo1 | 1
25
ore
Once iterated OPE -+
ineduciole TPE
N h ? . . . . . . .
ECE 7 PR 2 T

o 50 100 150 200 250 300
P(MeY)

s
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NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3'D3 - 363

3D3 _3G3

@ 3D,: 011 = 2 — Twice-subtracted DR
50D _ Dy (C) -1
o C
@ 3D; —3G3: ¢15 = 3 — Three-times subtracted DR
512 2 —2Dy5(C) + CD;,(C)
Lo C
512 _ 1 — D1p(C) + CDi,(C)
2 - C2
@ 3G3: lyp = 4 — Four-times subtracted DR
5§22) _ 6+ 6D (C) — 4CD%,(C) + C2D5(C)
2C
520 _ 3~ 3D (C) +3CDs,(C) — C*Dgy(C)
2 - C2
5D _ —2 42Dy (C) — 2CD4,(C) 4 C*D(C)
2C3




NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3'D3 - 363

Phase shifts

. D11(C) =1*
Di(C) = 1%, DL, (C) =0
) Dos(C) = 0.91£0.15 , Di(C) = 0*
| DIL(C) = 0*

EY 00 150 20 20 0
Evey)



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3'D3 - 363

Quantifying contributions to A(A)

A(A+ m2)

w2

/fm 2A11(k /°°

a0y

opE -
. Onceterated OPE ------
04 Ireducible TPE

s
)

v11(¢?)q?

80Dy)-ntegral

A)a? — k?)(q? + m2)

008 -

T

oPE
Once-iterated OPE
irreducible TPE

50 100 150 200 250 300
p(vev)



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled waves: 3D3 - 363

) 3G3

M/L d2A22(k /oo vaa(a?)(d?)?

w2 — AN — k(@ + m)?

Oncedtred SPE
T :
.
0
o
B ool
S
|
1|
0t y—
1|
Oncertermed SEE
06 L L L L L L L L L Irreducible TPE.
- S 2
o B w ) =

p(MeV)
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LCoupled waves: 3D3 - 363

] 3D3 — 3G3

M/L 2A12(k /oo p(a*)(?)?

w2 —AN@ = k(@ + m)?

R

.

.

o 012 - B
.

o)
L)



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled Waves: 351 — 3D1

361 — 3Dy

@ 35;: The 35; scattering length a; = 5.424 fm is fixed
@ 3D; and mixing wave: The deuteron is located at the same
position as it is obtained in 35;.

4 A A11(k?) Dy (k?
Di1(A)=1+4+A 71-atgll(A70)—i—f/ dk2wgu(%\. k?)
m T J oo k
2 _}/oo 2 v (q)
gi(A k%) = A dq (@2 — A) (@ — K2)
For (i,j =1or2): k3 = —ED(351)/m

A AA-K2) 285(K)Dy(K*) 4, o

g?(A, k) / dq 2 Vu(qz) 24-1)
il A)(q? - k?)(q? — kp)
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LCoupled Waves: 351 — 3D1

@ There is dependence on the input used to solve the integral

equations
@ We require the maximum stability under changes in the input.
Eg.
. sin €1 B _3 _
e = ,l,ino PO 1.128 m”|experiment

has its minimum value for our best results a, = 1.1 — 1.14 m_3



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled Waves: 351 — 3D1

Phase Shifts:

180 35
K Theory s, fhed Theory s fed
Theory’ O “Theory: OF

Njmegen data -

Nimegen dat

05"
a0

150 20 20 00
Evey)

@ Great improvement of the OPE
results

0y°

150
EMev)



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled Waves: 351 — 3D1

> Deuteron binding energy: Ep = 2.37 MeV,
experimentally Ep = 2.22 MeV,
with OPE we obtained Ep = 1.7 MeV.

> Effective range: r; = 1.36 — 1.39 fm,
experimentally r; = 1.75 fm,
with OPE we obtained r; = 0.46 fm

L 2 2 5
___m 2 D11 (k%)Dui(k®) [ 1 Ak
re = 27‘(’231_»/ dk (k2)2 ar + g11(0 k )

o 2v( qz)_ r(q )

/ % (a%)?

[e's] v 2

g11(0, K2 ) = 7T/0 dqzz(;l(qz)

More complicated correlation betwen r,—a; than in 1Sg: v11(A)
depends nonlinearly on D;;(A)
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LCoupled Waves: 351 — 3D1

Diagonalizing S-matrix

(S 0 r
s=o(® 2 )o

Asymptotic D/S ratio of the
deuteron

n = —tane¢

cose —sine
O B ( [ >
sine cose
Residue of Sp at the deuteron
pole

2
Np

So= ——=——
—k3 +ivVA

+ reg.terms

Ours results: n =0.029 , N2 =0.73

Other determinations:

Ericson, Rosa-Clot, 1983: 1 = 0.02741(4)

Conzett et al, 1979: n = 0.0263(13)

Nijmegen PWA: 1 = 0.02543(7) , N2 =0.7830(7) fm ™'



NN scattering from the dispersive N/D method including two-pion exchange
LCoupled Waves: 351 — 3D1

o We also tried other possibilities for the integral equations by
including more subtractions
@ They did not work:

o Either the coupled-channel iterative process did not converge
@ Or it converged to the uncoupled-wave case

Case 1 Fixing from data: a; and a.
Case 2 Fixing from data: a;, r and Ey4
Case 3 Fixing from data: a;, r, E4 and a.
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LCoupled Waves: 351 — 3D1

Quantifying contributions to A(A)

A L a2 Aqq(k < v11(¢%)
w2 [ (k2)2 / — A)(q? — K2)

o — R ) ‘ ‘ ‘ ‘ ‘
Once-iterated OPE —————— OPE
Cranie FoE p—ed
Traduaie e

ac’sy

“o 50 100 150 200 250 300
pMeV)
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LCoupled Waves: 351 — 3D1

e 3D,

2

A(A — k%) L 2A22(k oo sz(q2)q
—_— /,Ood / Z AP — )P — kB)

w2

oPE
Once-terated OPE -+
Irreducible TPE

Al —

opE
Once-erated OPE -+
L rreducible TPE |

o0 Al |
05
azf ]
1
i 14l 4
15 L L L L L L L L L
10 E) 8 7 5 4 E) 2 EY 16
D 0 50 100 150 200 250 300
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LCoupled Waves: 351 — 3D1

)] 351 — 3D1

2

A(A—Kp) [L 2A12(k <, p(a*)q
/—oo / — A)(q? — K2)(q® — kB)

w2

2 T T T T T T T 1 T T T T T
Al ——
Once-terated OPE ----- oPE
1 Ireducible TPE o5 | Once-terated OPE ----- A
5 inreducible TPE
o -
1
2 1 9
o
5 15 4
4 2 4
5 25l 4
6
Exs 4
E
as b ;!
a L L L L L L L L L
10 9 8 7 B 4 3 2 1 4
) 0 50 100 150 200 250 300
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LCoupIed waves: Summary figure
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L Conclusions

Conclusions:

@ Great improvement of the results from OPE to TPE. Our
results typically reproduce data better than pure NLO
Weinberg scheme.

@ Contributions to D(A), A > 0, from LHC integrals of A(A)
are suitable for a chiral expansion:

o OPE is O(p°): Dominant.
o Once-iterated OPE and irreducible TPE can be booked of the
same size: Subleading.

© We count iterated and irreducible two-pion loops on the same
footing, O(p?). Numerical enhancement of the latter.

© Perturbative treatment of higher order contributions with a
fixed number of exchanged pions.

© Adding one more lowest-order pion ladder in reducible NN
diagrams is suppressed by O(p?)
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L Conclusions

@ This should be further confronted with calculations of A(A)
at O(p%) and O(p*).

@ At O(p?) one only needs extra irreducible diagrams
Kaiser, Brockmann and Weise, NPA625(1997)758.

O At (’)(p4) one also needs, among others, twice-iterated OPE
(2 pion ladders)

NNANNA/
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