



# EM and weak observables in few-nucleon systems using hybrid EFT approach



### Introduction

### Guideline

- Description of the approach
- Results EM process in 2-4 body system PT violations in 3-body systems
- Conclusion



Engle



#### Wavefunctions

- o Choose the accurate nuclear Hamiltonian: Paris, Nimegen II, Argonne Av18, CD Bonn, N3LO ... with or w/o tri-nucleon interactions (Urbana, Tuscon-Melborne,...).
- Solve underlaying few-body QM problem to get |Ψ<sub>i,f</sub>>
   (we employ Faddeev, Faddeev-Yakubovski equations in configuration space).
- Electromagnetic current operators  $J^{\mu}_{em}$ 
  - Use gauge-invariance to deduce  $J^{\mu}_{em}$  from the potential.
  - o cf) Gauge invariance restricts only longitudinal part
  - o Add various "model-dependant terms"

(Strong model dependence due to phenomenology of NN interaction)

## Approach



### Wavefunctions

- Choose the accurate nuclear Hamiltonian: Paris, Nimegen II, Argonne Av18, CD Bon N3LO ... with or w/o tri-nucleon interactions (Urbana, Tuscon-Melborne,...).
- Solve underlaying few-body QM problem to get |Ψ<sub>i,f</sub>> (we employ Faddeev, Faddeev-Yakubovski equations in configuration space).

#### Electromagnetic current operators $J^{\mu}_{em}$

- o **Perturbative using HB**χEFT\*
- o How to fix coefficients of LECs?
  - Solve QCD (craziness !!)
  - Determine from other (known) observables => usual practice in EFTs, i.e., renormalization procedure

P.F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339

### HBχEFT\* currents: counting scheme

- Degrees of freedom: pions & nucleons
   (ρ, ω, Δ, ···) + high energy part => appears as local operators of p's and N's.
- ✓ Expansion parameter = Q/  $\Lambda \chi$ Q : typical momentum scale and/or m<sub>π</sub>  $\underline{\Lambda}\chi$  :  $m_N \sim 4p f_p \sim 1 \text{ GeV}$ .  $L = L_0 + L_1 + L_2 + \cdots$  with  $L_n \sim (Q/\Lambda\chi)^n$
- Weinberg's power counting rule for irreducible diagrams
   S. Weinberg, Phys. Lett. B 251 (1990) 288 ; Nucl. Phys. B363 (1991) 3

## EM currents: counting scheme

#### Covariant pert theory:

T.-S. Park, D.-P. Min, and M. Rho, Nucl. Phys. A596 (1996) 515

- ✓ LO: <1-body>
- ✓ NLO:  $<1\pi E>$
- $\checkmark$  N<sup>3</sup>LO:
  - o 1L-correction to  $<1\pi E>$
  - o <2πE>
  - o <contact terms>
  - o <1-body> RC



Consistent with time ordered pert. theory: Pastore et al., PRC 80 (2009) 064002, Kölling et al., PRC 80 (2009) 045502 (slight difference in isospin dependence of the Sachs terms)

## **EM** currents: regularisation

#### ✓ Wave functions

o Off-shell properties of available potentials very different => Model-dependence??

### ✓ $J_{\rm CT} = \mathbf{C}_{12}(\Lambda) \ (\tau \ \sigma)_{ij} \ \delta_{\Lambda}(\mathbf{r}_{ij})$

- o 3 LEC's related to hadronic coupling constants using resonance saturation arguments
- o For a given w.f. and  $\Lambda$ , determine 2 remaining LECs to reproduce the experimental values of a selected set of observables that are sensitive on  $C_0 => \frac{\text{we choose MM of }^3\text{H \& }^3\text{He}}{\text{We choose MM of }^3\text{H \& }^3\text{He}}$

#### ✓ Model-dependence in short-range region:

- o Can be visualized by a cutoff-dependence
- o Difference in short-range physics is well described by local contact operators
- o We expect that ...
  - Values of LECs: Λ-dependent
  - Net matrix element: Λ-independent

#### ✓ Model-dependence in long-range region:

- o Long-range part of ME: governed by the effective-range parameters (ERPs) such as binding energy, scattering length, effective range etc
- o In two-nucleon sector, practically no problem (*realistic potentials are fitted to reproduce 2N data*)
- o In A  $\geq$ 3, things are not quite trivial...



#### Thermal $n+^{2}H-^{3}H+\gamma$ capture process

| Model       | σ <sub>nd</sub> [mb] | -R_c      | <sup>2</sup> a <sub>nd</sub><br>[fm] | B ( <sup>3</sup> H)<br>[MeV] |
|-------------|----------------------|-----------|--------------------------------------|------------------------------|
| Av18        | 0.680(3)             | 0.435     | 1.266                                | 7.623                        |
| Av18+UIX    | 0.478(3)             | 0.458     | 0.598                                | 8.483                        |
| INOY        | 0.498(3)             | 0.465     | 0.551                                | 8.483                        |
| I-N3LO      | 0.626(2)             | 0.441     | 1.101                                | 7.852                        |
| I-N3LO+UIX* | 0.477(2)             | 0.468     | 0.634                                | 8.482                        |
| E1-N3LO     | 0.688(4)             | 0.438     | 1.263                                | 7.636                        |
| E4-N3LO     | 0.609(4)             | 0.448     | 1.024                                | 7.930                        |
| E5-N3LO     | 0.879(8)             | 0.411     | 1.781                                | 7.079                        |
| Exp.        | 0.508(15)            | 0.420(30) | 0.65(4)                              | 8.482                        |



#### Thermal $n+^{2}H->^{3}H+\gamma$ capture process





In agreement: L. Girlanda, A. Kievsky et al., Phys. Rev. Lett. 105, 232502 (2010)

## Introduction

Weak process  $V^{weak} << V^{strong}$  $\langle O^{weak} \rangle << \langle O^{strong} \rangle$ 



Need to find independent signature and enhancement

- EDM heavy nuclei
- Coherent neutron scattering

Two possible observables for scattering of the "slow" polarized neutrons:

$$\Delta \sigma = \frac{4\pi}{p} \operatorname{Im}(f_{+} - f_{-})$$
 Difference in cross section parallel-antiparallel to some axis  
$$\frac{d\phi}{dz} = -\frac{2\pi N}{p} \operatorname{Re}(f_{+} - f_{-})$$
 Neutron spin rotation angle with respect to this axis  
(experiments at NIST & SNS)

#### Other possible observables:

Photon asymmetry  $X(\vec{N},\gamma)Y$  and circular polarization  $X(N,\vec{\gamma})Y$ Photon helicity dependence  $X(\vec{\gamma},N)Y$ 

2-body NN case studied in R. Schiavilla et al., Phys. Rev. C70 (2004) 044007

### Introduction

#### Two possible observables for scattering of polarized neutron:

 $\Delta \sigma = \frac{4\pi}{p} \operatorname{Im}(f_{+} - f_{-})$  $\frac{d\phi}{dz} = -\frac{2\pi N}{p} \operatorname{Re}(f_{+} - f_{-})$ Neutron spin rotation angle around this axis n spin rotatio Correlation n axis ΤŹ ╢╢  $\vec{\sigma}_n \cdot \hat{p}_n$ TΡ  $\vec{\sigma}_n \cdot \left[ \hat{p}_n imes \vec{I} \right]$ Ē  $\mathbf{TP} \mid \vec{\sigma}_n \cdot \left[ \hat{p}_n \times \vec{I} \right] \left( \hat{p}_n \cdot \vec{I} \right)$ 

Difference in cross section parallel-antiparallel to some axis

R. Lazauskas (IPHC Strasbourg), Y.H. Song, V. Gudkov (South Carolina U.)

### **3-body Observables**

• Partial wave decomposition

$$F_{ij}(\vec{x}_{ij}, \vec{y}_{ij}) = \sum_{\alpha} \frac{f_{\alpha}(x_{ij}, y_{ij})}{x_{ij}y_{ij}} \left| \left[ \left( l_x s_x \right)_{j_x} s_k \right]_{S} l_y \right\rangle_{JM} \otimes \left| \left( t_i t_j \right)_{t_x} t_k \right\rangle_{TT}$$

• R-matrix defined by  $l_n$  and  $(j_d s_n)_s$  quantum numbers (S=1/2 or 3/2) at low  $p_n$ 

$$R_{l'_n S', l_n S}^J \sim p_n^{1+l_n+l'_n} + i p_n^{2+l_n+l'_n}$$



For low energy neutrons only transitions with smallest *l<sub>n</sub>* values must be considered

### **3-body Observables**

| $R^J_{l'_n S'}$ | $\underline{l_n S} \sim p_n^{1+l_n+l_n'} + i p_n^{1+l_n'} + i p_n^{1+l_n''} + i p_n^{1+l_n'} + i p_n^{1+l_n''} + i p_n^{1+l_n''} + i p_n$ | $p_n^{2+l_n+l_n'}$ n $l_n$                                                                                                                                                                                                                                                  | $s_d = t_d =$                      | p $j_d = 1;$        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|
|                 | Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{N}\frac{d\phi}{dz} = \frac{\pi}{p_n^2} \times$                                                                                                                                                                                                                    | $\frac{1}{N}\frac{d\phi}{dz} \sim$ | $\Delta\sigma \sim$ |
| ΤÞ              | $ec{\sigma}_{_n}\cdot \hat{p}_{_n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{4}{9} \operatorname{Im} \left[ R_{0\frac{1}{2},1\frac{1}{2}}^{\frac{1}{2}} - 2\sqrt{2}R_{0\frac{1}{2},1\frac{3}{2}}^{\frac{1}{2}} + 4R_{0\frac{3}{2},1\frac{1}{2}}^{\frac{3}{2}} - 2\sqrt{5}R_{0\frac{3}{2},1\frac{3}{2}}^{\frac{3}{2}} \right]$                     | 1                                  | $p_n$               |
| ∕ <b>₹</b> ₽    | $\vec{\sigma}_n \cdot \left[ \hat{p}_n \times \vec{I} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-\operatorname{Re}\left[\sqrt{2}R_{0\frac{1}{2},1\frac{3}{2}}^{\frac{1}{2}}+2R_{0\frac{3}{2},1\frac{1}{2}}^{\frac{3}{2}}\right]$                                                                                                                                           | 1                                  | $p_n$               |
| Τ́Ρ             | $\vec{\sigma}_n \cdot \left[ \hat{p}_n \times \vec{I} \right] \left( \hat{p}_n \cdot \vec{I} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{2} \operatorname{Re} \left[ \sqrt{2} R_{0\frac{1}{2},2\frac{3}{2}}^{\frac{1}{2}} + \sqrt{2} R_{1\frac{1}{2},1\frac{3}{2}}^{\frac{1}{2}} + 2 R_{0\frac{3}{2},2\frac{1}{2}}^{\frac{3}{2}} - \frac{1}{\sqrt{5}} R_{1\frac{1}{2},1\frac{3}{2}}^{\frac{3}{2}} \right]$ | $p_n$                              | $p_n^2$             |

R. Lazauskas (IPHC Strasbourg), Y.H. Song, V. Gudkov (South Carolina U.)

## Weak interaction



## Models

• Meson-exchange theory - select the most pertinant meson-exchange diagrams for  $\pi$ , $\rho$ ,  $\omega$ ..

**DDH** (*B. Desplanques et al.:, Ann. Phys. (N.Y.)* **124** (1980) 449)

- Pionless EFT select the most pertinant Lagrangian terms (lowest momenta), fit low energy constants (LECs) S.-L. Zhu, et al.:, Nucl. Phys. A748, 435 (2005), L. Girlanda, Phys. Rev. C 77, 067001 (2008).
- 'Pionfull' EFT retain lightest mesons + pionless EFT procedure

## Guideline

- Writedown the most general Lagrangian
- Derive from it potential
- Retain most important terms



### **Parity violation**



#### Strong Hamiltonian independence, due to dominance of $J^{\pi}=3/2^+$ channel

TABLE VI: Coefficients  $I_n^{\pi}$  for AV18 and AV18+UIX strong potentials, and  $\pi$ EFT-I and

parameter sets for parity violating potentials.  $I_{2,3,6,7,10,11,12}^{\pi} = 0$ .

| 22      | $\pi EET_I/AV18$         | TETLI/AV18+111Y          | $\pi E E T_{-} \Pi / \Lambda V 18$ | #EFT_II/AV18+IIIX       | $J\omega(r)$         | 0                      | 0            | 0                                                               | 0                        | $(\eta + \eta)$          |
|---------|--------------------------|--------------------------|------------------------------------|-------------------------|----------------------|------------------------|--------------|-----------------------------------------------------------------|--------------------------|--------------------------|
| 76      | #EF 1-1/AV10             | #EF 1-1/AV 10+01A        | #EF 1-II/ AV 18                    | #EF1-II/AV10+0IA        | $f_{\rho}(r)$        | 0                      | 0            | 0                                                               | 0                        | $(\tau_i - \tau_j)$      |
| 1       | $0.616 \times 10^{+02}$  | $0.600 \times 10^{+02}$  | $0.616 \times 10^{+02}$            | $0.600 \times 10^{+02}$ | $f_{\rho}(r)$        | 0                      | 0            | $-\frac{\sqrt{2}\pi q_A \Lambda^2}{\Lambda_V^2} h_\pi^1$        | $L_{\Lambda}(r)$         | $(\tau_i \times \tau_j)$ |
| 4       | $0.152\times10^{+01}$    | $0.142 \times 10^{+01}$  | $0.549 \times 10^{+00}$            | $0.488 \times 10^{+00}$ | 0                    | 0                      | 0            | $\frac{2\Lambda^2}{\Lambda^2_{\psi}}C_6^{\pi}$                  | $f_{\Lambda}(r)$         | $(\tau_i 	imes 	au_j)$   |
| 5       | $0.435 \times 10^{+01}$  | $0.185 \times 10^{+01}$  | $0.123\times10^{+01}$              | $0.664\times10^{-01}$   | 0                    | 0                      | 0            | $\frac{\sqrt{2}\pi \hat{g}_A^2 \Lambda^2}{\Lambda_X^2} h_\pi^1$ | $\tilde{L}_{\Lambda}(r)$ | $(\tau_i \times \tau_j)$ |
| 8       | $-0.184\times10^{+01}$   | $-0.179 \times 10^{+01}$ | $-0.782 \times 10^{+00}$           | $-0.748\times10^{+00}$  | Luib                 | L.                     | <b>1</b> 2 ~ | 100.0                                                           |                          | 10 0                     |
| 9       | $-0.820 \times 10^{+00}$ | $-0.730 \times 10^{+00}$ | $-0.340 \times 10^{+00}$           | $-0.288\times10^{+00}$  | UIIJ                 | uti                    | ng           | me                                                              | 50                       | ns                       |
| 13      | $0.226\times 10^{+02}$   | $0.218\times10^{+02}$    | $0.970\times10^{+01}$              | $0.936\times10^{+01}$   | 40), I               | $G(J^{\pi C})$         | = 1          | -(0-+)                                                          | //1                      | L                        |
| 14      | $0.339\times10^{+01}$    | $0.333\times10^{+01}$    | $0.177\times10^{+01}$              | $0.174\times10^{+01}$   | 70), I <sup>C</sup>  | $G(\tilde{I}^{\pi C})$ | = 1+         | $(1^{})/$                                                       | '/2                      | -7                       |
| 15      | $0.654 \times 10^{+02}$  | $0.631 \times 10^{+02}$  | $0.273 \times 10^{+02}$            | $0.264\times10^{+02}$   | .82). I <sup>(</sup> | $G(I^{\pi C})$         | $= 0^{-1}$   | $(1^{-1})$                                                      | {                        | 8-13                     |
| In agre | ement with R. S          | Schiavilla et al., Phys. | Rev.C78:014002,                    | 2008; Erratum-ibid.C    | 283 <b>:02</b> 9902  | 2,2011/                | Ŭ            | (, )/                                                           |                          |                          |
| ~       | 11 141 7                 |                          |                                    |                         |                      |                        | 0.04         |                                                                 |                          |                          |

| TABLE I: Parameters and operators of parity violating potentials. $\pi NN$ coupling $g_{\pi NN}$ can be                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| represented by $g_A$ by using Goldberger-Treiman relation, $g_{\pi} = g_A m_N / F_{\pi}$ with $F_{\pi} = 92.4$ MeV.                             |
| $T_{tf} \equiv (3\tau_i^z \tau_i^z - \tau_t \cdot \tau_i)$ . Scalar function $\tilde{L}_{\Lambda}(r) \equiv 3L_{\Lambda}(r) - H_{\Lambda}(r)$ . |

| $c_n^{DDH}$                                                 | $f_n^{DDH}(r)$  | $c_{n}^{\vec{s}}$                                                                                     | $f_n^{\widetilde{\eta}}(r)$            | $c_n^{\pi}$                                                     | $f_n^{\pi}(r)$           | $O_{ij}^{(n)}$                                                         |
|-------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|
| $+ \frac{g_\pi}{2\sqrt{2}m_N}h_\pi^1$                       | $f_{\pi}(r)$    | $\frac{2\mu^2}{\Lambda_\chi^2}C_6^{q'}$                                                               | $f^{\overrightarrow{\sigma}}_{\mu}(r)$ | $+ \frac{q_{\pi}}{2\sqrt{2}m_N}h_{\pi}^1$                       | $f_\pi(r)$               | $(\tau_i\times\tau_j)^z(\sigma_i+\sigma_j)\cdot X^{(1)}_{ij,-}$        |
| $-\frac{g_{\rho}}{m_N}h_{\rho}^{\Theta}$                    | $f_{\rho}(r)$   | 0                                                                                                     | 0                                      | 0                                                               | 0                        | $(\tau_i\cdot\tau_j)(\sigma_i-\sigma_j)\cdot X^{(2)}_{ij,+}$           |
| $-\frac{g_{\rho}(1+\kappa_{\rho})}{m_N}h_{\rho}^0$          | $f_{\rho}(r)$   | 0                                                                                                     | 0                                      | 0                                                               | 0                        | $(\tau_i \cdot \tau_j)(\sigma_i \times \sigma_j) \cdot X^{(3)}_{ij,-}$ |
| $-\frac{g_{\rho}}{2m_N}h_{\rho}^1$                          | $f_{\rho}(r)$   | $\frac{\mu^2}{\Lambda_X^2} \big( C_2^{\overrightarrow{\sigma}} + C_4^{\overrightarrow{\sigma}} \big)$ | $f^{\overrightarrow{\sigma}}_{\mu}(r)$ | $\frac{\Lambda^2}{\Lambda_X^2}(C_2^\pi+C_4^\pi)$                | $f_{\Lambda}(r)$         | $(\tau_i+\tau_j)^z(\sigma_i-\sigma_j)\cdot X^{(4)}_{ij,+}$             |
| $-\frac{g_{\rho}(1+\kappa_{\rho})}{2m_N}h_{\rho}^1$         | $f_{\rho}(r)$   | 0                                                                                                     | 0                                      | $\frac{2\sqrt{2\pi g_A^2}\Lambda^2}{\Lambda_\chi^2}h_\pi^1$     | $L_{\Lambda}(r)$         | $(\tau_i + \tau_j)^z (\sigma_i \times \sigma_j) \cdot X^{(5)}_{ij,-}$  |
| $-\frac{g_{\rho}}{2\sqrt{6}m_N}h_{\rho}^2$                  | $f_{\rho}(r)$   | $-\frac{2\mu^2}{\Lambda_\chi^2}C_5^{\overline{p}'}$                                                   | $f^{\overrightarrow{\sigma}}_{\mu}(r)$ | $-\frac{2\Lambda^2}{\Lambda_\chi^3}C_5^{\pi}$                   | $f_{\Lambda}(r)$         | $\mathcal{T}_{ij}(\sigma_i - \sigma_j) \cdot X^{(6)}_{ij,+}$           |
| $-\frac{a_{\rho}(1+\kappa_{\rho})}{2\sqrt{6}m_N}h_{\rho}^2$ | $f_{\rho}(r)$   | 0                                                                                                     | 0                                      | 0                                                               | 0                        | $\mathcal{T}_{ij}(\sigma_i 	imes \sigma_j) \cdot X^{(7)}_{ij,-}$       |
| $-\frac{g_{\omega}}{m_N}h_{\omega}^0$                       | $f_{\omega}(r)$ | $\frac{2\mu^2}{\Lambda_\chi^2}C_1^{\overline{p}'}$                                                    | $f^{\overrightarrow{q}}_{\mu}(r)$      | $\frac{2\Lambda^2}{\Lambda_{\chi}^3}C_1^{\pi}$                  | $f_{\Lambda}(r)$         | $(\sigma_i - \sigma_j) \cdot X^{(8)}_{ij,+}$                           |
| $\pi \mathrm{EFT}\text{-}\mathrm{II}$                       | $f_{\omega}(r)$ | $\frac{2\mu^2}{\Lambda_{\chi}^2}\tilde{C}_1^{\psi}$                                                   | $f^{\overline{q}}_{\mu}(r)$            | $\frac{2\Lambda^2}{\Lambda_{\chi}^2}\tilde{C}_1^{\pi}$          | $f_{\Lambda}(r)$         | $(\sigma_i \times \sigma_j) \cdot X^{(9)}_{ij,-}$                      |
|                                                             | $f_{\omega}(r)$ | 0                                                                                                     | 0                                      | 0                                                               | 0                        | $(\tau_i+\tau_j)^z(\sigma_i-\sigma_j)\cdot X^{(10)}_{ij,+}$            |
|                                                             | $f_{\omega}(r)$ | 0                                                                                                     | 0                                      | 0                                                               | 0                        | $(\tau_i+\tau_j)^z(\sigma_i\times\sigma_j)\cdot X^{(11)}_{ij,-}$       |
| 18+01X                                                      | $f_{\rho}(r)$   | 0                                                                                                     | 0                                      | 0                                                               | 0                        | $(\tau_i-\tau_j)^z(\sigma_i+\sigma_j)\cdot X^{(12)}_{ij,+}$            |
| $0 \times 10^{+02}$                                         | $f_{\rho}(r)$   | 0                                                                                                     | 0                                      | $-\frac{\sqrt{2}\pi g_A \Lambda^2}{\Lambda_\chi^2} h_\pi^1$     | $L_{\Lambda}(r)$         | $(\tau_i \times \tau_j)^z (\sigma_i + \sigma_j) \cdot X^{(13)}_{ij,-}$ |
| $3 \times 10^{+00}$                                         | 0               | 0                                                                                                     | 0                                      | $\frac{2\Lambda^2}{\Lambda_Y^2}C_6^{\pi}$                       | $f_\Lambda(r)$           | $(\tau_i\times\tau_j)^z(\sigma_i+\sigma_j)\cdot X^{(14)}_{ij,-}$       |
| $4 \times 10^{-01}$                                         | 0               | 0                                                                                                     | 0                                      | $\frac{\sqrt{2}\pi \hat{g}_A^2 \Lambda^2}{\Lambda_A^2} h_\pi^1$ | $\tilde{L}_{\Lambda}(r)$ | $(\tau_i\times\tau_j)^z(\sigma_i+\sigma_j)\cdot X^{(15)}_{ij,-}$       |

6 7

8

Compares well with Pionless EET results: Eur.Phys.J. A48 (2012) 7, Phys.Rev. C86 (2012) 014001

### **Parity violation**



TABLE X: DDH PV coupling constants in units of  $10^{-7}$ . Strong couplings are  $\frac{g_{\pi}^2}{4\pi} = 13.9$ ,  $\frac{g_{\rho}^2}{4\pi} = 0.84$ ,  $\frac{g_{\omega}^2}{4\pi} = 20$ ,  $\kappa_{\rho} = 3.7$ , and  $\kappa_{\omega} = 0$ ,  $h'_{\rho}$  contribution is neglected. 4-parameter fir and 3-parameter fit uses the same  $h_{\rho}^1$  and  $h_{\omega}^1$  with DDH 'best'.

| DDH Coupling  | DDH 'best' | 4-parameter fit[25] | 3-parameter fit[25] |
|---------------|------------|---------------------|---------------------|
| $h_{\pi}^{1}$ | +4.56      | -0.456              | -0.5                |
| $h_{ ho}^0$   | -11.4      | -43.3               | -33                 |
| $h_{ ho}^2$   | -9.5       | 37.1                | 41                  |
| $h^0_\omega$  | -1.9       | 13.7                | 0                   |
| $h^1_{\rho}$  | -0.19      | -0.19               | -0.19               |
| $h^1_\omega$  | -1.14      | -1.14               | -1.14               |

TABLE XI: Neutron spin rotation in  $10^{-7}$  rad-cm<sup>-1</sup> for the case of DDH-II potential with AV18+UIX strong potential for a liquid deuteron density  $N = 0.4 \times 10^{23}$  atoms per  $cm^3$ .

J. D. Bowman,

http://www.int.washington.edu/talks/WorkShops/int\_07\_1/.

|       | DDH 'best'               | 4-parameter fit[25]      | 3-parameter fit[25]      |
|-------|--------------------------|--------------------------|--------------------------|
| 1     | $0.108\times10^{+00}$    | $-0.108 \times 10^{-01}$ | $-0.118 \times 10^{-01}$ |
| 2     | $0.386 \times 10^{-02}$  | $0.147 \times 10^{-01}$  | $0.112\times 10^{-01}$   |
| 3     | $-0.317\times10^{-01}$   | $-0.120 \times 10^{+00}$ | $-0.918 \times 10^{-01}$ |
| 4     | $0.349\times 10^{-04}$   | $0.349 \times 10^{-04}$  | $0.349 \times 10^{-04}$  |
| 5     | $0.150\times 10^{-03}$   | $0.150 \times 10^{-03}$  | $0.150 \times 10^{-03}$  |
| 8     | $-0.423 \times 10^{-02}$ | $0.305 \times 10^{-01}$  | $0.000 \times 10^{+00}$  |
| 9     | $-0.202 \times 10^{-02}$ | $0.146 \times 10^{-01}$  | $0.000 \times 10^{+00}$  |
| 10    | $0.967\times 10^{-03}$   | $0.967\times 10^{-03}$   | $0.967\times 10^{-03}$   |
| 11    | $0.113\times 10^{-02}$   | $0.113\times 10^{-02}$   | $0.113\times 10^{-02}$   |
| 12    | $0.102\times 10^{-02}$   | $0.102\times 10^{-02}$   | $0.102 \times 10^{-02}$  |
| total | $0.768 \times 10^{-01}$  | $-0.682 \times 10^{-01}$ | $-0.891 \times 10^{-01}$ |

*np case:* (0.46 -0.74)\*10<sup>-8</sup> *rad cm*<sup>-1</sup> (*R. Schiavilla et al.,Phys.Rev.* **C70** (2004) 044007)

## Parity violating n+d capture

#### Observables: polarization of the emitted photon $(P_{\gamma})$ photon assymetry in relation to neutron $(a_n)$

& deutron  $(A_d)$ 

TABLE V. Parity-violating observables for different potential models with the DDH best parameter values and Bowman's four-parameter fits in units of 10<sup>-7</sup>.

| Model           |       | DDH best value: | 5     |      | Four-parameter fit | 5     |
|-----------------|-------|-----------------|-------|------|--------------------|-------|
|                 | $a_n$ | $P_{\gamma}$    | Ad    | an   | $P_{\gamma}$       | Ad    |
| AV18+UIX/DDH-I  | 3.30  | -6.38           | -8.23 | 1.97 | -2.16              | -1.81 |
| AV18/DDH-II     | 4.61  | -8.30           | -10.3 | 4.60 | -5.18              | -4.46 |
| AV18+UIX/DDH-II | 4.11  | -7.30           | -9.04 | 4.14 | -4.71              | -4.09 |
| Reid/DDH-II     | 4.74  | -8.45           | -10.4 | 4.70 | -5.25              | -4.46 |
| NijmII/DDH-II   | 4.71  | -8.45           | -10.5 | 4.76 | -5.26              | -4.41 |
| INOY/DDH-II     | 9.24  | -12.9           | -13.8 | 17.5 | -17.9              | -13.5 |

#### Important model-dependence!!!

TABLE X. Two-body parity-violating observables for potential models with DDH best parameter values and Bowman's four-parameter fits.

| Models          |                       | $a_n^{\gamma}$         | P <sub>γ</sub>        |                       |  |
|-----------------|-----------------------|------------------------|-----------------------|-----------------------|--|
|                 | DDH best value        | Four-parameter fit     | DDH best value        | Four-parameter fit    |  |
| AV18 + DDH-I    | $5.25 \times 10^{-8}$ | $-4.91 \times 10^{-9}$ | $6.94 \times 10^{-9}$ | $4.76 \times 10^{-9}$ |  |
| AV18 + DDH-II   | $5.29 \times 10^{-8}$ | $-4.81 \times 10^{-9}$ | $1.76 \times 10^{-8}$ | $3.01 \times 10^{-8}$ |  |
| NijmII + DDH-II | $5.37 \times 10^{-8}$ | $-4.99 \times 10^{-9}$ | $2.61 \times 10^{-8}$ | $6.41 \times 10^{-8}$ |  |
| Reid + DDH-II   | $5.33 \times 10^{-8}$ | $-4.85 \times 10^{-9}$ | $2.65 \times 10^{-8}$ | $4.68 \times 10^{-8}$ |  |
| INOY + DDH-II   | $5.60 \times 10^{-8}$ | $-3.94 \times 10^{-9}$ | $2.55 \times 10^{-7}$ | $9.68 \times 10^{-7}$ |  |

Some model depandence already visible for np (short range physics P $\gamma$  dominated by  $\omega \& \rho$  mesons

### Parity violating n+d capture



FIG. 1. (Color online) Cutoff and strong model dependencies of the amplitudes for #EFT-I calculated with AV18, AV18 + UIX, Nijmegen-II, INOY, and Reid strong potentials. The first graph shows  $\Lambda^2 \tilde{\mathcal{E}}_{\frac{3}{2}(+)}$  for operator 1 and the second graph shows  $\Lambda^2 \tilde{\mathcal{E}}_{\frac{3}{2}(+)}$  for operator 9 in units of fm<sup>- $\frac{1}{2}$ </sup>. The multiplier  $\Lambda^2$  is used to absorb the artificial cutoff dependence of  $c_n$  coefficients.

#### $\varepsilon_1$ amplitude for np



FIG. 3. (Color online) Cutoff and strong model dependencies of amplitudes for #EFT-I with various strong potential models. The first graph shows  $\Lambda^2 \widetilde{\mathcal{E}}_{1,(+)}$  of operator 1 and the second graph shows  $\Lambda^2 \widetilde{\mathcal{E}}_{0,(-)}$  of operator 9 in units of fm<sup>-1/2</sup>. The multiplier  $\Lambda^2$  is used to absorb the artificial cutoff dependence of  $c_n$  coefficients.

### **P&T** violation



TABLE I. A typical matrix elements of TRIV potential,  $\operatorname{Re} \frac{\langle (l'_y j'_y), J | V_n^{T^p} | \langle l_y j_y \rangle, J \rangle}{C_{np}}$ , in jj-coupling scheme with AV18 + UIX strong potential at zero energy limit. Imaginary part of potential matrix element is zero at zero energy limit. Scalar functions are chosen as  $\frac{m_\pi^2}{4\pi}Y_1(m_\pi r)$  for operators 1-5,  $\frac{m_\pi^2}{4\pi}Y_0(m_\pi r)$  for operators 6-16.  $O_{3,8,12} = 0$  because of isospin selection rules. All data are in  $fm^2$ .

| n  | $\langle 1\tfrac{1}{2} v^{1/2} 0\tfrac{1}{2}\rangle/p$ | $\langle 1\tfrac{3}{2} v^{1/2} 0\tfrac{1}{2}\rangle/p$ | $\langle 1\tfrac{1}{2} v^{3/2} 0\tfrac{1}{2}\rangle/p$ | $\langle 1\tfrac{3}{2} v^{3/2} 0\tfrac{1}{2}\rangle/p$ |
|----|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 1  | $0.590 \times 10^{-01}$                                | $-0.787\times10^{-01}$                                 | $0.151\times 10^{-01}$                                 | $0.177 \times 10^{-01}$                                |
| 2  | $0.627\times10^{+00}$                                  | $-0.863 \times 10^{-01}$                               | $-0.144\times10^{+00}$                                 | $-0.167 \times 10^{+00}$                               |
| 4  | $-0.268 \times 10^{+00}$                               | $0.107\times 10^{+00}$                                 | $0.330\times 10^{-01}$                                 | $0.379 \times 10^{-01}$                                |
| 5  | $0.321\times10^{+00}$                                  | $-0.267 \times 10^{+00}$                               | $-0.199 \times 10^{+00}$                               | $-0.691 \times 10^{-01}$                               |
| 6  | $0.719 \times 10^{-01}$                                | $-0.104\times10^{-01}$                                 | $-0.115 \times 10^{-01}$                               | $-0.141 \times 10^{-01}$                               |
| 7  | $-0.206 \times 10^{-01}$                               | $0.520\times 10^{-02}$                                 | $0.337\times 10^{-01}$                                 | $0.384\times10^{-01}$                                  |
| 9  | $-0.650 \times 10^{-01}$                               | $0.865\times 10^{-02}$                                 | $0.238\times 10^{-03}$                                 | $0.134\times 10^{-02}$                                 |
| 10 | $0.106\times 10^{-01}$                                 | $-0.932 \times 10^{-03}$                               | $0.658\times 10^{-03}$                                 | $0.622 \times 10^{-03}$                                |
| 11 | $0.171\times 10^{-01}$                                 | $-0.548\times10^{-03}$                                 | $-0.237 \times 10^{-02}$                               | $-0.273 \times 10^{-02}$                               |
| 13 | $-0.163\times10^{-01}$                                 | $0.111\times 10^{-02}$                                 | $0.131\times 10^{-03}$                                 | $0.288\times 10^{-03}$                                 |
| 14 | $0.649\times 10^{-02}$                                 | $-0.628\times10^{-02}$                                 | $-0.876 \times 10^{-02}$                               | $-0.250 \times 10^{-03}$                               |
| 15 | $0.338\times 10^{-01}$                                 | $-0.230\times10^{-01}$                                 | $-0.293 \times 10^{-01}$                               | $-0.198 \times 10^{-02}$                               |
| 16 | $0.128\times 10^{-01}$                                 | $-0.816\times10^{-02}$                                 | $-0.119 \times 10^{-01}$                               | $-0.335 \times 10^{-03}$                               |

$$\begin{split} H_{stat}^{\mathcal{TP}} = \overbrace{q_1(r)\boldsymbol{\sigma}_- \cdot \hat{r}} + \overbrace{q_2(r)\tau_1 \cdot \tau_2\boldsymbol{\sigma}_- \cdot \hat{r} + g_3(r)T_{12}^z\boldsymbol{\sigma}_- \cdot \hat{r}} \\ + \overbrace{q_4(r)\tau_+\boldsymbol{\sigma}_- \cdot \hat{r} + g_5(r)\tau_-\boldsymbol{\sigma}_+ \cdot \hat{r}} \end{split}$$

#### More terms from EFT:

$$\begin{split} f_{non-static}^{TP} &= (g_6(r) + g_7(r)\tau_1 \cdot \tau_2 + g_8(r)T_{12}^z + g_9(r)\tau_+) \, \sigma_\times \cdot \frac{\bar{p}}{m_N} \\ &+ (g_{10}(r) + g_{11}(r)\tau_1 \cdot \tau_2 + g_{12}(r)T_{12}^z + g_{13}(r)\tau_+) \\ &\times \left(\hat{r} \cdot \sigma_\times \hat{r} \cdot \frac{\bar{p}}{m_N} - \frac{1}{3}\sigma_\times \cdot \frac{\bar{p}}{m_N}\right) \\ &+ g_{14}(r)\tau_- \left(\hat{r} \cdot \sigma_1 \hat{r} \cdot (\sigma_2 \times \frac{\bar{p}}{m_N}) + \hat{r} \cdot \sigma_2 \hat{r} \cdot (\sigma_1 \times \frac{\bar{p}}{m_N}) + g_{15}(r)(\tau_1 \times \tau_2)^z \sigma_+ \cdot \frac{\bar{p}}{m_N} \\ &+ g_{16}(r)(\tau_1 \times \tau_2)^z \left(\hat{r} \cdot \sigma_+ \hat{r} \cdot \frac{\bar{p}}{m_N} - \frac{1}{3}\sigma_+ \cdot \frac{\bar{p}}{m_N}\right), \end{split}$$
If we retain only pions: 
$$\begin{aligned} &\frac{\phi^{TP}}{\phi^P} \simeq (1.2) \left(\frac{\bar{g}_n^{(0)}}{h_\pi^1} + (0.26) \frac{\bar{g}_n^{(1)}}{h_\pi^1}\right), \\ &\frac{\Delta \sigma^{TP}}{\Delta \sigma^P} \simeq (-0.47) \left(\frac{\bar{g}_n^{(0)}}{h_\pi^1} + (0.26) \frac{\bar{g}_n^{(1)}}{h_\pi^1}\right). \end{aligned}$$

<sup>••</sup> From EDM measurements g/h<10<sup>-3</sup>

### **P&T violation (EDMs)**

| Operator | Λ            | AV18          | Reid93        | NijmII        | AV18UIX       | INOY          |
|----------|--------------|---------------|---------------|---------------|---------------|---------------|
| 1        | $m_{\pi}$    | -5.32(5.28)   | -5.37(5.33)   | -5.31(5.28)   | -4.46(4.42)   | -7.24(7.23)   |
|          | $m_{\eta}$   | -0.571(0.572) | -0.608(0.609) | -0.584(0.585) | -0.478(0.477) | -1.53(1.54)   |
|          | $m_{\rho}$   | -0.233(0.234) | -0.26(0.261)  | -0.241(0.242) | -0.195(0.195) | -0.857(0.862) |
|          | $m_{\omega}$ | -0.223(0.224) | -0.249(0.25)  | -0.231(0.232) | -0.187(0.186) | -0.833(0.838) |
| 2        | $m_{\pi}$    | 5.9(-5.89)    | 6.08(-6.07)   | 6.12(-6.11)   | 5.5(-5.48)    | 10.3(-10.2)   |
|          | $m_{\eta}$   | 0.673(-0.681) | 0.803(-0.81)  | 0.771(-0.777) | 0.629(-0.635) | 2.72(-2.73)   |
|          | $m_{\rho}$   | 0.292(-0.296) | 0.387(-0.391) | 0.351(-0.354) | 0.27(-0.273)  | 1.6(-1.6)     |
|          | $m_{\omega}$ | 0.281(-0.284) | 0.374(-0.378) | 0.337(-0.341) | 0.259(-0.262) | 1.56(-1.56)   |
| 3        | $m_{\pi}$    | 6.76(-7.02)   | 6.78(-7.01)   | 6.76(-6.98)   | 6.66(-6.89)   | 7.46(-7.72)   |
|          | $m_{\eta}$   | 0.775(-0.814) | 0.773(-0.804) | 0.762(-0.794) | 0.784(-0.819) | 1.25(-1.31)   |
|          | $m_{\rho}$   | 0.304(-0.32)  | 0.3(-0.312)   | 0.295(-0.307) | 0.308(-0.322) | 0.645(-0.674) |
|          | $m_{ar}$     | 0.29(-0.305)  | 0.285(-0.297) | 0.281(-0.293) | 0.294(-0.307) | 0.625(-0.653) |
| 4        | $m_{\pi}$    | 2.17(2.42)    | 2.2(2.41)     | 2.25(2.46)    | 2.81(3.03)    | 2.27(2.48)    |
|          | $m_{\eta}$   | 0.286(0.319)  | 0.291(0.317)  | 0.296(0.322)  | 0.372(0.403)  | 0.397(0.436)  |
|          | $m_{\rho}$   | 0.112(0.125)  | 0.114(0.125)  | 0.116(0.127)  | 0.146(0.159)  | 0.202(0.223)  |
|          | $m_{\omega}$ | 0.107(0.12)   | 0.109(0.119)  | 0.111(0.121)  | 0.139(0.152)  | 0.196(0.216)  |
| 5        | $m_{\pi}$    | 19.4(19.6)    | 19.6(19.8)    | 20(20.2)      | 18.3(18.5)    | 19.5(19.6)    |
|          | $m_{\eta}$   | 2.43(2.47)    | 2.59(2.63)    | 2.75(2.8)     | 2.32(2.35)    | 3.5(3.56)     |
|          | $m_{\rho}$   | 0.985(1.01)   | 1.09(1.11)    | 1.2(1.22)     | 0.937(0.953)  | 1.92(1.95)    |
|          | $m_{\omega}$ | 0.942(0.961)  | 1.04(1.06)    | 1.15(1.17)    | 0.896(0.911)  | 1.86(1.9)     |

TABLE II. Contribution of the different TRIV operators in Eq. (5) to the expectation value of  $\frac{2}{\sqrt{6}}\langle\Psi||\hat{D}_{TP}^{pal}||\Psi_{TP}\rangle$ . Calculations have been performed for several different strong potentials and for the <sup>3</sup>He (<sup>3</sup>H) nucleus; values are given in 10<sup>-3</sup> efm units.

Discrepency with results of: I. Stetcu, C.-P. Liu et al., Phys. Lett. B 665, 168 (2008)!!

Important model-dependence, already at  $\pi$ -level!!!

### **P&T violation (EDMs)**



FIG. 2. (Color online) The relative deviations of the  $d_{1\text{He}}^{\text{pol}}$  value from the one obtained for the AV18 potential,  $\Delta \equiv \frac{d^{\text{pol}} - d^{\text{pol}}(AV18)}{dF^{\text{el}}(AV18)} \times$ 100. Results are presented for the operators 1 (a) and 5 (b) and as a function of the cutoff parameter.



FIG. 1. (Color online) The relative deviations of the  $d_d^{pol}$  value from the one obtained for AV18 potential,  $\Delta \equiv \frac{d^{pol}(AV18)}{dP^{ol}(AV18)} \times 100$ . Results are presented as a function of the cutoff parameter.

(nol)

### TVPC case



## **Contributing mesons**

- Pion exchange does not contribute (*M. Simonius, Phys. Lett.*, **B58**, 147 (1975))
- $\rho(770), I^{G}(J^{\pi C}) = 1^{+}(1^{--})$

• 
$$h1(1170), I^{G}(J^{\pi C}) = 0^{-}(1^{+-})$$

$$\begin{split} H^{TP} &= (g_{1}(r) + g_{2}(r)\tau_{1} \cdot \tau_{2} + g_{3}(r)T_{12}^{z} + g_{4}(r)\tau_{+})\hat{r} \cdot \frac{\bar{p}}{m_{N}} \\ &+ (g_{5}(r) + g_{6}(r)\tau_{1} \cdot \tau_{2} + g_{7}(r)T_{12}^{z} + g_{8}(r)\tau_{+}) \sigma_{1} \cdot \sigma_{2}\hat{r} \cdot \frac{\bar{p}}{m_{N}} \\ &+ (g_{9}(r) + g_{10}(r)\tau_{1} \cdot \tau_{2} + g_{11}(r)T_{12}^{z} + g_{12}(r)\tau_{+}) \\ &\times \left(\hat{r} \cdot \sigma_{1}\frac{\bar{p}}{m_{N}} \cdot \sigma_{2} + \hat{r} \cdot \sigma_{2}\frac{\bar{p}}{m_{N}} \cdot \sigma_{1} - \frac{2}{3}\hat{r} \cdot \frac{\bar{p}}{m_{N}} \sigma_{1} \cdot \sigma_{2}\right) \\ &+ (g_{13}(r) + g_{14}(r)\tau_{1} \cdot \tau_{2} + g_{15}(r)T_{12}^{z} + g_{16}(r)\tau_{+}) \\ &\times \left(\hat{r} \cdot \sigma_{1}\hat{r} \cdot \sigma_{2}\hat{r} \cdot \frac{\bar{p}}{m_{N}} - \frac{1}{5}(\hat{r} \cdot \frac{\bar{p}}{m_{N}} \sigma_{1} \cdot \sigma_{2} + \hat{r} \cdot \sigma_{1}\frac{\bar{p}}{m_{N}} \cdot \sigma_{2} + \hat{r} \cdot \sigma_{2}\frac{\bar{p}}{m_{N}} \cdot \sigma_{1})\right) \\ &+ g_{17}(r)\tau_{-}\hat{r} \cdot (\sigma_{\times} \times \frac{\bar{p}}{m_{N}}) + (g_{18}(r))\hat{\tau}_{\times}^{*}\hat{r} \cdot (\sigma_{-} \times \frac{\bar{p}}{m_{N}}), \end{split}$$
(7)  
$$\sigma_{\oplus} = \sigma_{1} \oplus \sigma_{2} \\ &\qquad \Delta \sigma^{TP} = 10^{-6}[g_{h}\bar{g}_{h}(-1.09) + g_{\rho}\bar{g}_{\rho}(4.20 \cdot 10^{-3})] \text{ b}, \\ &\frac{1}{N}\frac{d\phi^{TP}}{dz} = -10^{-3}[g_{h}\bar{g}_{h}(1.24) - g_{\rho}\bar{g}_{\rho}(5.81 \cdot 10^{-3})] \text{ rad fm}^{2} \end{split}$$

## Comparison



According to EFT, one gets following estimates at  $E_{cm}$ =100 keV:

$$\frac{1}{m_N C_n^{p}} \frac{\Delta f^{p}(\mu = m_{\pi})}{p} = \left[ (-1.93 \cdots 2.42) + i(-0.22 \cdots 0.67) \right] f^{m^2},$$

$$\frac{1}{m_N C_n^{Tp}} \frac{\Delta f^{Tp}(\mu = m_{\pi})}{p} = \left[ (-1.63 \cdots 0.66) + i(-0.063 \cdots 0.22) \right] f^{m^2},$$

$$\frac{1}{m_N C_n^{Tp}} \frac{\Delta f^{Tp}(\mu = m_{\pi})}{p} = \left[ (-0.01 \cdots 0.03) + i(-0.0013 \cdots 0.0004) \right] f^{m^2}.$$

$$\Delta \phi \qquad \Delta \sigma$$

## Conclusion

- Efficiency of χEFT demonstrated for EM few-body reactions
- Extensive analysis of P & T violating processes has been performed for low energy n-d scattering
- This reaction might be explored in order to improve our knowledge of P & T coupling constants
- Strong model dependence of matrix elements, it is still believed EFT can handle it

## TO DO

- Higher energies, p-d case
- Heavier system as <sup>3</sup>He(n,p)<sup>3</sup>H, studied at SNS

<u>Acknowledgements</u>: The numerical calculations have been performed at IDRIS (CNRS, France). We thank the staff members of the IDRIS computer center for their constant help.

## Strong interaction

| N N N                                              |          |                                   |                           |
|----------------------------------------------------|----------|-----------------------------------|---------------------------|
|                                                    | Model    | <sup>2</sup> a <sub>nd</sub> [fm] | B ( <sup>3</sup> H) [MeV] |
|                                                    | Av18     | 1.266                             | 7.623                     |
| "                                                  | Av18+UIX | 0.598                             | 8.483                     |
| NN interaction models <i>only effective tools!</i> | Exp.     | 0.65(4)                           | 8.482                     |

• Exact description is possible only fully taking into account *N* structure underlaying theory (*QCD*) but...

#### Our choice

Argonne **AV18** pot. (*Wiringa et al., Phys. Rev.* **C** 51 (1995) 38) fitted to reproduce available np & pp data  $\chi^2_{data} \approx 1.01$  ( n~40 free parameters...)

Supplemented with UIX 3N-force (*B.S. Pudliner et al., Phys. Rev. Lett.* 74 (1995) 4396) fitted in order to improve description of <sup>3</sup>H and <sup>4</sup>He binding energies. But also improves n-d scattering observables at low energy.