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PHYSICAL REVIEW A 83, 040001 (2011)

Editorial: Uncertainty Estimates

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical
calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In
contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication
in Physical Review A without a detailed discussion of the uncertainties involved in the measurements. For example, a graphical
presentation of data is always accompanied by error bars for the data points. The determination of these error bars is often the
most difficult part of the measurement. Without them, it is impossible to tell whether or not bumps and irregularities in the data
are real physical effects, or artifacts of the measurement. Even papers reporting the observation of entirely new phenomena need
to contain enough information to convince the reader that the effect being reported is real. The standards become much more
rigorous for papers claiming high accuracy.

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations.
It is all too often the case that the numerical results are presented without uncertainty estimates. Authors sometimes say that it
is difficult to arrive at error estimates. Should this be considered an adequate reason for omitting them? In order to answer this
question, we need to consider the goals and objectives of the theoretical (or computational) work being done. Theoretical papers
can be broadly classified as follows:

1. Development of new theoretical techniques or formalisms.
2. Development of approximation methods, where the comparison with experiment, or other theory, itself provides an

assessment of the error in the method of calculation.
3. Explanation of previously unexplained phenomena, where a semiquantitative agreement with experiment is already

significant.
4. Proposals for new experimental arrangements or configurations, such as optical lattices.
5. Quantitative comparisons with experiment for the purpose of (a) verifying that all significant physical effects have been

taken into account, and/or (b) interpolating or extrapolating known experimental data.
6. Provision of benchmark results intended as reference data or standards of comparison with other less accurate methods.

It is primarily papers in the last two categories that require a careful assessment of the theoretical uncertainties. The uncertainties
can arise from two sources: (a) the degree to which the numerical results accurately represent the predictions of an underlying
theoretical formalism, for example, convergence with the size of a basis set, or the step size in a numerical integration, and (b)
physical effects not included in the calculation from the beginning, such as electron correlation and relativistic corrections. It is
of course never possible to state precisely what the error is without in fact doing a larger calculation and obtaining the higher
accuracy. However, the same is true for the uncertainties in experimental data. The aim is to estimate the uncertainty, not to state
the exact amount of the error or provide a rigorous bound.

There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation; for
example, in scattering processes involving complex systems. The comparison with experiment itself provides a test of our
theoretical understanding. However, there is a broad class of papers where estimates of theoretical uncertainties can and should
be made. Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations
whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental

measurements.
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

These guidelines have been used on a case-by-case basis for the past two years. Authors have adapted well to this, resulting in
papers of greater interest and significance for our readers.

The Editors
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DOI: 10.1103/PhysRevA.83.040001
PACS number(s): 01.30.Ww

040001-11050-2947/2011/83(4)/040001(1) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.040001
hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Highlight

hgrie
Oval

hgrie
Highlight



PHYSICAL REVIEW A 83, 040001 (2011)

Editorial: Uncertainty Estimates

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical

calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In

contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication

in Physical Review A without a detailed discussion of the uncertainties involved in the measurements. For example, a graphical

presentation of data is always accompanied by error bars for the data points. The determination of these error bars is often the

most difficult part of the measurement. Without them, it is impossible to tell whether or not bumps and irregularities in the data

are real physical effects, or artifacts of the measurement. Even papers reporting the observation of entirely new phenomena need

to contain enough information to convince the reader that the effect being reported is real. The standards become much more

rigorous for papers claiming high accuracy.

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations.

It is all too often the case that the numerical results are presented without uncertainty estimates. Authors sometimes say that it

is difficult to arrive at error estimates. Should this be considered an adequate reason for omitting them? In order to answer this

question, we need to consider the goals and objectives of the theoretical (or computational) work being done. Theoretical papers

can be broadly classified as follows:

Editorial: Uncertainty Estimates

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In

contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication

It is all too often the case that the numerical results are presented without uncertainty estimates. Authors sometimes say that it

is difficult to arrive at error estimates. Should this be considered an adequate reason for omitting them? In order to answer this



physical effects not included in the calculation from the beginning, such as electron correlation and relativistic corrections. It is

of course never possible to state precisely what the error is without in fact doing a larger calculation and obtaining the higher

accuracy. However, the same is true for the uncertainties in experimental data. The aim is to estimate the uncertainty, not to state

the exact amount of the error or provide a rigorous bound.

There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation; for

example, in scattering processes involving complex systems. The comparison with experiment itself provides a test of our

theoretical understanding. However, there is a broad class of papers where estimates of theoretical uncertainties can and should

be made. Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations

whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.

2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental

measurements.

3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

These guidelines have been used on a case-by-case basis for the past two years. Authors have adapted well to this, resulting in

papers of greater interest and significance for our readers.

The Editors

Published 29 April 2011

DOI: 10.1103/PhysRevA.83.040001

PACS number(s): 01.30.Ww

Editorial: Uncertainty Estimates

whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.

3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

be made. Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations

2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental

whenever practicable, and especially under the following circumstances:whenever practicable, and especially under the following circumstances:
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to every human problem —–

neat, plausible, and wrong.
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(f) Leading-Order in the Triton Channel Efimov 1981-88;
Bedaque/Hammer/van Kolck 1998, hg/. . . 2004, hg 2005
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(h) Doublet- S Wave nd Phase Shift Bedaque/hg/Hammer/Rupak 2002, hg 2004

×: AV18+U IX (Kievsky 2002) •: PWA 1967 (Seagrave/van Oers) : N2LO, Λ ∈ [200;∞] MeV

Wilson’s Renormalisability Criterion quantified by “Lepage plot”
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Comparison 1P1 Phase Shift Variational Phase Method vs Conventional
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Cutoff-dependence of (attrractive) 3P0 wvae at fixed k
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Wave functions at  L=600 MeV, compared to AV18 (blue dot - dashed) and Evgeni' s NNLOwf with cutoff 650 MeV
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L As 1 - As � Asexp Η 1 - Η � Ηexp
ground state 600. MeV 0.859027 0.0289095 0.0251004 0.019517

1 st excited 600. MeV 0.87777 0.00772141 0.0260349 -0.0169897

2 nd excited 600. MeV 0.881356 0.00366689 0.0281163 -0.0982913

3 rd excited 600. MeV 0.900188 -0.0176212 0.0188145 0.265057
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SmatrixH1P1, L=848.5281374238571` MeV, k=200.`MeVL
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Phase shift ∆H3S13D1, L=848.5281374238571` MeV, k=19.999999999999996`MeVL @radD
PhaseShifts H∆0,∆2,ΕL normalised to LO normalised to NLOexact
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