

Renormalising nuclear forces: pions and their perturbations

Mike Birse The University of Manchester

Review and further references:

M. C. Birse, Phil Trans Roy Soc A 369 (2011) 2662 [arXiv:1012.4914]

Effective field theories for nuclear forces

Weinberg (1990): extended chiral perturbation theory to two- and three-nucleon systems

- effective field theory expanded in powers of Q/Λ₀ low-energy scales, Q: momenta, m_π (≤ 200 MeV) scales of underlying physics, Λ₀: 4πF_π, M_N, m_p (≥ 800 MeV)
- convergent expansion of potential and observables provided Q/Λ₀ is small enough (good separation of scales)
- terms organised by naive dimensional analysis aka "Weinberg power counting" (simply counts powers of low-energy scales)

Interactions with ranges $\sim 1/\Lambda_0$ not resolved at scales Q

- replaced by contact interactions
- infinite number of terms, constrained only by symmetries of QCD

<ロト < 同ト < 回ト < 回ト = 三日

- iterations (loop diagrams) usually infinite
- \rightarrow need to renormalise
 - we can, provided we have a consistent expansion

But...

Interactions with ranges $\sim 1/\Lambda_0$ not resolved at scales Q

- replaced by contact interactions
- infinite number of terms, constrained only by symmetries of QCD
- iterations (loop diagrams) usually infinite
- $\rightarrow\,$ need to renormalise
 - we can, provided we have a consistent expansion

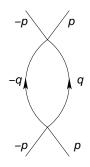
But...

- simply counting powers of low-energy scales: perturbative
- may work for weakly interacting systems: \leq 1 nucleon
- but nucleons interact strongly at low-energies
- bound states exist (nuclei!)
- \rightarrow need to treat some interactions nonperturbatively

Problem: basic nonrelativistic loop diagram of order Q

$$\frac{M}{(2\pi)^3} \int \frac{\mathrm{d}^3 q}{p^2 - q^2 + \mathrm{i}\varepsilon} = -\mathrm{i} \frac{Mp}{4\pi} + \text{analytic}$$

- lowest-order potential, *Q*⁰: contact term and one-pion exchange
- each iteration suppressed by power of Q/Λ₀
- perturbative provided Q < Λ₀
- integral linearly divergent
- cut off (or subtract) at $q = \Lambda$
- still perturbative provided we keep Λ < Λ₀



- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in *Q* (and some of these depend on regulator)

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in *Q* (and some of these depend on regulator)
- not necessarily a problem if these terms are small
- but we need them to generate bound states

- expand potential to some order in Q
- then iterate to all orders in favourite dynamical equation (Schrödinger, Lippmann-Schwinger, ...)
- widely applied and even more widely invoked
- but no clear power counting for observables
- resums subset of terms to all orders in *Q* (and some of these depend on regulator)
- not necessarily a problem if these terms are small
- but we need them to generate bound states (and we don't want just to play "Steven says...")

How can we iterate interactions consistently?

Identify new low-energy scales

- promote leading-order terms to order Q⁻¹
- \rightarrow cancels *Q* from loop and so iterations not suppressed
 - can, and must, then be iterated to all orders (all other terms: perturbations)

How can we iterate interactions consistently?

Identify new low-energy scales

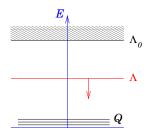
- promote leading-order terms to order Q⁻¹
- \rightarrow cancels *Q* from loop and so iterations not suppressed
 - can, and must, then be iterated to all orders (all other terms: perturbations)

Then use the renormalisation group to determine the power counting

• general tool for analysing scale dependence

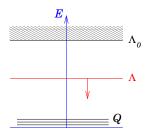
• identify all relevant low-energy scales Q

• identify all relevant low-energy scales Q



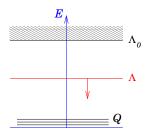
 cut off theory at an arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)

identify all relevant low-energy scales Q



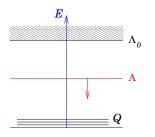
 cut off theory at an arbitary scale Λ between *Q* and Λ₀ (assumes good separation of scales)
 "integrate out" high momentum states by lowering Λ

identify all relevant low-energy scales Q



- cut off theory at an arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)
- "integrate out" high momentum states by lowering Λ
- demand that physics be independent of Λ (eg T matrix)

identify all relevant low-energy scales Q



- cut off theory at an arbitary scale Λ between Q and Λ₀ (assumes good separation of scales)
- "integrate out" high momentum states by lowering Λ
- demand that physics be independent of Λ (eg T matrix)
- rescale express all dimensioned quantities in units of Λ (potential and all low-energy scales)

 Λ is highest acceptable low-energy scale

- do not take it above breakdown scale Λ₀ (unless you know the rules and follow them to the letter!)
- really of order Q
- rescaling \rightarrow power of Λ counts low-energy scales

 Λ is highest acceptable low-energy scale

- do not take it above breakdown scale Λ₀ (unless you know the rules and follow them to the letter!)
- really of order Q
- rescaling \rightarrow power of Λ counts low-energy scales

Endpoints of flow of effective potential as $\Lambda \rightarrow 0$

- fixed points: rescaled theories independent of Λ (except for some three-body systems → limit cycles)
- correspond to scale-free systems
- expand around one using perturbations that scale like Λ^{v}
- \rightarrow EFT with power counting: Q^d where d = v 1

<ロト < 同ト < 回ト < 回ト = 三日

RG for short-range potentials

• potential analytic in all scales Q

$$V(k',k,p;\Lambda) = b_{00}(\Lambda) + b_{20}(\Lambda)(k^2 + k'^2) + b_{02}(\Lambda)p^2 + \cdots$$

k, k': initial, final relative momenta, $p = \sqrt{ME}$: on-shell momentum

• reactance matrix K satisfies Lippmann-Schwinger equation

$$\mathcal{K}(k',k,p) = \mathcal{V}(k',k,p;\Lambda) + rac{M}{2\pi^2} \mathscr{P} \int_0^\Lambda q^2 \mathrm{d}q \, rac{\mathcal{V}(k',q,p;\Lambda)\mathcal{K}(q,k,p)}{p^2 - q^2}$$

 \mathcal{P} : principal value (standing wave bc's)

RG for short-range potentials

• potential analytic in all scales Q

$$V(k',k,p;\Lambda) = b_{00}(\Lambda) + b_{20}(\Lambda)(k^2 + k'^2) + b_{02}(\Lambda)p^2 + \cdots$$

k, *k*': initial, final relative momenta, $p = \sqrt{ME}$: on-shell momentum

• reactance matrix K satisfies Lippmann-Schwinger equation

$$\mathcal{K}(k',k,p) = \mathcal{V}(k',k,p;\Lambda) + \frac{M}{2\pi^2} \mathscr{P} \int_0^{\Lambda} q^2 \mathrm{d}q \, \frac{\mathcal{V}(k',q,p;\Lambda)\mathcal{K}(q,k,p)}{p^2 - q^2}$$

 \mathcal{P} : principal value (standing wave bc's)

• demand full off-shell K matrix be independent of cutoff $\partial K / \partial \Lambda = 0$

(need off-shell to disantangle scaling of redundant operators)

• leads to

$$\frac{\partial V}{\partial \Lambda} = \frac{M}{2\pi^2} V(k', \Lambda, p, \Lambda) \frac{\Lambda^2}{\Lambda^2 - p^2} V(\Lambda, k, p, \Lambda)$$

- RHS: contribution to scattering of states at cutoff $q = \Lambda$
- $\circ~$ removed from loop integrals as we lower Λ
- $\rightarrow~$ effects added into the potential to compensate

leads to

$$\frac{\partial V}{\partial \Lambda} = \frac{M}{2\pi^2} V(k',\Lambda,p,\Lambda) \frac{\Lambda^2}{\Lambda^2 - p^2} V(\Lambda,k,p,\Lambda)$$

- RHS: contribution to scattering of states at cutoff $q = \Lambda$
- $\circ~$ removed from loop integrals as we lower Λ
- \rightarrow effects added into the potential to compensate
- rescale: express all low-energy scales in units of Λ : $\hat{k} = k/\Lambda$ etc and define $\hat{V}(\hat{k}', \hat{k}, \hat{p}; \Lambda) = \frac{M\Lambda}{2\pi^2} V(\Lambda \hat{k}', \Lambda \hat{k}, \Lambda \hat{p}; \Lambda)$
- → RG equation [Birse, McGovern, Richardson (1998)]

$$\Lambda \frac{\partial \widehat{V}}{\partial \Lambda} = \hat{\rho} \frac{\partial \widehat{V}}{\partial \hat{\rho}} + \hat{k}' \frac{\partial \widehat{V}}{\partial \hat{k}'} + \hat{k} \frac{\partial \widehat{V}}{\partial \hat{k}} + \widehat{V} + \widehat{V}(\hat{k}', 1, \hat{\rho}; \Lambda) \frac{1}{1 - \hat{\rho}^2} \widehat{V}(1, \hat{k}, \hat{\rho}; \Lambda)$$

• two interesting fixed-point solutions $\partial \hat{V}_0 / \partial \Lambda = 0$

Trivial fixed point $V_0 = 0$

Describes free particles (scale-free system)

Expansion around $V_0 = 0$ in powers of momenta

- p^{2n} is an eigenfunction of the RG equation: scales as Λ^{2n+1}
- order in EFT given by naive dimensional analysis: Q²ⁿ
- perturbative \rightarrow appropriate EFT for weakly interacting systems

Trivial fixed point $V_0 = 0$

Describes free particles (scale-free system)

Expansion around $V_0 = 0$ in powers of momenta

- p^{2n} is an eigenfunction of the RG equation: scales as Λ^{2n+1}
- order in EFT given by naive dimensional analysis: Q²ⁿ
- perturbative \rightarrow appropriate EFT for weakly interacting systems

Nontrivial fixed point

$$V_0(\rho,\Lambda) = -\frac{2\pi^2}{M\Lambda} \left[1 - \frac{\rho}{2\Lambda} \ln \frac{\Lambda + \rho}{\Lambda - \rho} \right]^{-1}$$
 (sharp cutoff)

- order Q^{-1} (so must be iterated)
- \rightarrow scatteringmatrix $T(p) = i4\pi/Mp$
 - describes "unitary limit": scattering length a → ∞ or bound state exactly at threshold (also scale-free)

Expanding around this point

$$V(p,\Lambda) = V_0(p,\Lambda) + V_0(p,\Lambda)^2 \frac{M}{4\pi} \left(-\frac{1}{a} + \frac{1}{2} r_e p^2 + \cdots \right)$$

- factor V₀² ∝ Λ⁻² promotes terms by two orders compared to naive expectation: Q⁻², Q⁰, ...
- coefficients of perturbations related to effective-range expansion [Bethe (1949)]

First example of new scales

NN scattering lengths $1/a \lesssim 40$ MeV [van Kolck; Kaplan, Savage and Wise (1998)]

- for $p \ll m_{\pi}$ only contact interactions: "pionless EFT"
- (effective-range) expansion around unitary limit: $1/a \rightarrow 0$

First example of new scales

NN scattering lengths $1/a \lesssim 40$ MeV [van Kolck; Kaplan, Savage and Wise (1998)]

- for $p \ll m_{\pi}$ only contact interactions: "pionless EFT"
- (effective-range) expansion around unitary limit: $1/a \rightarrow 0$

Promotion of potential follows from form of wave functions as $r \rightarrow 0$

Schrödinger equation at zero energy for r > 1/Λ₀

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r}\right]\psi_0(r) = 0 \qquad (\text{S wave})$$

- unitary limit \rightarrow irregular solutions: $\psi(r) \propto r^{-1}$
- cutoff smears contact interaction over range $R \sim \Lambda^{-1}$
- → need extra factor Λ^{-2} to cancel cutoff dependence from $|\psi(R)|^2 \propto \Lambda^2$ in matrix elements of potential

One-pion exchange

- important for nuclear physics at energies $\sim 100 \; \text{MeV}$
- order Q⁰ in chiral counting
- → treat as a perturbation [Kaplan, Savage and Wise (1998)]
 - *S* waves: series coverges slowly, if at all [Fleming, Mehen and Stewart (1999)]
 - OPE "unnaturally" strong

One-pion exchange

- important for nuclear physics at energies \sim 100 MeV
- order Q⁰ in chiral counting
- → treat as a perturbation [Kaplan, Savage and Wise (1998)]
 - *S* waves: series coverges slowly, if at all [Fleming, Mehen and Stewart (1999)]
 - OPE "unnaturally" strong
 - strength of OPE set by scale

$$\lambda_{\scriptscriptstyle NN} = rac{16\pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq 290~{
m MeV}$$

built out of high-energy scales $(4\pi F_{\pi}, M_{N})$ but $\sim 2m_{\pi}$

- \rightarrow another low-energy scale?
 - promotes OPE to order Q⁻¹

Central potential

• Yukawa form

$$V_{\pi_{C}}(r) = \frac{1}{3} \frac{m_{\pi}^{2}}{M_{N}\lambda_{\pi}} \frac{e^{-m_{\pi}r}}{r} (\sigma_{1} \cdot \sigma_{2})(\tau_{1} \cdot \tau_{2})$$

- behaves like 1/r for small r
- not singular enough to alter powers of *r* in wave functions
- → same power countings as for short-range potential alone (except for a few additional logarithms)

Central potential

• Yukawa form

$$V_{\pi_{\mathcal{C}}}(r) = \frac{1}{3} \frac{m_{\pi}^2}{M_N \lambda_{\pi}} \frac{e^{-m_{\pi}r}}{r} (\sigma_1 \cdot \sigma_2) (\tau_1 \cdot \tau_2)$$

- behaves like 1/r for small r
- not singular enough to alter powers of *r* in wave functions
- → same power countings as for short-range potential alone (except for a few additional logarithms)

Tensor potential

• much more singular

$$V_{\pi\tau}(r) = \frac{1}{3} \frac{1}{M_{N}\lambda_{\pi}} \left(3 + 3m_{\pi}r + m_{\pi}^{2}r^{2}\right) \frac{e^{-m_{\pi}r}}{r^{3}} S_{12}(\tau_{1} \cdot \tau_{2})$$

- dominated by $1/r^3$ for small r
- \rightarrow very different forms for wave functions

Schrödinger equation for spin-triplet channels at short distances (uncoupled waves, keep only most singular term in potential)

• tends to energy-independent form

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r} - \frac{L(L+1)}{r^2} + \frac{\beta_{LJ}}{r^3}\right]\psi_0(r) = 0 \qquad \beta_{LJ} \propto \frac{1}{\lambda_{_{NN}}}$$

• can be converted to Bessel's equation by defining $x = 2\sqrt{|\beta_{LJ}|/r}$

$$\Psi_0(r) \propto r^{-1/2} \left[\sin \alpha J_{2L+1} \left(2 \sqrt{\frac{\beta_{LJ}}{r}} \right) + \cos \alpha Y_{2L+1} \left(2 \sqrt{\frac{\beta_{LJ}}{r}} \right) \right]$$

- $\beta_{LJ} > 0$: solutions undetermined as $r \to 0$
- $\rightarrow \ \alpha : \ \text{fixes phase of short-distance oscillations} \\ (self-adjoint extension of Hamiltonian)$
 - equivalent to fixing leading contact interaction

Attractive potential $\beta > 0$

• $r \ll 1/\beta$: oscillatory behaviour $(1/r^3)$

$$r^{-1/2}Y_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right) \sim r^{-1/4}\sin\left(2\sqrt{\frac{\beta}{r}}-\left(L+\frac{3}{4}\right)\pi\right)$$

• $r \gg 1/\beta$: usual power law (centrifugal)

$$r^{-1/2}Y_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right)\sim r^{L}$$

Attractive potential $\beta > 0$

• $r \ll 1/\beta$: oscillatory behaviour $(1/r^3)$

$$r^{-1/2}Y_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right) \sim r^{-1/4}\sin\left(2\sqrt{\frac{\beta}{r}}-\left(L+\frac{3}{4}\right)\pi\right)$$

• $r \gg 1/\beta$: usual power law (centrifugal)

$$r^{-1/2}Y_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right) \sim r^L$$

• fine tune $\alpha = \pi/2$

$$r^{-1/2}J_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right)\sim r^{-(L+1)}$$

irregular solution for $r \gg 1/\beta \rightarrow$ unitary limit

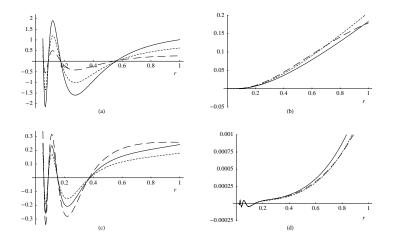
Repulsive case $\beta < 0$: modified Bessel functions

• $r \ll 1/\beta$: exponential behaviour (regular as $r \rightarrow 0$)

$$r^{-1/2} \mathcal{K}_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right) \sim r^{-1/4} \exp\left(-2\sqrt{\frac{\beta}{r}}\right)$$

• $r \gg 1/\beta$: power law

$$r^{-1/2}K_{2L+1}\left(2\sqrt{\frac{\beta}{r}}\right)\sim r^{L}$$



Wave functions $\psi(r)/p^{L}$ for (a) ${}^{3}P_{0}$, (b) ${}^{3}P_{1}$, (c) ${}^{3}D_{2}$, (d) ${}^{3}G_{4}$. Solid lines: energy-independent asymptotic form Short-dashed lines: T = 5 MeV; long-dashed lines: T = 300 MeV

< ∃→

New power countings

Power-law behaviour of wave functions in presence of tensor OPE:

 $\psi(r) \sim r^{-1/4} \times \text{sine or exponential}$

Renormalised contact interactions

- extra factor of $\Lambda^{-1/2}$ to cancel $|\psi(R)|^2 \propto \Lambda^{1/2}$
- → promoted by half order compared to naive dimensional analysis for S waves, but in all partial waves
 - leading term: order $Q^{-1/2}$ (not quite relevant)
 - matches results of full RG analysis [Birse (2006)]

RG analysis \rightarrow second fixed point

- unstable, like effective-range point
- contact interactions promoted by further power of Q⁻¹
- leading term: order $Q^{-3/2} \rightarrow \text{iterate}$
- presumably related to bound state with momentum scale $p \lesssim \beta$ equivalent to taking α close to $\pi/2$

RG analysis \rightarrow second fixed point

- unstable, like effective-range point
- contact interactions promoted by further power of Q⁻¹
- leading term: order $Q^{-3/2} \rightarrow \text{iterate}$
- presumably related to bound state with momentum scale $p \lesssim \beta$ equivalent to taking α close to $\pi/2$

Leading term is relevant only in small regions of α

- explains "new leading order" [Nogga, Timmermans and van Kolck (2005)]
- also "plateaux" in Λ -dependence seen there
- need to fix α to get well-defined wave functions but away low-energy scattering depends weakly on α except around $\alpha = \pi/2$

▲山下▲御下★臣下★臣下 臣 ∞

- $1/r^3$ "short-ranged" for a long-range potential
 - nonperturbative region not resolved by long-wavelength S waves
 - higher partial waves shielded by centrifugal barrier below critical momentum

$$ho_{c} \sim [L(L+1)]^{3/2}/|eta|$$

 \rightarrow perturbative treatment of tensor potential for $p \ll p_c$

Critical momenta in chiral limit

Channel	pc
$3S_1 - 3D_1$	66 MeV
³ <i>P</i> ₀	182 MeV
other P, D waves	\sim 400 MeV
F waves and above	\gtrsim 2000 MeV

Summary

Identifying $\lambda_{\mbox{\tiny NN}}$ as another low-energy scale justifies (requires) iteration of OPE

- scale $\propto \lambda_{\scriptscriptstyle NN}$ defining nonperturbative region depends on L
- "natural" systems: scattering depends weakly on short-distance parameter α or leading contact interactions
- "unnatural" systems: fine-tuned to give low-energy bound state (cf effective-range expansion around unitary limit)

Summary

Identifying $\lambda_{\mbox{\tiny NN}}$ as another low-energy scale justifies (requires) iteration of OPE

- scale $\propto \lambda_{\mbox{\tiny NN}}$ defining nonperturbative region depends on L
- "natural" systems: scattering depends weakly on short-distance parameter α or leading contact interactions
- "unnatural" systems: fine-tuned to give low-energy bound state (cf effective-range expansion around unitary limit)

RG analysis

- gives the possible power countings
- can explain features seen by Nogga, Timmermans and van Kolck, and Pavòn Valderrama and Ruiz Arriola
- but does not say whether separation of scales is good enough
- $\rightarrow\,$ need to examine specific system and its scales

Suggested power countings for triplet waves:

- naive dimensional analysis ("Weinberg")
 - F waves and above
 - *P* and *D* waves for $p \ll \lambda_{\scriptscriptstyle NN}$
- "natural" counting with iterated tensor potential: leading contact term promoted to order $Q^{-1/2}$

 $\circ~$ *P* and *D* waves for $p\gtrsim\lambda_{\scriptscriptstyle NN}$

• "unnatural" counting: leading contact term of order $Q^{-3/2}$

 $^{\circ} ^{3}S_{1} - ^{3}D_{1}$

Open questions

- Is the new power counting needed for all P and D waves?
- Is the unnatural counting required in the ³S₁-³D₁ waves? (And what does it mean in terms of wave functions?)
- Do the same power countings also apply to waves where tensor OPE is repulsive?
- Shold we identify factors of $1/\Lambda_{NN}$ in two-pion exchange potentials?
- What is the counting for three-body forces in presence of tensor OPE?