Correlations and spectroscopic factors

Angelo Signoracci and Thomas Duguet

CEA/Saclay

07 February 2013

・ロシ ・雪 シ ・ 油 マ ・ 山 マ

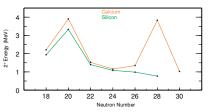
1

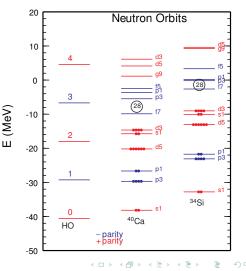
Uncorrelated single particle shell structure

- Utilized to explain observations of correlated many-body observables
- E.g., exotic nuclei exhibit evolution of shell structure with N-Z

- Many-body Schrödinger eq.
 - $H|\Psi_k^A\rangle=E_k^A|\Psi_k^A\rangle$
- One-nucleon addition/removal

$${\sf E}_k^\pm=\pm({\sf E}_k^{A\pm1}-{\sf E}_0^A)$$
 and σ_k^\pm





A. Signoracci Correlations and spectroscopic factors

Spectroscopic quantities

• Spectroscopic probability matrices

$$\begin{split} S^{+pq}_{\mu}(s) &\equiv \langle \Psi^A_0(s) | a_p | \Psi^{A+1}_{\mu}(s) \rangle \langle \Psi^{A+1}_{\mu}(s) | a^{\dagger}_q | \Psi^A_0(s) \rangle \\ S^{-pq}_{\nu}(s) &\equiv \langle \Psi^A_0(s) | a^{\dagger}_q | \Psi^{A-1}_{\nu}(s) \rangle \langle \Psi^{A-1}_{\nu}(s) | a_p | \Psi^A_0(s) \rangle \end{split}$$

- Spectroscopic factors found from tracing spectroscopic probability matrices
 - Basis-independent, but not observable
- In reduced model space, recover typical "definitions"

$$SF^+_{\mu}(s) \equiv |\langle \Psi^{A+1}_{\mu}(s)|a^{\dagger}_{q}|\Psi^{A}_{0}(s)
angle|^2$$

 $SF^-_{\nu}(s) \equiv |\langle \Psi^{A-1}_{\nu}(s)|a_{p}|\Psi^{A}_{0}(s)
angle|^2$

Issues

- Variant results with identical, accurate many-body methods
- Experimental cross sections cannot be directly associated to spectroscopic values
- Practitioners are unwilling to relinquish single particle shell structure
- Advice
 - Be consistent (in resolution scale, in many-body methods, etc.)
 - Focus on relative values rather than absolute values
 - Compare experimental observables (energy and cross section) to theoretical results
 - Employ same theoretical method to produce non-observables (SF and ES

Spectroscopic quantities

• Spectroscopic probability matrices

$$\begin{split} S^{+pq}_{\mu}(s) &\equiv \langle \Psi^A_0(s) | a_p | \Psi^{A+1}_{\mu}(s) \rangle \langle \Psi^{A+1}_{\mu}(s) | a^{\dagger}_q | \Psi^A_0(s) \rangle \\ S^{-pq}_{\nu}(s) &\equiv \langle \Psi^A_0(s) | a^{\dagger}_q | \Psi^{A-1}_{\nu}(s) \rangle \langle \Psi^{A-1}_{\nu}(s) | a_p | \Psi^A_0(s) \rangle \end{split}$$

- Spectroscopic factors found from tracing spectroscopic probability matrices
 - Basis-independent, but not observable
- In reduced model space, recover typical "definitions"

$$\begin{split} SF^+_{\mu}(s) &\equiv |\langle \Psi^{A+1}_{\mu}(s)|a^{\dagger}_{q}|\Psi^{A}_{0}(s)\rangle|^2\\ SF^-_{\nu}(s) &\equiv |\langle \Psi^{A-1}_{\nu}(s)|a_{\rho}|\Psi^{A}_{0}(s)\rangle|^2 \end{split}$$

Issues

- Variant results with identical, accurate many-body methods
- Experimental cross sections cannot be directly associated to spectroscopic values
- Practitioners are unwilling to relinquish single particle shell structure

Advice

- Be consistent (in resolution scale, in many-body methods, etc.)
- Focus on relative values rather than absolute values
- Compare experimental observables (energy and cross section) to theoretical results
- Employ same theoretical method to produce non-observables (SF and ES

Spectroscopic quantities

• Spectroscopic probability matrices

$$\begin{split} S^{+pq}_{\mu}(s) &\equiv \langle \Psi^A_0(s) | a_p | \Psi^{A+1}_{\mu}(s) \rangle \langle \Psi^{A+1}_{\mu}(s) | a^{\dagger}_q | \Psi^A_0(s) \rangle \\ S^{-pq}_{\nu}(s) &\equiv \langle \Psi^A_0(s) | a^{\dagger}_q | \Psi^{A-1}_{\nu}(s) \rangle \langle \Psi^{A-1}_{\nu}(s) | a_p | \Psi^A_0(s) \rangle \end{split}$$

- Spectroscopic factors found from tracing spectroscopic probability matrices
 - Basis-independent, but not observable
- In reduced model space, recover typical "definitions"

$$\begin{aligned} SF^+_{\mu}(s) &\equiv |\langle \Psi^{A+1}_{\mu}(s)|a^{\dagger}_{q}|\Psi^{A}_{0}(s)\rangle|^2 \\ SF^-_{\nu}(s) &\equiv |\langle \Psi^{A-1}_{\nu}(s)|a_{\rho}|\Psi^{A}_{0}(s)\rangle|^2 \end{aligned}$$

Issues

- Variant results with identical, accurate many-body methods
- Experimental cross sections cannot be directly associated to spectroscopic values
- Practitioners are unwilling to relinquish single particle shell structure

Advice

- Be consistent (in resolution scale, in many-body methods, etc.)
- Focus on relative values rather than absolute values
- Compare experimental observables (energy and cross section) to theoretical results
- Employ same theoretical method to produce non-observables (SF and ESPE)

Image: A matrix

Effective single particle energies

• Requirements

- Define a single particle basis for the many-body problem of interest
- Solve by exclusively treating correlated many-body problem
- Independent of initial single particle basis
- Recover Hartree-Fock SPE in HF approximation

• (Relatively) Well-known prescription

- Method proposed by Baranger in Nucl. Phys. A 149, 225 (1970)
- Can be determined by one solution to Schrödinger equation
- Requires summation over particle and hole states
- Basis-independent but not observable (depend on resolution scale s)
- Formalism
 - Solution to eigenvalue problem $h^{cent}\psi_p^{cent} = e_p^{cent}\psi_p^{cent}$, where

$$h_{pq}^{cent} \equiv \sum_{\mu \in \mathscr{M}_{A+1}} S_{\mu}^{+pq} E_{\mu}^{+} + \sum_{\mu \in \mathscr{M}_{A-1}} S_{\mu}^{-pq} E_{\mu}^{-}$$

In reduced model space, recover

$$e_p^{cent} \equiv \varepsilon = \sum_{\mu \in \mathscr{H}_{A+1}} SF_{\mu}^+ E_{\mu}^+ + \sum_{\mu \in \mathscr{H}_{A-1}} SF_{\mu}^- E_{\mu}^-$$

Effective single particle energies

- Requirements
 - Define a single particle basis for the many-body problem of interest
 - Solve by exclusively treating correlated many-body problem
 - Independent of initial single particle basis
 - Recover Hartree-Fock SPE in HF approximation
- (Relatively) Well-known prescription
 - Method proposed by Baranger in Nucl. Phys. A 149, 225 (1970)
 - Can be determined by one solution to Schrödinger equation
 - Requires summation over particle and hole states
 - Basis-independent but not observable (depend on resolution scale s)
- Formalism
 - Solution to eigenvalue problem $h^{cent} \psi_p^{cent} = e_p^{cent} \psi_p^{cent}$, where

$$h_{pq}^{cent} \equiv \sum_{\mu \in \mathscr{M}_{A+1}} S_{\mu}^{+pq} E_{\mu}^{+} + \sum_{\mu \in \mathscr{M}_{A-1}} S_{\mu}^{-pq} E_{\mu}^{-}$$

In reduced model space, recover

$$e_p^{cent} \equiv \varepsilon = \sum_{\mu \in \mathscr{H}_{A+1}} SF_{\mu}^+ E_{\mu}^+ + \sum_{\mu \in \mathscr{H}_{A-1}} SF_{\mu}^- E_{\mu}^-$$

Effective single particle energies

- Requirements
 - Define a single particle basis for the many-body problem of interest
 - Solve by exclusively treating correlated many-body problem
 - Independent of initial single particle basis
 - Recover Hartree-Fock SPE in HF approximation
- (Relatively) Well-known prescription
 - Method proposed by Baranger in Nucl. Phys. A 149, 225 (1970)
 - Can be determined by one solution to Schrödinger equation
 - Requires summation over particle and hole states
 - Basis-independent but not observable (depend on resolution scale s)
- Formalism
 - Solution to eigenvalue problem $h^{cent}\psi_p^{cent} = e_p^{cent}\psi_p^{cent}$, where

$$h_{pq}^{cent}\equiv\sum_{\mu\in\mathscr{H}_{A+1}}S_{\mu}^{+pq}E_{\mu}^{+}+\sum_{\mu\in\mathscr{H}_{A-1}}S_{\mu}^{-pq}E_{\mu}^{-}$$

In reduced model space, recover

$$e_{p}^{cent} \equiv \varepsilon = \sum_{\mu \in \mathscr{H}_{A+1}} SF_{\mu}^{+}E_{\mu}^{+} + \sum_{\mu \in \mathscr{H}_{A-1}} SF_{\mu}^{-}E_{\mu}^{-}$$

- ∢ ⊒ ▶

- Use configuration interaction technique to calculate sd shell nuclei
- Effective interactions determined semi-microscopically
 - Starting from underlying nucleon-nucleon potential (N3LO)
 - Q RG+MBPT to determine TBME in reduced model space
 - v_{lowk} cutoff $\Lambda = 1.8, 1.9, \dots, 2.5$ fm⁻¹ (8 interactions total)
 - SPE taken from Skyrme Hartree Fock calculation with Skxtb interaction
- SPE from Skyrme Hartree-Fock theory are known to be unreliable
- Results depend on SPE, but primarily result in overall shift
- Could parameterize and fit to available data
- Also compared to new empirical USDB interaction
- For all even-even nuclei in the model space
 - Calculated lowest 0⁺,2⁺,4⁺ states
 - \bullet Calculated all states accessible by one-nucleon addition or removal from g.s. $(1/2^+,3/2^+,5/2^+)$
 - Determined spectroscopic factors and ESPE

- Use configuration interaction technique to calculate sd shell nuclei
- Effective interactions determined semi-microscopically
 - Starting from underlying nucleon-nucleon potential (N3LO)
 - Q RG+MBPT to determine TBME in reduced model space
 - v_{lowk} cutoff $\Lambda = 1.8, 1.9, \dots, 2.5$ fm⁻¹ (8 interactions total)
 - SPE taken from Skyrme Hartree Fock calculation with Skxtb interaction
- SPE from Skyrme Hartree-Fock theory are known to be unreliable
- Results depend on SPE, but primarily result in overall shift
- Could parameterize and fit to available data
- Also compared to new empirical USDB interaction
- For all even-even nuclei in the model space
 - Calculated lowest 0⁺,2⁺,4⁺ states
 - \bullet Calculated all states accessible by one-nucleon addition or removal from g.s. $(1/2^+,3/2^+,5/2^+)$
 - Determined spectroscopic factors and ESPE

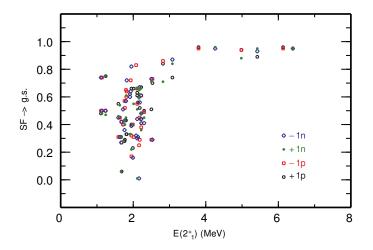
- Use configuration interaction technique to calculate sd shell nuclei
- Effective interactions determined semi-microscopically
 - Starting from underlying nucleon-nucleon potential (N3LO)
 - Q RG+MBPT to determine TBME in reduced model space
 - v_{lowk} cutoff $\Lambda = 1.8, 1.9, \dots, 2.5$ fm⁻¹ (8 interactions total)
 - SPE taken from Skyrme Hartree Fock calculation with Skxtb interaction
- SPE from Skyrme Hartree-Fock theory are known to be unreliable
- Results depend on SPE, but primarily result in overall shift
- Could parameterize and fit to available data
- Also compared to new empirical USDB interaction
- For all even-even nuclei in the model space
 - Calculated lowest 0⁺,2⁺,4⁺ states
 - \bullet Calculated all states accessible by one-nucleon addition or removal from g.s. $(1/2^+,3/2^+,5/2^+)$
 - Determined spectroscopic factors and ESPE

- Use configuration interaction technique to calculate sd shell nuclei
- Effective interactions determined semi-microscopically
 - Starting from underlying nucleon-nucleon potential (N3LO)
 - Q RG+MBPT to determine TBME in reduced model space
 - v_{lowk} cutoff $\Lambda = 1.8, 1.9, \dots, 2.5$ fm⁻¹ (8 interactions total)
 - SPE taken from Skyrme Hartree Fock calculation with Skxtb interaction
- SPE from Skyrme Hartree-Fock theory are known to be unreliable
- Results depend on SPE, but primarily result in overall shift
- Could parameterize and fit to available data
- Also compared to new empirical USDB interaction
- For all even-even nuclei in the model space
 - Calculated lowest 0⁺,2⁺,4⁺ states
 - \bullet Calculated all states accessible by one-nucleon addition or removal from g.s. $(1/2^+,3/2^+,5/2^+)$
 - Determined spectroscopic factors and ESPE

4 E b

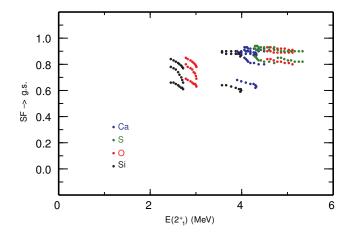
- Use configuration interaction technique to calculate sd shell nuclei
- Effective interactions determined semi-microscopically
 - Starting from underlying nucleon-nucleon potential (N3LO)
 - Q RG+MBPT to determine TBME in reduced model space
 - v_{lowk} cutoff $\Lambda = 1.8, 1.9, \dots, 2.5$ fm⁻¹ (8 interactions total)
 - SPE taken from Skyrme Hartree Fock calculation with Skxtb interaction
- SPE from Skyrme Hartree-Fock theory are known to be unreliable
- Results depend on SPE, but primarily result in overall shift
- Could parameterize and fit to available data
- Also compared to new empirical USDB interaction
- For all even-even nuclei in the model space
 - \bullet Calculated lowest $0^+,2^+,4^+$ states
 - Calculated all states accessible by one-nucleon addition or removal from g.s. $\left(1/2^+,3/2^+,5/2^+\right)$
 - Determined spectroscopic factors and ESPE

Results with reference effective interaction v_{ref} ($\Lambda = 2.2 \text{ fm}^{-1}$)



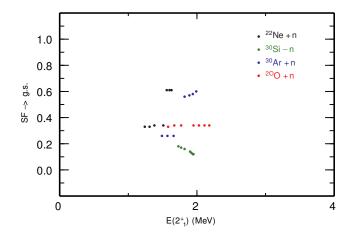
- 6-8 "doubly magic" nuclei
- Many states near 2 MeV with range of SF

Restriction to doubly magic nuclei



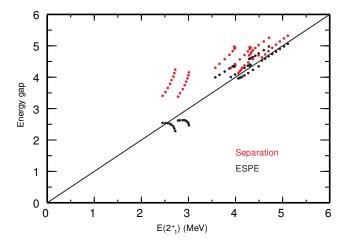
- $\bullet\,$ Much fewer nuclei \to produce more points as a function of cutoff
- SF at higher-energy are nearly constant with cutoff
- $\bullet~20\%$ effect for ^{22}O and ^{22}Si

Selected open-shell nuclei



- $E(2_1^+)$ decreases as cutoff increases
- SF have inconsistent behavior as a function of cutoff
- $\bullet\,$ Factor of 2 "jump" for $^{22}Ne,\,^{30}Ar$

Energy gaps



- Separation energy gaps typically higher than $E(2_1^+)$
- ESPE correlate better
- For ²²O and ²²Si, cutoff affects correlation

- In prior examples, summation over 200 states in removal and additional channel
- In each case, exhausted sum rule

$$1 \hspace{0.1 cm} = \sum_{\mu \in \mathscr{H}_{A+1}} SF_{\mu}^{+} \hspace{0.1 cm} + \sum_{\mu \in \mathscr{H}_{A-1}} SF_{\mu}^{-}$$

- Appropriate protocol
 - Postulate consistent scheme
 - Maintain fixed H and s throughout
 - Consistent reaction/structure theory
 - 2 Validate theory against $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$
 - Obtain S_k^{\pm} from structure calculation
- Truncate Baranger sum rule in reduced model space

$$\varepsilon^{\text{trunc}} \equiv \frac{\sum\limits_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum\limits_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- Evaluate typical truncation procedures in isotopic chain
 - Error on ESPE due to truncated strength?
 - Statistical uncertainty due to incomplete $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$?

- In prior examples, summation over 200 states in removal and additional channel
- In each case, exhausted sum rule

$$\mathbb{L} = \sum_{\mu \in \mathscr{H}_{A+1}} SF^+_\mu \ + \sum_{\mu \in \mathscr{H}_{A-1}} SF^-_\mu$$

• Appropriate protocol

- Postulate consistent scheme
 - Maintain fixed H and s throughout
 - Consistent reaction/structure theory
- 2 Validate theory against $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$
- **(a)** Obtain S_k^{\pm} from structure calculation

Truncate Baranger sum rule in reduced model space

$$\varepsilon^{\text{trunc}} \equiv \frac{\sum_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- Evaluate typical truncation procedures in isotopic chain
 - Error on ESPE due to truncated strength?
 - Statistical uncertainty due to incomplete $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$

- In prior examples, summation over 200 states in removal and additional channel
- In each case, exhausted sum rule

$$\mathbb{L} = \sum_{\mu \in \mathscr{H}_{A+1}} SF^+_\mu \ + \sum_{\mu \in \mathscr{H}_{A-1}} SF^-_\mu$$

- Appropriate protocol
 - Postulate consistent scheme
 - Maintain fixed H and s throughout
 - Consistent reaction/structure theory
 - 2 Validate theory against $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$
 - **(a)** Obtain S_k^{\pm} from structure calculation
- Truncate Baranger sum rule in reduced model space

$$\varepsilon^{\text{trunc}} \equiv \frac{\sum_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- Evaluate typical truncation procedures in isotopic chain
 - Error on ESPE due to truncated strength?
 - Statistical uncertainty due to incomplete $E_k^{\pm}(\exp)/\sigma_{k-}^{\pm}(\exp)$

- In prior examples, summation over 200 states in removal and additional channel
- In each case, exhausted sum rule

$$\mathbb{L} = \sum_{\mu \in \mathscr{H}_{A+1}} SF^+_\mu \ + \sum_{\mu \in \mathscr{H}_{A-1}} SF^-_\mu$$

- Appropriate protocol
 - Postulate consistent scheme
 - Maintain fixed H and s throughout
 - Consistent reaction/structure theory
 - 2 Validate theory against $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$
 - **(**) Obtain S_k^{\pm} from structure calculation
- Truncate Baranger sum rule in reduced model space

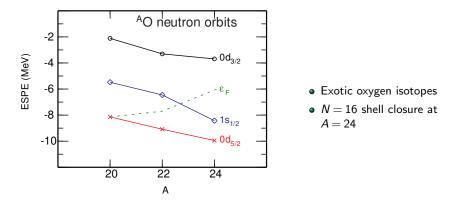
$$\varepsilon^{\text{trunc}} \equiv \frac{\sum_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- Evaluate typical truncation procedures in isotopic chain
 - Error on ESPE due to truncated strength?
 - Statistical uncertainty due to incomplete $E_k^{\pm}(\exp)/\sigma_k^{\pm}(\exp)$?

Reconstruction of ESPE

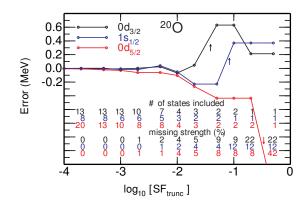
Conclusions

Evolution of single particle shell structure



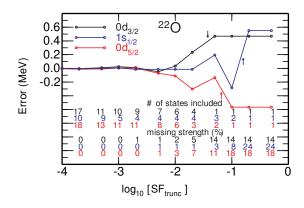
Isotope	$E_{2_1^+}(th.)$	$E_{2_{1}^{+}}(exp.)$	$SF_0^{-/+}$	$\Delta e_{F}^{\mathrm{ESPE}}$	Characterization
²⁰ O	1.87	1.67	0.58/0.34	0.00	Open-shell
²² 0	2.92	3.20	0.82/0.76	2.63	Closed-subshell
²⁴ 0	4.78	4.72	0.89/0.92	4.74	Good closed-shell

Truncation in spectroscopic strength



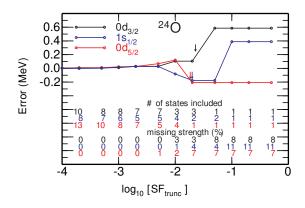
 $\bullet~\mbox{Open-shell} \rightarrow \mbox{both channels required}$

Truncation in spectroscopic strength



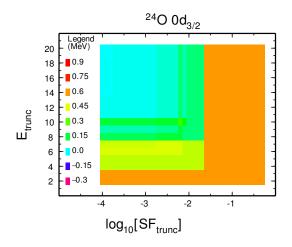
- $\bullet~$ Closed-subshell \rightarrow 500 keV effect from lowest state of secondary channel
- Spin-orbit splitting affected by over 1 MeV by exclusion of secondary channel

Truncation in spectroscopic strength



- $\bullet~\mbox{Good}$ closed-shell \rightarrow 500 keV effect from secondary channel
- $\bullet\,$ Need to include all ${\it SF} \geq 0.01$ for desired precision

Error based on truncation

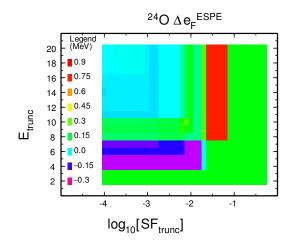


- In all experiments, truncations in excitation energy and SF are necessary
- \bullet Effect on $0d_{3/2}$ ESPE is 600 keV for $\textit{E}_{trunc} \leq 3 \text{ or } \textit{SF}_{trunc} \geq 0.04$

夏

< ∃ →

Error based on truncation



• Fermi gap can vary by 1 MeV for reasonable experimental conditions

Summary

• Microscopic interactions renormalized into nuclear medium

• Full-CI calculations performed in reduced model space

- SF and ESPE are basis-independent but not observable
 - Depend on resolution scale s
 - Consistent many-body methods are required for meaningful discussion
- Within one consistent scheme
 - Direct truncation of strength can result in 0.6 MeV error on ESPE
 - Even for good closed-shell nuclei
 - ullet Error on Fermi gap and spin-orbit splitting $> 1~{
 m MeV}$
 - Even when reproducing (limited) data, large errors result
 - Must include primary and secondary channels to determine ESPE
- In order to discuss shell structure meaningfully
 - Employ a consistent scheme
 - Determine from theory (with a method that reproduces experimental observables)
 - Evaluate errors, e.g. statistically

4 E b

Summary

- Microscopic interactions renormalized into nuclear medium
- Full-CI calculations performed in reduced model space
- SF and ESPE are basis-independent but not observable
 - Depend on resolution scale s
 - Consistent many-body methods are required for meaningful discussion
- Within one consistent scheme
 - Direct truncation of strength can result in 0.6 MeV error on ESPE
 - Even for good closed-shell nuclei
 - ${\scriptstyle \bullet}\,$ Error on Fermi gap and spin-orbit splitting $> 1~{\rm MeV}$
 - Even when reproducing (limited) data, large errors result
 - Must include primary and secondary channels to determine ESPE
- In order to discuss shell structure meaningfully
 - Employ a consistent scheme
 - Determine from theory (with a method that reproduces experimental observables)
 - Evaluate errors, e.g. statistically

4 E b

Summary

- Microscopic interactions renormalized into nuclear medium
- Full-CI calculations performed in reduced model space
- SF and ESPE are basis-independent but not observable
 - Depend on resolution scale s
 - Consistent many-body methods are required for meaningful discussion
- Within one consistent scheme
 - Direct truncation of strength can result in 0.6 MeV error on ESPE
 - Even for good closed-shell nuclei
 - $\bullet\,$ Error on Fermi gap and spin-orbit splitting > 1~MeV
 - Even when reproducing (limited) data, large errors result
 - Must include primary and secondary channels to determine ESPE
- In order to discuss shell structure meaningfully
 - Employ a consistent scheme
 - Determine from theory (with a method that reproduces experimental observables)
 - Evaluate errors, e.g. statistically

Summary

- Microscopic interactions renormalized into nuclear medium
- Full-CI calculations performed in reduced model space
- SF and ESPE are basis-independent but not observable
 - Depend on resolution scale s
 - Consistent many-body methods are required for meaningful discussion
- Within one consistent scheme
 - Direct truncation of strength can result in 0.6 MeV error on ESPE
 - Even for good closed-shell nuclei
 - $\bullet\,$ Error on Fermi gap and spin-orbit splitting > 1~MeV
 - Even when reproducing (limited) data, large errors result
 - Must include primary and secondary channels to determine ESPE
- In order to discuss shell structure meaningfully
 - Employ a consistent scheme
 - Determine from theory (with a method that reproduces experimental observables)
 - Evaluate errors, e.g. statistically