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Introduction Full results in sd shell Reconstruction of ESPE Conclusions

Uncorrelated single particle shell structure

Utilized to explain observations of correlated many-body observables
E.g., exotic nuclei exhibit evolution of shell structure with N−Z
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Spectroscopic quantities

Spectroscopic probability matrices

S+pq
µ (s)≡ 〈ΨA

0 (s)|ap |ΨA+1
µ (s)〉〈ΨA+1

µ (s)|a†
q |ΨA

0 (s)〉

S−pqν (s)≡ 〈ΨA
0 (s)|a†

q |ΨA−1
ν (s)〉〈ΨA−1

ν (s)|ap |ΨA
0 (s)〉

Spectroscopic factors found from tracing spectroscopic probability matrices
Basis-independent, but not observable

In reduced model space, recover typical “definitions”

SF+
µ (s)≡ |〈ΨA+1

µ (s)|a†
q |ΨA

0 (s)〉|2

SF−ν (s)≡ |〈ΨA−1
ν (s)|ap |ΨA

0 (s)〉|2

Issues
Variant results with identical, accurate many-body methods
Experimental cross sections cannot be directly associated to spectroscopic values
Practitioners are unwilling to relinquish single particle shell structure

Advice
Be consistent (in resolution scale, in many-body methods, etc.)
Focus on relative values rather than absolute values
Compare experimental observables (energy and cross section) to theoretical results
Employ same theoretical method to produce non-observables (SF and ESPE)
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Effective single particle energies

Requirements
Define a single particle basis for the many-body problem of interest
Solve by exclusively treating correlated many-body problem
Independent of initial single particle basis
Recover Hartree-Fock SPE in HF approximation

(Relatively) Well-known prescription
Method proposed by Baranger in Nucl. Phys. A 149, 225 (1970)
Can be determined by one solution to Schrödinger equation
Requires summation over particle and hole states
Basis-independent but not observable (depend on resolution scale s)

Formalism
Solution to eigenvalue problem hcentψcent

p = ecentp ψcent
p , where

hcentpq ≡ ∑
µ∈HA+1

S+pq
µ E+

µ + ∑
µ∈HA−1

S−pqµ E−µ

In reduced model space, recover

ecentp ≡ ε = ∑
µ∈HA+1

SF+
µ E+

µ + ∑
µ∈HA−1

SF−µ E−µ
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Procedure

Use configuration interaction technique to calculate sd shell nuclei

Effective interactions determined semi-microscopically
1 Starting from underlying nucleon-nucleon potential (N3LO)
2 RG+MBPT to determine TBME in reduced model space
3 vlowk cutoff Λ = 1.8,1.9, . . . ,2.5 fm−1 (8 interactions total)
4 SPE taken from Skyrme Hartree Fock calculation with Skxtb interaction

SPE from Skyrme Hartree-Fock theory are known to be unreliable

Results depend on SPE, but primarily result in overall shift

Could parameterize and fit to available data

Also compared to new empirical USDB interaction

For all even-even nuclei in the model space
Calculated lowest 0+,2+,4+ states
Calculated all states accessible by one-nucleon addition or removal from g.s.
(1/2+,3/2+,5/2+)
Determined spectroscopic factors and ESPE

A. Signoracci Correlations and spectroscopic factors
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Results with reference effective interaction vref (Λ = 2.2 fm−1)
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Restriction to doubly magic nuclei
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Selected open-shell nuclei
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Energy gaps
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Reconstructing ESPE

In prior examples, summation over 200 states in removal and additional channel

In each case, exhausted sum rule

1 = ∑
µ∈HA+1

SF+
µ + ∑

µ∈HA−1

SF−µ

Appropriate protocol
1 Postulate consistent scheme

Maintain fixed H and s throughout
Consistent reaction/structure theory

2 Validate theory against E±k (exp)/σ
±
k (exp)

3 Obtain S±k from structure calculation

Truncate Baranger sum rule in reduced model space

ε
trunc ≡

trunc

∑
k

(SF+
k E+

k +SF−k E−k )

trunc

∑
k

(SF+
k +SF−k )

Evaluate typical truncation procedures in isotopic chain
Error on ESPE due to truncated strength?
Statistical uncertainty due to incomplete E±k (exp)/σ

±
k (exp)?
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Evolution of single particle shell structure
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Truncation in spectroscopic strength
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Truncation in spectroscopic strength
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Error based on truncation
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Error based on truncation
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Summary

Microscopic interactions renormalized into nuclear medium

Full-CI calculations performed in reduced model space

SF and ESPE are basis-independent but not observable
Depend on resolution scale s
Consistent many-body methods are required for meaningful discussion

Within one consistent scheme
Direct truncation of strength can result in 0.6 MeV error on ESPE
Even for good closed-shell nuclei
Error on Fermi gap and spin-orbit splitting > 1 MeV
Even when reproducing (limited) data, large errors result
Must include primary and secondary channels to determine ESPE

In order to discuss shell structure meaningfully
Employ a consistent scheme
Determine from theory (with a method that reproduces experimental observables)
Evaluate errors, e.g. statistically
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