

Fig. 1. Comparisons between the exact EWSR of eq. (3) (solid line) and those deduced from eq. (2) (dotted line) in ${ }^{78} \mathrm{Ni}$ for of the EWSR scale is $\mathrm{e}^{2} \mathrm{MeV}$. The abscissa q represents the

Excitations and QRPA calculations

with the Gogny force

Sophie Péru
\&
Marco Martini Marc Dupuis

QRPA formalism

HFB+QRPA

$$
\theta_{n}^{+}=\sum_{v} X_{n}^{i} \beta_{i}^{+} \beta_{j}^{+}+Y_{n}^{i} \beta_{j} \beta_{i}
$$

$\left\{\beta^{+} \beta\right\}$ qp creation and annihilation operators.
θ are solution of

$$
\left.\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)\binom{X}{Y}=\omega\binom{X}{-Y}, \quad|n\rangle=\theta \begin{array}{c|c}
+ & \tilde{0}
\end{array}\right\rangle
$$

In our approach, The effective interaction D1S is used both in the HFB mean field and in the QRPA matrix. In axial symmetry, QRPA states $\{\theta+\}$ are obtained for each block $K^{\pi} \quad\left(K^{\pi} \leq J^{\pi}\right)$

Restoration of rotational symmetry for deformed states

$$
\left.\left.|J M(K)\rangle=\frac{\sqrt{2 J+1}}{4 \pi} \int d \Omega D_{M K}^{J}(\Omega) \mathrm{R}(\Omega) \theta_{K}\right\rangle+(-)^{J-K} D_{M-K}^{J}(\Omega) \mathrm{R}(\Omega) \bar{\theta}_{K}\right\rangle
$$

We want to calculate: $\quad\langle\tilde{\mathbf{0}}| \hat{Q}_{\lambda \mu}|J M(K)\rangle \quad$ for all QRPA states $(\mathrm{K} \leq \mathrm{J})$
For example: $J^{\pi}=2^{+} \quad \hat{Q}_{20}=\sum r^{2}\left(Y_{20}\right) \quad$ In intrinsic frame $\quad r^{2} \boldsymbol{Y}_{\lambda \mu}=\sum_{v} D_{\mu v}^{\lambda} r^{2} \boldsymbol{Y}_{\lambda v}$
Using rotational approximation and relations for 3 j symbols

$$
\left\langle\widetilde{0} \hat{Q}_{20} \mid J M(K)\right\rangle=\frac{1}{\sqrt{5}}\left\langle 0 \hat{Q}_{20} \mid \theta_{K}\right\rangle \delta_{K, 0}+\frac{\sqrt{3}}{\sqrt{5}}\left\langle 0 \hat{Q}_{2-1} \mid \theta_{K}\right\rangle \delta_{K, \pm 1}+\frac{\sqrt{3}}{\sqrt{5}}\left\langle 0 \mid \hat{Q}_{22} \theta_{K}\right\rangle \delta_{K, \pm 2}
$$

Using time reversal symmetry, three independent calculations ($\mathrm{K}^{\pi}=\mathbf{0}^{+}, \mathbf{1}^{+}, 2^{+}$) are needed.

RPA approaches describe all multipolarties and all parities, collective states and individual ones, low energy and high energy states with the same accuracy.

Within the small amplitude approximation, i.e. « harmonic » nuclei

High energy collective states: giant resonances

Giant resonances are related to nuclear matter properties
Monopole

IS GMR
Dipole

Quadrupole

Octupole

GQR

IV GMR

IV GDR

RPA in spherical symmetry

Giant resonances in exotic nuclei:

${ }^{100}$ Sn, ${ }^{132}$ Sn, ${ }^{78 N}$ i; S. Péru, J.F. Berger, and P.F. Bortignon, Eur. Phys. Jour. A 26, 25-32 (2005)

Monopole

Dipole

Quadrupole

\rightarrow Such study have shown the role of the consistence between mean field and RPA matrix.

Approach limited to Spherical nuclei with no pairing

QRPA in axial symmetry :

IV Dipole $\quad \mathrm{K}^{\pi}=0^{-} \quad \mathrm{K}^{\pi}=1-$

```
Potential
Energy
Surfaces
```


Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force, S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).

dipole response for Neon isotopes

Increasing neutron number

-Low energy dipole resonances and shift to low energies - Increasing of fragmentation

random-phase approximation and the Gogny force

M1 $\boldsymbol{\gamma}$ Strength for Zirconium Nuclei in the Photoneutron Channel

H. Utsunomiya, ${ }^{1}$ S. Goriely, ${ }^{2}$ T. Kondo, ${ }^{1}$ T. Kaihori, ${ }^{1}$ A. Makinaga, ${ }^{1}$ S. Goko, ${ }^{3}$ H. Akimune, ${ }^{1}$ T. Yamagata, ${ }^{1}$ H. Toyokawa, ${ }^{4}$
T. Matsumoto, ${ }^{4}$ H. Harano, ${ }^{4}$ S. Hohara, ${ }^{5}$ Y.-W. Lui, ${ }^{6}$ S. Hilaire, ${ }^{7}$ S. Péru, ${ }^{7}$ and A. J. Koning ${ }^{8}$
${ }^{1}$ Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan
${ }^{2}$ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium ${ }^{3}$ Japan Atomic Energy Agency, Tokai-mura, Naka, Ibaraki 319-1195, Japan
${ }^{4}$ National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
Atomic Energy Research Institute, Kinki University, Kowakae 3-4-1, Osaka 577-8502, Japan
${ }^{6}$ Cyclotron Institute, Texas A\&M University, College Station, Texas 77843, USA
${ }^{7}$ Département de Physique Théorique et Appliquée, Service de Physique Nucléaire, B.P. 12-F-91680 Bruyères-le-Châtel, France ${ }^{8}$ Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG Petten, The Netherlands (Received 30 November 2007; published 24 April 2008)

Dipole response for Zr isotopes

B(E1) B(M1)

S. Goriely, H. Goutte,
S. Hilaire,
M. Martini,
S. Péru, ...

Beyond mean field ... with "GCM"

HFB+QRPA / HFB+5DCH with the same interaction:

[^0]
Spectroscopy in Ni isotopes within QRPA

L. Gaudefroy \& S. Péru

PHYSICAL REVIEW C 85, 031301(R) (2012)
Discovery of a new isomeric state in ${ }^{68} \mathrm{Ni}$: Evidence for a highly deformed proton intruder state
A. Dijon, ${ }^{1}$ E. Clément, ${ }^{1}$ G. de France, ${ }^{1}$ G. de Angelis, ${ }^{2}$ G. Duchêne, ${ }^{3}$ J. Dudouett ${ }^{1}$ S. Franchoo, ${ }^{4}$ A. Gadea, ${ }^{5}$ A. Gottardo, ${ }^{2,6}$ T. Hüyuk, ${ }^{5}$ B. Jacquot, ${ }^{1}$ A. Kusoglu, ${ }^{7}$ D. Lebhertr, ${ }^{1}$ G. Lehaut, ${ }^{8}$ M. Martini, ${ }^{9}$ D. R. Napoli, ${ }^{2}$ F. Nowacki, ${ }^{3}$ S. Péru, ${ }^{9}$ A. Poves, ${ }^{14}$ F. Recchia, ${ }^{6}$ N. Redon, ${ }^{\text {T}}$ E. Sahin, ${ }^{2}$ C. Schmitt, ${ }^{1}$ M. Sferrazza, ${ }^{11}$ K. Sieja, ${ }^{3}$ O. Stezowski, ${ }^{8}$ J. J. Valiente-Dobón, ${ }^{2}$ A. Vancracyenest, ${ }^{8}$ and Y. Zheng ${ }^{1,12}$ $\mathbf{0}^{+}$states in ${ }^{68} \mathrm{Ni}$
within QRPA $\mathbf{0}^{+}$states in ${ }^{68} \mathrm{Ni}$
within QRPA

Transition densities

${ }^{68} \mathrm{Ni}$

Protons Neutrons

Multipolar response for ${ }^{238} \mathrm{U}$

PHYSICAL REVIEW C 83, 014314 (2011)
Giant resonances in ${ }^{238} \mathrm{U}$ within the quasiparticle random-phase approximation with the Gogny force
S. Péru, ${ }^{1,{ }^{*}}$ G. Gosselin, ${ }^{1}$ M. Martini, ${ }^{1}$ M. Dupuis, ${ }^{1}$ S. Hilaire, ${ }^{1}$ and J.-C. Devaux ${ }^{2}$ ${ }^{1}$ CEA/DAM/DIF, F-91297 Arpajon, France
${ }^{2}$ ENSIIE, 1 square de la résistance, F-91025 Evry Cedex, France (Received 29 October 2010; published 27 January 2011)

> More than 716800 hours (~ 82 years)
> of computing time spread over 256 and 512 proc.

Comparison between experimental data (circles) and one-step contributions (full curves) to the double-
differential cross sections for 14.1 MeV neutron on $238 \mathrm{U}(\mathrm{a}, \mathrm{c})$.

M. Dupuis et al,
$13^{\text {th }}$ International Conference on Nuclear Reaction Mechanisms, Varenna, june 11-15, 2012.
M. Dupuis et al,

Proceedings of the Second International Workshop on Nuclear Compound Reactions and Related Topics, (2010).

... beyond the nuclear structure :

Test of QRPA and 5DCH (GCM) wave functions in proton inelastic scattering...

$36 S$

HFB+5DCH

$$
\begin{aligned}
& \mathrm{E}\left(2^{+}{ }_{1}\right)=2.34 \mathrm{MeV} \\
& \mathrm{~B}(\mathrm{E} 2)=375 \mathrm{e}^{2} \mathrm{fm}^{4}
\end{aligned}
$$

HFB+QRPA
$\mathrm{E}\left(\mathbf{2}^{+}{ }_{1}\right)=3.29 \mathrm{MeV}$
$B(E 2)=139.7 \mathrm{e}^{2 f \mathrm{fm}^{4}}$

Exp
$\mathrm{E}\left(\mathbf{2 ~}^{+}{ }_{1}\right)=3.29 \mathrm{MeV}$
$B(E 2)=100 e^{2} f m^{4}$
28. $\mathrm{MeV}^{36} \mathrm{~S}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{36} \mathrm{~S}$

[^0]: 丸 A. Obertelli, et al, Phys. Rev. C 71, 024304 (2005)

