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Formalism mp-mh configuration mixing

Objectives

Inclusion of nuclear long range correlations beyond MF

• Pairing, RPA-type, GCM-type, Particle-Vibration coupling

Symmetry preserving approach

• Exact conservation of particle numbers (contrary to HFB)
• No violation of Pauli principle (contrary to RPA/QRPA/2RPA)
• Conservation of angular momentum

No inert core

Low-lying spectroscopy

• Description of ground states + excited states

• Unified description of even-even + odd + odd-odd nuclei

Reaction applications

• Inelastic scattering on discrete states

• Two-nucleon transfer reactions
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Formalism mp-mh configuration mixing

Formalism (N. Pillet, J.-F. Berger, E. Caurier, PRC 78, 024305 (2008))

Static and non-relativistic

Trial wave function: Superposition of Slater determinants

|Ψ〉 =
∑
αν ,απ

Aαν ,απ |Φαν 〉 ⊗ |Φαπ 〉

2 unknown quantities: The mixing coefficients A and the orbitals

⇒ Use of the variational principle for their determinations

Energy Density Functional

F(ρ) = 〈Ψ|Ĥ(ρ)|Ψ〉 − λ〈Ψ|Ψ〉 −
∑
i

λiQi

• Ĥ(ρ) = T̂ + V̂ (ρ) with V̂ (ρ) ≡ Gogny effective interaction + Coulomb

• T̂ and V̂ (ρ) with 1 and 2-body center of mass corrections

• Prescription for the one-body density entering V̂ (ρ): ρ = 〈Ψ|ρ̂|Ψ〉
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Formalism mp-mh configuration mixing

First variational equation ⇒ Mixing coefficients A

∂F(ρ)

∂A∗αναπ
= 0

Non-linear secular equation

⇒
∑
α′
πα

′
ν

Hαπαν ,α′
πα

′
ν
Aα′

πα
′
ν

= λAαπαν

• The Hamiltonian matrix

Hαπαν ,α′
πα

′
ν

= 〈φαπφαν | Ĥ(ρ) +
∑
mnτ

Rτmn a+
τmaτn |φα′

π
φα′

ν
〉

• The rearrangment terms

Rτmn =

∫
ϕ∗τm(~r , σ)ϕτn(~r , σ)

∑
ijkl

〈ij |
∂V (ρ)

∂ρ(~r)
|k̃l〉 〈Ψ|a+

i a
+
j alak |Ψ〉 d

3~r
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Formalism mp-mh configuration mixing

Residual interaction

two-body matrix elements + one-body rearrangement terms

Residual two-body matrix elements 〈φnpnh|V (ρ)|φmpmh〉 ≡ 〈ij |V (ρ)|kl〉

• |n −m| = 2 ⇒ Pairing, RPA

• |n −m| = 1 ⇒ Particle-vibration

• |n −m| = 0 ⇒ RPA, Pairing, more general
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Formalism mp-mh configuration mixing

Second variational equation ⇒ Orbitals

∂F(ρ)

∂ϕ∗i
= 0

PhD work of C. Robin (since October 2011)

Orbital equations ≡ Inhomogeneous Hartree-Fock equations

⇒[ h(ρ, σ), ρ ]rs = Grs(σ)

• A few definitions

 σij,kl = 〈Ψ|a+
i a

+
k alaj |Ψ〉 − ρjiρlk + ρjkρli

 Grs (σ) =
1

2
(
∑
imn

〈im|V (ρ)|r̃n〉σis,mn −
∑
imn

〈ms|V (ρ)|ñi〉σri,mn)

 {r , s} ≡ {p, p}, {h, h} or {p, h} ∈ the entire single particle basis

• Automatically satisfied if the entire Hilbert space is taken into account!

• Similar to the dynamical equation linking the 1-body and the 2-body Green
functions at the limit of equal times
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Formalism mp-mh configuration mixing

Complementary variational equations

Example: Wave function with only excitations of pairs (2n)p-(2n)h

Perturbation theory - Correction to the wave function

• Zero order : |0p0h〉
• First order : |2p2h〉
• Second order : |1p1h〉, |2p2h〉, |3p3h〉

Second order corrections to ρ

• First variational equation (ρ = 〈Ψ|ρ̂|Ψ〉)

⇒ External lines ≡ single particle states implied in the mixing (”active orbitals”)

• Second variational equation (ρij = Gij(σ)/(εi − εj))

⇒ External lines ≡ all single particle states of the basis

⇒ The last two diagrams ≡ Introduction of 1p-1h excitations in the wave function
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Formalism mp-mh configuration mixing

Fully Self-Consistent solution

Non-linear secular equation + Orbital equation∑
α′
πα

′
ν

Hαπαν ,α′
πα

′
ν
Aα′

πα
′
ν

= λAαπαν + [ h(ρ, σ), ρ ]rs = Grs(σ)

Non-linear problem ⇒ Iterative procedure

• Starting point: HF calculation

• Solution of the non-linear secular equation

• Until convergence

 Determination of σ from |Ψ〉
 Determination of ρ

 Determination of the new h(ρ, σ)

 Solution of the secular equation

Numerical details

• Diagonalization of H accomplished using the very efficient technique developed for

large scale SM calculations by E. Caurier

• Tractable with the advent of Supercomputers
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Description of pairing within the mp-mh configuration mixing Exact solution - BCS, PBCS and mp-mh wave functions

General considerations
Exactly solvable model of pairing Hamiltonian (Picket fence model)

• 2N particles in 2N equispaced and doubly-degenerate levels

• Pairing Hamiltonian

Ĥpair =
2N∑
f =1

εf (a+
f af + a+

f̄
af̄ )− g

2N∑
f =1

2N∑
f ′=1

a+
f a

+
f̄
af̄ ′af ′

• Exact solution

|Ψexact〉 ≡ |Ψmp−mh〉 =
N∏
i=1

B+
i |0〉

Configurations in the mp-mh functions ≡ multiple excitations of nucleon pairs

• Collective pair B+
i :

B+
i =

N∑
j=1

1

2εj − Ei
a+
j a

+
j̄

• Eigen energies Ei :

1− 2g
N∑

j( 6=i)=1

1

Ej − Ei
+ g

N∑
j=1

1

2εj − Ei
= 0

N. PILLET (nathalie.pillet@cea.fr) ESNT workshop 6-8 February 2013 10 / 21



Description of pairing within the mp-mh configuration mixing Exact solution - BCS, PBCS and mp-mh wave functions

General considerations

Link with the BCS and Projected BCS approach on particle numbers

• BCS wave function

|BCS〉τ = NτeB
+
τ |0〉τ

• BCS collective pair B+
τ

B+
τ =

∑
j>0

tgθτ jb
+
τ j

with b+
τ j = a+

τ ja
+

τ j

• Projected BCS wave function with 2N particles

|PBCS〉τ ∝ (B+
τ )N |0〉

⇒ |PBCS〉τ = N ′τ
∞∑
n=0

∑
0<p1<...<pn
0<h1<...<hn

tgθτp1 ...tgθτpn
tgθτh1 ...tgθτhn

.
n∏

k=1

(b+
τpkbτhk ) |HF 〉
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Description of pairing within the mp-mh configuration mixing Pairing in Sn isotopes

Pairing in Sn isotopes within the mp-mh configuration mixing

N. Pillet, J.-F. Berger, E. Caurier, PRC 78, 024305 (2008)

Reduced correlated mp-mh wave function

• Usual pairing-type correlations

• No residual proton-neutron interaction ⇒ Aαναν = AανAαπ

• Ground states of even-even Sn isotopes ⇒ |Ψ〉0+ = |Ψν〉0+ .|Ψπ〉0+

• Configurations include excited pairs of nucleons

• One pair: two nucleons in time-reversal states

Investigation of pairing correlations in weak, medium and strong regimes

• Study of 100Sn, 106Sn and 116Sn ground states

• D1S Gogny interaction
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Description of pairing within the mp-mh configuration mixing Pairing in Sn isotopes

HFB CALCULATIONS WITH D1S GOGNY FORCE

Weak Pairing Medium Pairing Strong pairing
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Description of pairing within the mp-mh configuration mixing Pairing in Sn isotopes

Correlation energy Ecorr = 〈Ψ|Ĥ(ρ)|Ψ〉 − 〈HF |Ĥ(ρ)|HF 〉

• Taking into account the first variational equation (frozen orbitals)

• Total and neutron correlation energies - Comparison to BCS

⇒ Contribution due to protons: ' 1.7 MeV ( in BCS: 0 MeV)

⇒ Contribution due to neutrons:

• Non zero in 100Sn (contrary to BCS)
• Always larger than in the BCS approximation

• 100Sn 1 pair: 3.397 MeV 2 pairs: 0.275 MeV

• 116Sn 1 pair: 4.474 MeV 2 pairs: 0.967 MeV 3 pairs: 0.070 MeV

⇒ Results consistent with those of the picket fence model
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Description of pairing within the mp-mh configuration mixing Pairing in Sn isotopes

Structure of correlated wave functions T (iπ , jν) =
∑
αναπ

|Aαναπ |2

• Taking into account the first variational equation (frozen orbitals)

• Components of the correlated wave function (in percentage)

⇒ 116Sn is the most correlated nucleus

⇒ Configurations with one excited neutron pair are the most important

• Dominant configurations for the three Sn isotopes

• 116Sn 3s1/2 → 1d3/2 and 3s1/2 → 1h11/2

Total number of configurations: 81 502684

• 106Sn 2d5/2 → 1g7/2

Total number of configurations: 69 861184

• 100Sn No dominant configuration

Total number of configurations: 62 946676
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Description of pairing within the mp-mh configuration mixing Pairing in Sn isotopes

Approximate renormalization of orbitals

• Taking into account the second variational equation [h(ρ), ρ] ≈ 0

• Structure of correlated wave functions

⇒ Strong variations in 116Sn: the 2p-2h configurations are dominant

⇒ Reason: reduction of the neutron gap 3s1/2 − 1h11/2 by ' 400 keV

• Neutron skin

• Neutron skin ∆rnp = rn − rp

• In strongly correlated isotopes ⇒ Decrease of neutron
radii

• Reason: Fall of the neutron 1h11/2 in the potential
Reduction of 1h11/2 radius

⇒ RPA-type correlations should increase ∆rnp
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Description of pairing within the mp-mh configuration mixing Two-body spatial pairing correlations

Investigation of two-body spatial pairing correlations

Correlated part of the two-body density

〈ψ+(̃r1, s1)ψ+(̃r2,−s2)ψ(̃r2,−s2)ψ(̃r1, s1)〉

• In the Hartree-Fock-Bogoliubov approach

κ(~r1s1,~r2s2)κ∗(~r1s1,~r2s2)

with κ(~r1s1,~r2s2) = 〈ψ(~r1, s1)ψ(~r2, s2)〉 pairing tensor

N. Pillet, N. Sandulescu, P. Schuck, PRC 76, 024310 (2007).

N. Pillet, N. Sandulescu, P. Schuck, J.-F. Berger, PRC C81, 034307 (2010).

• In the mp-mh configuration mixing approach

σ(~r1s1,~r1s1,~r2 − s2,~r2 − s2)
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Description of pairing within the mp-mh configuration mixing Two-body spatial pairing correlations

Application to 52Ca (D1S Gogny interaction)

• Non-local properties (C. Caizergues and N. Pillet, unpublished, 2010)

• Increase of pairing collectivity in the surface (mp-mh configuration mixing)

⇐ Increase of parity mixing

• Importance of the conservation of particle numbers!

• Expected effects on pair transfer cross sections
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Two-neutron S2n and two-proton S2p separation energies sd-shell nuclei

Two-neutron S2n and two-proton S2p separation energies

Important observables for two-nucleon transfer reactions
⇒ Theoretical S2n and S2p have to be calculated with enough accuracy

Definitions
S2n(N,Z) = BE(N,Z)− BE(N − 2,Z)

S2p(N,Z) = BE(N,Z)− BE(N,Z − 2)

Applications in sd-shell nuclei (Talk of J. Le Bloas)
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Mean value of the difference to experiment:
S2n(HF )=0.1MeV/S2n(mpmh)=-0.24MeV, S2p(HF )=0.5MeV/S2p(mpmh)=0.29MeV
Corresponding dispersions:

S2n(HF )=1.99MeV/S2n(mpmh)=0.83MeV, S2p(HF )=1.96MeV/S2p(mpmh)=0.86MeV

J. Lebloas, N. Pillet, J.-M. Daugas, M. Dupuis et al., article in preparation
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Perspectives for pair transfer reactions

Pair overlap functions for two-nucleons transfer reactions

Starting from the two-body Green function noted G2,

G2 = 〈Φ0|T{Ψ(t1)Ψ(t3)Ψ†(t2)Ψ†(t4)}|Φ0〉
with |Φ0〉 the exact g.s. of the system with A nucleons and energy E0.

• Two particle bound states ⇒ t1 = t3 and t2 = t4

• Restriction to t1 > t2 (t1 < t2 can be done in a similar way)
• Introducing a closure relation,

⇒ G2 =
∑
n

〈Φ0|Ψ(t1)Ψ(t1)|Φn〉〈Φn|Ψ†(t2)Ψ†(t2)|Φ0〉

with |Φn〉 the eigensolutions of the system with A+2 nucleons and energy En.

A few definitions
• Excitation energy ωno = En − E0

• Chemical potential

E0(A + 1)− E0(A) = E0(A)− E0(A− 1) = µ
E0(A + 2)− E0(A) = E0(A)− E0(A− 2) = 2µ

⇒ ωno = 2µ+ ξn0 (5-1)
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Perspectives for pair transfer reactions

Transition amplitudes

G2 =
∑
n

e i(2µ+ξn0)(t1−t2)
∑
αβγδ

(ηn)Tαβ(ζn)γδ

• One has used the Heisenberg representation of the field operators

Ψ†(t) =
∑
α

a†α(t) =
∑
α

e iHta†αe
−iHt

• Expressions of transition amplitudes

(ηn)αβ = 〈Φn|aαaβ |Φ0〉

(ζn)γδ = 〈Φn|a†γa†δ|Φ0〉

Pair form factors ∑
αβ

(ηn)αβ =
∑
αβ

〈Φn|aαaβ |Φ0〉

∑
γδ

(ζn)γδ =
∑
γδ

〈Φn|a†γa
†
δ|Φ0〉

How the non-locality is incorporated in pair transfer reaction models?
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