Nuclear pair correlations
 from multiparticle-multihole configuration mixing

Nathalie PILLET
CEA/DAM/DIF, Bruyères-le-Châtel

"Nuclear pair correlations probed via proton-induced transfer and knock-out reactions"
6-8 February 2013, Saclay
(1) Formalism
(2) Description of pairing within the $m p-m h$ configuration mixing
(3) Two-neutron $S_{2 n}$ and two-proton $S_{2 p}$ separation energies
(4) Perspectives for pair transfer reactions

Objectives

- Inclusion of nuclear long range correlations beyond MF
- Pairing, RPA-type, GCM-type, Particle-Vibration coupling
- Symmetry preserving approach
- Exact conservation of particle numbers (contrary to HFB)
- No violation of Pauli principle (contrary to RPA/QRPA/2RPA)
- Conservation of angular momentum
- No inert core
- Low-lying spectroscopy
- Description of ground states + excited states
- Unified description of even-even + odd + odd-odd nuclei
- Reaction applications
- Inelastic scattering on discrete states
- Two-nucleon transfer reactions
- Static and non-relativistic
- Trial wave function: Superposition of Slater determinants

$$
|\Psi\rangle=\sum_{\alpha_{\nu}, \alpha_{\pi}} A_{\alpha_{\nu}, \alpha_{\pi}}\left|\Phi_{\alpha_{\nu}}\right\rangle \otimes\left|\Phi_{\alpha_{\pi}}\right\rangle
$$

- 2 unknown quantities: The mixing coefficients A and the orbıa s

\Rightarrow Use of the variational principle for their determinations
- Energy Density Functional

$$
\mathcal{F}(\rho)=\langle\Psi| \widehat{H}(\rho)|\Psi\rangle-\lambda\langle\Psi \mid \Psi\rangle-\sum_{i} \lambda_{i} Q_{i}
$$

- $\widehat{H}(\rho)=\widehat{T}+\widehat{V}(\rho)$ with $\widehat{V}(\rho) \equiv$ Gogny effective interaction + Coulomb
- \widehat{T} and $\widehat{V}(\rho)$ with 1 and 2-body center of mass corrections
- Prescription for the one-body density entering $\widehat{V}(\rho): \rho=\langle\Psi| \hat{\rho}|\Psi\rangle$

First variational equation \Rightarrow Mixing coefficients A

$$
\frac{\partial \mathcal{F}(\rho)}{\partial A_{\alpha_{\nu} \alpha_{\pi}}^{*}}=0
$$

- Non-linear secular equation

$$
\Rightarrow \sum_{\alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}} \mathcal{H}_{\alpha_{\pi} \alpha_{\nu}, \alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}} A_{\alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}}=\lambda A_{\alpha_{\pi} \alpha_{\nu}}
$$

- The Hamiltonian matrix

$$
\mathcal{H}_{\alpha_{\pi} \alpha_{\nu}, \alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}}=\left\langle\phi_{\alpha_{\pi}} \phi_{\alpha_{\nu}}\right| \widehat{H}(\rho)+\sum_{m n \tau} \mathcal{R}_{m n}^{\tau} a_{\tau m}^{+} a_{\tau n}\left|\phi_{\alpha_{\pi}^{\prime}} \phi_{\alpha_{\nu}^{\prime}}\right\rangle
$$

- The rearrangment terms

$$
\left.\mathcal{R}_{m n}^{\tau}=\int \varphi_{\tau m}^{*}(\vec{r}, \sigma) \varphi_{\tau n}(\vec{r}, \sigma) \sum_{i j k l}\langle i j| \frac{\partial V(\rho)}{\partial \rho(\vec{r})}|\widetilde{k}|\right\rangle\langle\Psi| a_{i}^{+} a_{j}^{+} a_{l} a_{k}|\Psi\rangle d^{3} \vec{r}
$$

- Residual interaction
two-body matrix elements + one-body rearrangement terms
- Residual two-body matrix elements $\left.\left\langle\phi_{\text {npnh }}\right| V(\rho)\left|\phi_{\text {mpmh }}\right\rangle \equiv\langle i j| V(\rho)|k|\right\rangle$
- $|n-m|=2 \Rightarrow$ Pairing, RPA

- $|n-m|=1 \Rightarrow$ Particle-vibration

- $|n-m|=0 \Rightarrow$ RPA, Pairing, more general

Second variational equation \Rightarrow Orbitals

$$
\frac{\partial \mathcal{F}(\rho)}{\partial \varphi_{i}^{*}}=0
$$

- PhD work of C. Robin (since October 2011)
- Orbital equations \equiv Inhomogeneous Hartree-Fock equations

$$
\Rightarrow[h(\rho, \sigma), \rho]_{r s}=G_{r s}(\sigma)
$$

- A few definitions

$$
\begin{aligned}
& \left.\rightsquigarrow \sigma_{i j, k \mid}=\langle\Psi| a_{i}^{+} a_{k}^{+} a\left|a_{j}\right| \Psi\right\rangle-\rho_{j i} \rho_{l k}+\rho_{j k} \rho_{i i} \\
& \rightsquigarrow G_{r s}(\sigma)=\frac{1}{2}\left(\sum_{i m n}\langle i m| V(\rho)|\tilde{m}\rangle \sigma_{i s, m n}-\sum_{i m n}\langle m s| V(\rho)|\tilde{n i}\rangle \sigma_{r i, m n}\right) \\
& \rightsquigarrow\{r, s\} \equiv\{p, p\},\{h, h\} \text { or }\{p, h\} \in \text { the entire single particle basis }
\end{aligned}
$$

- Automatically satisfied if the entire Hilbert space is taken into account!
- Similar to the dynamical equation linking the 1 -body and the 2 -body Green functions at the limit of equal times

Complementary variational equations

Example: Wave function with only excitations of pairs (2n)p-(2n)h

- Perturbation theory - Correction to the wave function
- Zero order : $|0 p 0 h\rangle$
- First order : |2p2h>
- Second order : $|1 p 1 h\rangle,|2 p 2 h\rangle,|3 p 3 h\rangle$
- Second order corrections to ρ
- First variational equation ($\rho=\langle\Psi| \hat{\rho}|\Psi\rangle$)

\Rightarrow External lines \equiv single particle states implied in the mixing ("active orbitals")
- Second variational equation $\left(\rho_{i j}=G_{i j}(\sigma) /\left(\epsilon_{i}-\epsilon_{j}\right)\right)$

\Rightarrow External lines \equiv all single particle states of the basis
\Rightarrow The last two diagrams \equiv Introduction of $1 \mathrm{p}-1 \mathrm{~h}$ excitations in the wave function

Fully Self-Consistent solution

- Non-linear secular equation + Orbital equation

$$
\sum_{\alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}} \mathcal{H}_{\alpha_{\pi} \alpha_{\nu}, \alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}} A_{\alpha_{\pi}^{\prime} \alpha_{\nu}^{\prime}}=\lambda A_{\alpha_{\pi} \alpha_{\nu}}+[h(\rho, \sigma), \rho]_{r s}=G_{r s}(\sigma)
$$

- Non-linear problem \Rightarrow Iterative procedure
- Starting point: HF calculation
- Solution of the non-linear secular equation
- Until convergence
\rightsquigarrow Determination of σ from $|\Psi\rangle$
\rightsquigarrow Determination of ρ
\rightsquigarrow Determination of the new $h(\rho, \sigma)$
\rightsquigarrow Solution of the secular equation
- Numerical details
- Diagonalization of \mathcal{H} accomplished using the very efficient technique developed for large scale SM calculations by E. Caurier
- Tractable with the advent of Supercomputers

General considerations

- Exactly solvable model of pairing Hamiltonian (Picket fence model)
- 2 N particles in 2 N equispaced and doubly-degenerate levels
- Pairing Hamiltonian

$$
\widehat{H}_{p a i r}=\sum_{f=1}^{2 N} \epsilon_{f}\left(a_{f}^{+} a_{f}+a_{\bar{f}}^{+} a_{\bar{f}}\right)-g \sum_{f=1}^{2 N} \sum_{f^{\prime}=1}^{2 N} a_{f}^{+} a_{\bar{f}}^{+} a_{\bar{f}^{\prime}} a_{f^{\prime}}
$$

- Exact solution

$$
\left|\Psi^{\text {exact }}\right\rangle \equiv\left|\Psi^{m p-m h}\right\rangle=\prod_{i=1}^{N} B_{i}^{+}|0\rangle
$$

Configurations in the $m p-m h$ functions \equiv multiple excitations of nucleon pairs

- Collective pair B_{i}^{+}:

$$
B_{i}^{+}=\sum_{j=1}^{N} \frac{1}{2 \epsilon_{j}-E_{i}} a_{j}^{+} a_{j}^{+}
$$

- Eigen energies E_{i} :

$$
1-2 g \sum_{j(\neq i)=1}^{N} \frac{1}{E_{j}-E_{i}}+g \sum_{j=1}^{N} \frac{1}{2 \epsilon_{j}-E_{i}}=0
$$

General considerations

- Link with the BCS and Projected BCS approach on particle numbers
- BCS wave function

$$
|B C S\rangle_{\tau}=\mathcal{N}_{\tau} e^{B_{\tau}^{+}}|0\rangle_{\tau}
$$

- BCS collective pair B_{τ}^{+}

$$
B_{\tau}^{+}=\sum_{j>0} \operatorname{tg} \theta_{\tau j} b_{\tau j}^{+}
$$

with $b_{\tau j}^{+}=a_{\tau j}^{+} a_{\tau \bar{j}}^{+}$

- Projected BCS wave function with 2 N particles

$$
\Rightarrow|P B C S\rangle_{\tau}=\mathcal{N}_{\tau}^{\prime} \sum_{n=0}^{\infty} \sum_{\substack{0<p_{1}<\ldots<p_{n} \\ 0<h_{1}<\ldots<h_{n}}} \frac{\operatorname{tg} \theta_{\tau p_{1}} \ldots \operatorname{tg} \theta_{\tau p_{n}}}{\operatorname{tg} \theta_{\tau h_{1}} \ldots \operatorname{tg} \theta_{\tau h_{n}}} \cdot \prod_{k=1}^{n}\left(b_{\tau p_{k}}^{+} b_{\tau h_{k}}\right)|H F\rangle
$$

Pairing in Sn isotopes within the mp - mh configuration mixing

- N. Pillet, J.-F. Berger, E. Caurier, PRC 78, 024305 (2008)
- Reduced correlated mp-mh wave function
- Usual pairing-type correlations
- No residual proton-neutron interaction $\Rightarrow A_{\alpha_{\nu} \alpha_{\nu}}=A_{\alpha_{\nu}} A_{\alpha_{\pi}}$
- Ground states of even-even Sn isotopes $\Rightarrow|\Psi\rangle_{0^{+}}=\left|\Psi_{\nu}\right\rangle_{0^{+}} \cdot\left|\Psi_{\pi}\right\rangle_{0^{+}}$
- Configurations include excited pairs of nucleons
- One pair: two nucleons in time-reversal states
- Investigation of pairing correlations in weak, medium and strong regimes
- Study of ${ }^{100} \mathrm{Sn},{ }^{106} \mathrm{Sn}$ and ${ }^{116} \mathrm{Sn}$ ground states
- D1S Gogny interaction

HFB CALCULATIONS WITH D1S GOGNY FORCE

Weak Pairing

Medium Pairing
Strong pairing

- Correlation energy
 $$
E_{\text {corr }}=\langle\Psi| \hat{H}(\rho)|\Psi\rangle-\langle H F| \hat{H}(\rho)|H F\rangle
$$

- Taking into account the first variational equation (frozen orbitals)
- Total and neutron correlation energies - Comparison to BCS

Nucleus	$\left\|E_{\text {corr }}^{\text {total }}\right\|$	$\left\|E_{\text {corr }}^{\text {neatron }}\right\|$	$\left\|E_{\text {corr }}^{\text {BCS } \mid}\right\|$
${ }^{100} \mathrm{Sn}$	3.67	1.90	0.00
${ }^{106} \mathrm{Sn}$	4.62	2.88	1.37
${ }^{16} \mathrm{Sn}$	5.44	3.74	3.25

\Rightarrow Contribution due to protons: $\simeq 1.7 \mathrm{MeV}($ in $\mathrm{BCS}: 0 \mathrm{MeV})$
\Rightarrow Contribution due to neutrons:

- Non zero in ${ }^{100} S n$ (contrary to BCS)
- Always larger than in the BCS approximation
- ${ }^{100} \mathrm{Sn} \quad 1$ pair: $3.397 \mathrm{MeV} \quad 2$ pairs: 0.275 MeV
- ${ }^{116} \mathrm{Sn} \quad 1$ pair: $4.474 \mathrm{MeV} \quad 2$ pairs: 0.967 MeV 3 pairs: 0.070 MeV
\Rightarrow Results consistent with those of the picket fence model
- Structure of correlated wave functions

$$
T\left(i_{\pi}, j_{\nu}\right)=\sum_{\alpha_{\nu} \alpha_{\pi}}\left|A_{\alpha_{\nu} \alpha_{\pi}}\right|^{2}
$$

- Taking into account the first variational equation (frozen orbitals)
- Components of the correlated wave function (in percentage)

Nucleus	$T(0,0)$	$T(0,1)$	$T(1,0)$	$T(0,2)$	$T(1,1)$	$T(2,0)$
${ }^{116} \mathrm{Sn}$	65.38	26.04	4.50	2.68	1.23	0.17
${ }^{106} \mathrm{Sn}$	67.44	25.29	3.63	2.54	0.99	0.11
${ }^{100} \mathrm{Sn}$	90.85	5.02	3.70	0.16	0.18	0.09

$\Rightarrow{ }^{116} \mathrm{Sn}$ is the most correlated nucleus
\Rightarrow Configurations with one excited neutron pair are the most important

- Dominant configurations for the three Sn isotopes
- ${ }^{116} S n \quad 3 s_{1 / 2} \rightarrow 1 d_{3 / 2}$ and $3 s_{1 / 2} \rightarrow 1 h_{11 / 2}$

Total number of configurations: 81502684

- ${ }^{106} S n \quad 2 d_{5 / 2} \rightarrow 1 g_{7 / 2}$

Total number of configurations: 69861184

- ${ }^{100} \mathrm{Sn} \quad$ No dominant configuration

Total number of configurations: 62946676

- Approximate renormalization of orbitals

- Taking into account the second variational equation $[h(\rho), \rho] \approx 0$
- Structure of correlated wave functions

Nucleus	$T(0,0)$	$T(0,1)$	$T(1,0)$	$T(0,2)$	$T(1,1)$	$T(2,0)$
${ }^{116} \mathrm{Sn}$	42.09	44.28	3.00	8.43	2.09	0.11
${ }^{106} \mathrm{Sn}$	62.90	28.65	3.54	3.62	1.17	0.11
${ }^{100} \mathrm{Sn}$	88.19	6.36	4.74	0.27	0.29	0.15

\Rightarrow Strong variations in ${ }^{116} \mathrm{Sn}$: the $2 \mathrm{p}-2 \mathrm{~h}$ configurations are dominant

- Neutron skin

- Neutron skin $\Delta r_{n p}=r_{n}-r_{p}$
- In strongly correlated isotopes \Rightarrow Decrease of neutron radii
- Reason: Fall of the neutron $1 h_{11 / 2}$ in the potential Reduction of $1 h_{11 / 2}$ radius
\Rightarrow RPA-type correlations should increase $\Delta r_{n p}$

Investigation of two-body spatial pairing correlations

- Correlated part of the two-body density

$$
\left\langle\psi^{+}\left(\tilde{\mathbf{r}}_{\mathbf{1}}, \mathbf{s}_{\mathbf{1}}\right) \psi^{+}\left(\tilde{\mathbf{r}}_{\mathbf{2}},-\mathbf{s}_{\mathbf{2}}\right) \psi\left(\tilde{\mathbf{r}}_{\mathbf{2}},-\mathbf{s}_{\mathbf{2}}\right) \psi\left(\tilde{\mathbf{r}}_{\mathbf{1}}, \mathbf{s}_{\mathbf{1}}\right)\right\rangle
$$

- In the Hartree-Fock-Bogoliubov approach

$$
\kappa\left(\vec{r}_{1} s_{1}, \vec{r}_{2} s_{2}\right) \kappa^{*}\left(\vec{r}_{1} s_{1}, \vec{r}_{2} s_{2}\right)
$$

with $\kappa\left(\vec{r}_{1} s_{1}, \vec{r}_{2} s_{2}\right)=\left\langle\psi\left(\vec{r}_{1}, s_{1}\right) \psi\left(\vec{r}_{2}, s_{2}\right)\right\rangle$ pairing tensor
N. Pillet, N. Sandulescu, P. Schuck, PRC 76, 024310 (2007).
N. Pillet, N. Sandulescu, P. Schuck, J.-F. Berger, PRC C81, 034307 (2010).

- In the mp-mh configuration mixing approach

$$
\sigma\left(\vec{r}_{1} s_{1}, \vec{r}_{1} s_{1}, \vec{r}_{2}-s_{2}, \vec{r}_{2}-s_{2}\right)
$$

Application to ${ }^{52} \mathrm{Ca}$ (D1S Gogny interaction)

- Non-local properties (C. Caizergues and N. Pillet, unpublished, 2010)

- Increase of pairing collectivity in the surface (mp-mh configuration mixing) \Leftarrow Increase of parity mixing
- Importance of the conservation of particle numbers!
- Expected effects on pair transfer cross sections

Two-neutron $S_{2 n}$ and two-proton $S_{2 p}$ separation energies

- Important observables for two-nucleon transfer reactions
\Rightarrow Theoretical $S_{2 n}$ and $S_{2 p}$ have to be calculated with enough accuracy
- Definitions

$$
\begin{aligned}
& S_{2 n}(N, Z)=B E(N, Z)-B E(N-2, Z) \\
& S_{2 p}(N, Z)=B E(N, Z)-B E(N, Z-2)
\end{aligned}
$$

- Applications in $s d$-shell nuclei (Talk of J. Le Bloas)

Mean value of the difference to experiment:
$S_{2 n}(H F)=0.1 \mathrm{MeV} / S_{2 n}(\mathrm{mpmh})=-0.24 \mathrm{MeV}, S_{2 p}(H F)=0.5 \mathrm{MeV} / S_{2 p}(\mathrm{mpmh})=0.29 \mathrm{MeV}$

Corresponding dispersions:

$S_{2 n}(H F)=1.99 \mathrm{MeV} / S_{2 n}(m p m h)=0.83 \mathrm{MeV}, S_{2 p}(H F)=1.96 \mathrm{MeV} / S_{2 p}(m p m h)=0.86 \mathrm{MeV}$
J. Lebloas, N. Pillet, J.-M. Daugas, M. Dupuis et al., article in preparation

Pair overlap functions for two-nucleons transfer reactions

- Starting from the two-body Green function noted G_{2},

$$
G_{2}=\left\langle\Phi_{0}\right| T\left\{\Psi\left(t_{1}\right) \Psi\left(t_{3}\right) \Psi^{\dagger}\left(t_{2}\right) \Psi^{\dagger}\left(t_{4}\right)\right\}\left|\Phi_{0}\right\rangle
$$

with $\left|\Phi_{0}\right\rangle$ the exact g.s. of the system with A nucleons and energy E_{0}.

- Two particle bound states $\Rightarrow t_{1}=t_{3}$ and $t_{2}=t_{4}$
- Restriction to $t_{1}>t_{2}$ ($t_{1}<t_{2}$ can be done in a similar way)
- Introducing a closure relation,

$$
\Rightarrow G_{2}=\sum_{n}\left\langle\Phi_{0}\right| \Psi\left(t_{1}\right) \Psi\left(t_{1}\right)\left|\Phi_{n}\right\rangle\left\langle\Phi_{n}\right| \Psi^{\dagger}\left(t_{2}\right) \Psi^{\dagger}\left(t_{2}\right)\left|\Phi_{0}\right\rangle
$$

with $\left|\Phi_{n}\right\rangle$ the eigensolutions of the system with $A+2$ nucleons and energy E_{n}.

- A few definitions
- Excitation energy $\omega_{n o}=E_{n}-E_{0}$
- Chemical potential

$$
\begin{align*}
& E_{0}(A+1)-E_{0}(A)=E_{0}(A)-E_{0}(A-1)=\mu \\
& E_{0}(A+2)-E_{0}(A)=E_{0}(A)-E_{0}(A-2)=2 \mu \\
& \Rightarrow \omega_{n o}=2 \mu+\xi_{n 0} \tag{5-1}
\end{align*}
$$

- Transition amplitudes

$$
G_{2}=\sum_{n} e^{i\left(2 \mu+\xi_{n 0}\right)\left(t_{1}-t_{2}\right)} \sum_{\alpha \beta \gamma \delta}\left(\eta_{n}\right)_{\alpha \beta}^{T}\left(\zeta_{n}\right)_{\gamma \delta}
$$

- One has used the Heisenberg representation of the field operators

$$
\Psi^{\dagger}(t)=\sum_{\alpha} a_{\alpha}^{\dagger}(t)=\sum_{\alpha} e^{i H t} a_{\alpha}^{\dagger} e^{-i H t}
$$

- Expressions of transition amplitudes

$$
\begin{aligned}
\left(\eta_{n}\right)_{\alpha \beta} & =\left\langle\Phi_{n}\right| a_{\alpha} a_{\beta}\left|\Phi_{0}\right\rangle \\
\left(\zeta_{n}\right)_{\gamma \delta} & =\left\langle\Phi_{n}\right| a_{\gamma}^{\dagger} a_{\delta}^{\dagger}\left|\Phi_{0}\right\rangle
\end{aligned}
$$

- Pair form factors

$$
\begin{aligned}
& \sum_{\alpha \beta}\left(\eta_{n}\right)_{\alpha \beta}=\sum_{\alpha \beta}\left\langle\Phi_{n}\right| a_{\alpha} a_{\beta}\left|\Phi_{0}\right\rangle \\
& \sum_{\gamma \delta}\left(\zeta_{n}\right)_{\gamma \delta}=\sum_{\gamma \delta}\left\langle\Phi_{n}\right| a_{\gamma}^{\dagger} a_{\delta}^{\dagger}\left|\Phi_{0}\right\rangle
\end{aligned}
$$

- How the non-locality is incorporated in pair transfer reaction models?

