# Nuclear pair correlations from multiparticle-multihole configuration mixing

# Nathalie PILLET

CEA/DAM/DIF, Bruyères-le-Châtel

"Nuclear pair correlations probed via proton-induced transfer and knock-out reactions"

6-8 February 2013, Saclay





2 Description of pairing within the mp-mh configuration mixing



3 Two-neutron  $S_{2n}$  and two-proton  $S_{2p}$  separation energies



Perspectives for pair transfer reactions

## Objectives

- Inclusion of nuclear long range correlations beyond MF
  - Pairing, RPA-type, GCM-type, Particle-Vibration coupling

## • Symmetry preserving approach

- Exact conservation of particle numbers (contrary to HFB)
- No violation of Pauli principle (contrary to RPA/QRPA/2RPA)
- Conservation of angular momentum
- No inert core
- Low-lying spectroscopy
  - Description of ground states + excited states
  - Unified description of even-even + odd + odd-odd nuclei

## • Reaction applications

- Inelastic scattering on discrete states
- Two-nucleon transfer reactions

#### Formalism

(N. Pillet, J.-F. Berger, E. Caurier, PRC 78, 024305 (2008))

- Static and non-relativistic
- Trial wave function: Superposition of Slater determinants

$$|\Psi
angle = \sum_{lpha_
u, lpha_\pi} {\it A}_{lpha_
u, lpha_\pi} ~ |\Phi_{lpha_
u}
angle \otimes |\Phi_{lpha_\pi}
angle$$

- 2 unknown quantities: The mixing coefficients A and the orbitals
  - $\Rightarrow$  Use of the variational principle for their determinations
- Energy Density Functional

$$\mathcal{F}(
ho) = \langle \Psi | \widehat{H}(
ho) | \Psi 
angle - \lambda \langle \Psi | \Psi 
angle - \sum_i \lambda_i Q_i$$

- $\widehat{H}(\rho) = \widehat{T} + \widehat{V}(\rho)$  with  $\widehat{V}(\rho) \equiv$  Gogny effective interaction + Coulomb
- $\widehat{\mathcal{T}}$  and  $\widehat{\mathcal{V}}(
  ho)$  with 1 and 2-body center of mass corrections
- Prescription for the one-body density entering  $\widehat{V}(\rho)$ :  $\rho = \langle \Psi | \hat{\rho} | \Psi \rangle$

# **First variational equation** $\Rightarrow$ Mixing coefficients A

$$\frac{\partial \mathcal{F}(\rho)}{\partial A^*_{\alpha_{\nu}\alpha_{\pi}}} = 0$$

Non-linear secular equation

$$\Rightarrow \sum_{\alpha'_{\pi}\alpha'_{\nu}} \mathcal{H}_{\alpha_{\pi}\alpha_{\nu},\alpha'_{\pi}\alpha'_{\nu}} \ \mathsf{A}_{\alpha'_{\pi}\alpha'_{\nu}} = \lambda \mathsf{A}_{\alpha_{\pi}\alpha_{\nu}}$$

• The Hamiltonian matrix

$$\mathcal{H}_{\alpha_{\pi}\alpha_{\nu},\alpha_{\pi}'\alpha_{\nu}'} = \langle \phi_{\alpha_{\pi}}\phi_{\alpha_{\nu}} | \ \widehat{\mathcal{H}}(\rho) + \sum_{mn\tau} \mathcal{R}_{mn}^{\tau} a_{\tau m}^{+} a_{\tau n} | \phi_{\alpha_{\pi}'}\phi_{\alpha_{\nu}'} \rangle$$

• The rearrangment terms

$$\mathcal{R}_{mn}^{\tau} = \int \varphi_{\tau m}^{*}(\vec{r},\sigma)\varphi_{\tau n}(\vec{r},\sigma)\sum_{ijkl} \langle ij|\frac{\partial V(\rho)}{\partial \rho(\vec{r})}|\vec{k}l\rangle \langle \Psi|a_{i}^{+}a_{j}^{+}a_{l}a_{k}|\Psi\rangle d^{3}\vec{r}$$

• Residual interaction

two-body matrix elements + one-body rearrangement terms

- Residual two-body matrix elements  $\langle \phi_{npnh} | V(\rho) | \phi_{mpmh} \rangle \equiv \langle ij | V(\rho) | kl \rangle$ 
  - $|n m| = 2 \Rightarrow$  Pairing, RPA



• 
$$|n - m| = 1 \Rightarrow$$
 Particle-vibration



•  $|n - m| = 0 \Rightarrow \text{RPA}$ , Pairing, more general



**Second variational equation**  $\Rightarrow$  **Orbitals** 

$$\frac{\partial \mathcal{F}(\rho)}{\partial \varphi_i^*} = 0$$

- PhD work of C. Robin (since October 2011)
- Orbital equations  $\equiv$  Inhomogeneous Hartree-Fock equations

$$\Rightarrow [h(\rho, \sigma), \rho]_{rs} = G_{rs}(\sigma)$$

• A few definitions

$$\begin{array}{l} \rightsquigarrow \ \sigma_{ij,kl} = \langle \Psi | a_i^+ a_k^+ a_l a_j | \Psi \rangle - \rho_{ji} \rho_{lk} + \rho_{jk} \rho_{li} \\ \rightsquigarrow \ G_{rs}(\sigma) = \frac{1}{2} (\sum_{imn} \langle im | V(\rho) | \widetilde{m} \rangle \sigma_{is,mn} - \sum_{imn} \langle ms | V(\rho) | \widetilde{ni} \rangle \sigma_{ri,mn}) \\ \rightsquigarrow \ \{r,s\} \equiv \{p,p\}, \{h,h\} \ or \ \{p,h\} \ \in \text{ the entire single particle basis} \end{array}$$

- Automatically satisfied if the entire Hilbert space is taken into account!
- Similar to the dynamical equation linking the 1-body and the 2-body Green functions at the limit of equal times

ESNT workshop

## **Complementary variational equations**

Example: Wave function with only excitations of pairs (2n)p-(2n)h

# • Perturbation theory - Correction to the wave function

- Zero order : |0p0h⟩
- First order : |2p2h⟩
- Second order :  $|1p1h\rangle$ ,  $|2p2h\rangle$ ,  $|3p3h\rangle$
- Second order corrections to  $\rho$ 
  - First variational equation  $(
    ho = \langle \Psi | \hat{
    ho} | \Psi \rangle)$



 $\Rightarrow$  External lines  $\equiv$  single particle states implied in the mixing ("active orbitals")

Second variational equation 
$$(\rho_{ij} = G_{ij}(\sigma)/(\epsilon_i - \epsilon_j))$$

 $\Rightarrow$  External lines  $\equiv$  all single particle states of the basis

 $\Rightarrow$  The last two diagrams  $\equiv$  Introduction of 1p-1h excitations in the wave function

•

## **Fully Self-Consistent solution**

• Non-linear secular equation + Orbital equation

$$\sum_{\alpha'_{\pi}\alpha'_{\nu}} \mathcal{H}_{\alpha_{\pi}\alpha_{\nu},\alpha'_{\pi}\alpha'_{\nu}} A_{\alpha'_{\pi}\alpha'_{\nu}} = \lambda A_{\alpha_{\pi}\alpha_{\nu}} + [h(\rho,\sigma), \rho]_{rs} = G_{rs}(\sigma)$$

## • Non-linear problem $\Rightarrow$ Iterative procedure

- Starting point: HF calculation
- Solution of the non-linear secular equation
- Until convergence
  - $\rightsquigarrow$  Determination of  $\sigma$  from  $|\Psi
    angle$
  - $\leadsto$  Determination of  $\rho$
  - $\rightsquigarrow$  Determination of the new  $h(\rho, \sigma)$
  - $\rightsquigarrow$  Solution of the secular equation

## Numerical details

- Diagonalization of  $\mathcal H$  accomplished using the very efficient technique developed for large scale SM calculations by E. Caurier
- Tractable with the advent of Supercomputers

## **General considerations**

- Exactly solvable model of pairing Hamiltonian (Picket fence model)
  - 2N particles in 2N equispaced and doubly-degenerate levels
  - Pairing Hamiltonian

$$\widehat{H}_{\textit{pair}} = \sum_{f=1}^{2N} \epsilon_f (a_f^+ a_f + a_{\bar{f}}^+ a_{\bar{f}}) - g \sum_{f=1}^{2N} \sum_{f'=1}^{2N} a_f^+ a_{\bar{f}}^+ a_{\bar{f}'} a_{f'}$$

Exact solution

$$|\Psi^{exact}
angle\equiv|\Psi^{mp-mh}
angle=\prod_{i=1}^{N}B_{i}^{+}|0
angle$$

Configurations in the *m*p-*m*h functions  $\equiv$  multiple excitations of nucleon pairs

• Collective pair  $B_i^+$ :

$$egin{split} egin{array}{lll} egin{array}{c} egin{array}{$$

• Eigen energies *E<sub>i</sub>*:

$$-2g\sum_{j(
eq i)=1}^{N}rac{1}{E_{j}-E_{i}}+g\sum_{j=1}^{N}rac{1}{2\epsilon_{j}-E_{i}}=0$$

N. PILLET (nathalie.pillet@cea.fr)

ESNT workshop

#### **General considerations**

- Link with the BCS and Projected BCS approach on particle numbers
  - BCS wave function

$$|BCS
angle_{ au} = \mathcal{N}_{ au} e^{m{B}_{ au}^+} |0
angle_{ au}$$

• BCS collective pair  $B_{ au}^+$ 

$$\boldsymbol{B}_{\tau}^{+} = \sum_{j>0} tg \theta_{\tau j} b_{\tau j}^{+}$$

with 
$$b_{ au j}^+ = a_{ au j}^+ a_{ au ar j}^+$$

• Projected BCS wave function with 2N particles

$$|PBCS
angle_{ au} \propto {(B_{ au}^+)^{ extsf{N}}}|0
angle$$

$$\Rightarrow |PBCS\rangle_{\tau} = \mathcal{N}_{\tau}' \sum_{n=0}^{\infty} \sum_{\substack{0 < \rho_{1} < \ldots < \rho_{n} \\ 0 < h_{1} < \ldots < h_{n}}} \frac{tg\theta_{\tau\rho_{1}} \dots tg\theta_{\tau\rho_{n}}}{tg\theta_{\tau h_{1}} \dots tg\theta_{\tau h_{n}}} \cdot \prod_{k=1}^{n} (b_{\tau\rho_{k}}^{+} b_{\tau h_{k}}) |HF\rangle$$

## Pairing in Sn isotopes within the mp-mh configuration mixing

- N. Pillet, J.-F. Berger, E. Caurier, PRC 78, 024305 (2008)
- Reduced correlated mp-mh wave function
  - Usual pairing-type correlations
    - No residual proton-neutron interaction  $\Rightarrow A_{\alpha_{\nu}\alpha_{\nu}} = A_{\alpha_{\nu}}A_{\alpha_{\pi}}$
    - Ground states of even-even Sn isotopes  $\Rightarrow |\Psi\rangle_{0^+} = |\Psi_{\nu}\rangle_{0^+}.|\Psi_{\pi}\rangle_{0^+}$
  - Configurations include excited pairs of nucleons
    - One pair: two nucleons in time-reversal states
- Investigation of pairing correlations in weak, medium and strong regimes
  - Study of <sup>100</sup>Sn, <sup>106</sup>Sn and <sup>116</sup>Sn ground states
  - D1S Gogny interaction

# HFB CALCULATIONS WITH D1S GOGNY FORCE

## Weak Pairing

# Medium Pairing

# Strong pairing



# • Correlation energy $E_{corr} = \langle \Psi | \hat{H}(\rho) | \Psi \rangle - \langle HF | \hat{H}(\rho) | HF \rangle$

- Taking into account the first variational equation (frozen orbitals)
- Total and neutron correlation energies Comparison to BCS

| Nucleus           | $ E_{\rm corr}^{\rm total} $ | $ E_{\rm corr}^{\rm neutron} $ | $ E_{\rm corr}^{\rm BCS} $ |
|-------------------|------------------------------|--------------------------------|----------------------------|
| <sup>100</sup> Sn | 3.67                         | 1.90                           | 0.00                       |
| <sup>106</sup> Sn | 4.62                         | 2.88                           | 1.37                       |
| <sup>116</sup> Sn | 5.44                         | 3.74                           | 3.25                       |

- $\Rightarrow$  Contribution due to protons:  $\simeq$  1.7 MeV ( in BCS: 0 MeV)
- $\Rightarrow$  Contribution due to neutrons:
  - Non zero in <sup>100</sup>Sn (contrary to BCS)
  - Always larger than in the BCS approximation
- <sup>100</sup>Sn 1 pair: 3.397 MeV 2 pairs: 0.275 MeV
- <sup>116</sup>Sn 1 pair: 4.474 MeV 2 pairs: 0.967 MeV 3 pairs: 0.070 MeV

#### $\Rightarrow$ Results consistent with those of the picket fence model

#### Structure of correlated wave functions

$$\mathcal{T}(i_{\pi},j_{
u})=\sum_{lpha_{
u}\,lpha_{\pi}}|\mathcal{A}_{lpha_{
u}\,lpha_{\pi}}|^{2}$$

- Taking into account the first variational equation (frozen orbitals)
- Components of the correlated wave function (in percentage)

| Nucleus                                | T(0,0)         | T(0,1)        | T(1,0)       | T(0,2)       | T(1,1)       | T(2, 0)                                     |
|----------------------------------------|----------------|---------------|--------------|--------------|--------------|---------------------------------------------|
| <sup>116</sup> Sn                      | 65.38          | 26.04         | 4.50         | 2.68         | 1.23         | 0.17                                        |
| <sup>106</sup> Sn<br><sup>100</sup> Sn | 67.44<br>90.85 | 25.29<br>5.02 | 3.63<br>3.70 | 2.54<br>0.16 | 0.99<br>0.18 | $\begin{array}{c} 0.11 \\ 0.09 \end{array}$ |

 $\Rightarrow$   $^{116}{\rm Sn}$  is the most correlated nucleus

- $\Rightarrow$  Configurations with one excited neutron pair are the most important
- Dominant configurations for the three Sn isotopes



ESNT workshop

# • Approximate renormalization of orbitals

• Taking into account the second variational equation  $[h(\rho), \rho] \approx 0$ 



#### Structure of correlated wave functions

| Nucleus           | T(0,0) | T(0,1) | T(1,0) | T(0,2) | T(1,1) | T(2, 0) |
|-------------------|--------|--------|--------|--------|--------|---------|
| <sup>116</sup> Sn | 42.09  | 44.28  | 3.00   | 8.43   | 2.09   | 0.11    |
| <sup>106</sup> Sn | 62.90  | 28.65  | 3.54   | 3.62   | 1.17   | 0.11    |
| <sup>100</sup> Sn | 88.19  | 6.36   | 4.74   | 0.27   | 0.29   | 0.15    |

 $\Rightarrow$  Strong variations in <sup>116</sup>Sn: the 2p-2h configurations are dominant

 $\Rightarrow$  Reason: reduction of the neutron gap  $3s_{1/2} - 1h_{11/2}$  by  $\simeq 400$  keV

Neutron skin



- Neutron skin  $\Delta r_{np} = r_n r_p$
- In strongly correlated isotopes  $\Rightarrow$  Decrease of neutron radii
- Reason: Fall of the neutron  $1h_{11/2}$  in the potential Reduction of  $1h_{11/2}$  radius
- $\Rightarrow$  RPA-type correlations should increase  $\Delta r_{np}$

ESNT workshop

2f<sub>7/2</sub>

1h<sub>110</sub> 1d<sub>3/2</sub> 3s<sub>1/2</sub> 1g<sub>7/2</sub> 2d<sub>8/2</sub>

1 g.,

50

-15

#### Investigation of two-body spatial pairing correlations

• Correlated part of the two-body density

$$\langle \psi^+(\mathbf{\tilde{r}_1},\mathbf{s_1})\psi^+(\mathbf{\tilde{r}_2},-\mathbf{s_2})\psi(\mathbf{\tilde{r}_2},-\mathbf{s_2})\psi(\mathbf{\tilde{r}_1},\mathbf{s_1})\rangle$$

• In the Hartree-Fock-Bogoliubov approach

$$\kappa(\vec{r}_1s_1,\vec{r}_2s_2)\kappa^*(\vec{r}_1s_1,\vec{r}_2s_2)$$

with  $\kappa(\vec{r}_1 s_1, \vec{r}_2 s_2) = \langle \psi(\vec{r}_1, s_1) \psi(\vec{r}_2, s_2) \rangle$  pairing tensor

N. Pillet, N. Sandulescu, P. Schuck, PRC 76, 024310 (2007).
 N. Pillet, N. Sandulescu, P. Schuck, J.-F. Berger, PRC C81, 034307 (2010).

• In the mp-mh configuration mixing approach

$$\sigma(\vec{r}_1 s_1, \vec{r}_1 s_1, \vec{r}_2 - s_2, \vec{r}_2 - s_2)$$

## **Application to** <sup>52</sup>**Ca** (D1S Gogny interaction)

• Non-local properties (C. Caizergues and N. Pillet, unpublished, 2010)



- Increase of pairing collectivity in the surface (mp-mh configuration mixing)

   Increase of parity mixing
- Importance of the conservation of particle numbers!
- Expected effects on pair transfer cross sections

Two-neutron S<sub>2n</sub> and two-proton S<sub>2p</sub> separation energies sd-shell nuclei

## **Two-neutron** $S_{2n}$ and two-proton $S_{2p}$ separation energies

- Important observables for two-nucleon transfer reactions
  - $\Rightarrow$  Theoretical  ${\it S}_{2n}$  and  ${\it S}_{2p}$  have to be calculated with enough accuracy

• Definitions

$$S_{2n}(N, Z) = BE(N, Z) - BE(N - 2, Z)$$
  
 $S_{2p}(N, Z) = BE(N, Z) - BE(N, Z - 2)$ 

• Applications in *sd*-shell nuclei (Talk of J. Le Bloas)



Mean value of the difference to experiment:

 $S_{2n}(HF) = 0.1 \text{MeV}/S_{2n}(\text{mpm}h) = -0.24 \text{MeV}, S_{2p}(HF) = 0.5 \text{MeV}/S_{2p}(\text{mpm}h) = 0.29 \text{MeV}$ Corresponding dispersions:

 $S_{2n}(HF) = 1.99 \text{MeV}/S_{2n}(\text{mpm}h) = 0.83 \text{MeV}, S_{2p}(HF) = 1.96 \text{MeV}/S_{2p}(\text{mpm}h) = 0.86 \text{MeV}$ 

J. Lebloas, N. Pillet, J.-M. Daugas, M. Dupuis et al., article in preparation

#### Pair overlap functions for two-nucleons transfer reactions

• Starting from the two-body Green function noted G<sub>2</sub>,

$${\mathcal G}_2 = \langle \Phi_0 | \, \mathcal{T} \{ \Psi(t_1) \Psi(t_3) \Psi^\dagger(t_2) \Psi^\dagger(t_4) \} | \Phi_0 
angle$$

with  $|\Phi_0\rangle$  the exact g.s. of the system with A nucleons and energy  $E_0$ .

- Two particle bound states  $\Rightarrow t_1 = t_3$  and  $t_2 = t_4$
- Restriction to  $t_1 > t_2$  ( $t_1 < t_2$  can be done in a similar way)
- Introducing a closure relation,

$$\Rightarrow G_2 = \sum_n \langle \Phi_0 | \Psi(t_1) \Psi(t_1) | \Phi_n \rangle \langle \Phi_n | \Psi^{\dagger}(t_2) \Psi^{\dagger}(t_2) | \Phi_0 \rangle$$

with  $|\Phi_n\rangle$  the eigensolutions of the system with A+2 nucleons and energy  $E_n$ .

- A few definitions
  - Excitation energy  $\omega_{no} = E_n E_0$
  - Chemical potential

$$E_{0}(A + 1) - E_{0}(A) = E_{0}(A) - E_{0}(A - 1) = \mu$$
  

$$E_{0}(A + 2) - E_{0}(A) = E_{0}(A) - E_{0}(A - 2) = 2\mu$$
  

$$\Rightarrow \omega_{no} = 2\mu + \xi_{n0}$$
(5-1)

## • Transition amplitudes

$$G_{2} = \sum_{n} e^{i(2\mu + \xi_{n0})(t_{1} - t_{2})} \sum_{\alpha\beta\gamma\delta} (\eta_{n})_{\alpha\beta}^{T} (\zeta_{n})_{\gamma\delta}$$

• One has used the Heisenberg representation of the field operators

$$\Psi^{\dagger}(t) = \sum_{lpha} a^{\dagger}_{lpha}(t) = \sum_{lpha} e^{iHt} a^{\dagger}_{lpha} e^{-iHt}$$

• Expressions of transition amplitudes

$$egin{aligned} &(\eta_n)_{lphaeta} = \langle \Phi_n | a_lpha a_eta | \Phi_0 
angle \ &(\zeta_n)_{\gamma\delta} = \langle \Phi_n | a^\dagger_\gamma a^\dagger_\delta | \Phi_0 
angle \end{aligned}$$

• Pair form factors

$$egin{aligned} &\sum_{lphaeta}(\eta_n)_{lphaeta} &= \sum_{lphaeta}\langle\Phi_n|a_lpha a_eta|\Phi_0
angle \ &\sum_{\gamma\delta}(\zeta_n)_{\gamma\delta} &= \sum_{\gamma\delta}\langle\Phi_n|a^\dagger_\gamma a^\dagger_\delta|\Phi_0
angle \end{aligned}$$

• How the non-locality is incorporated in pair transfer reaction models?