Workshop of the ESNT Continuum effects in transfer reactions and core excitation in breakup

Antonio M. Moro

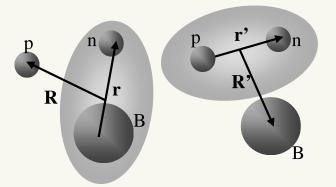
Planned content:

- 1. Continuum effects in transfer reactions
 - Beyond DWBA: CDCC-TR and "no-remnant" amplitudes
 - Post/prior equivalence
 - Comparison with Faddeev/AGS
- 2. Knock-out and QFS reactions.
 - Inelastic-like vs kock-out reactions
 - Role of p-n interaction in (p, pn) and (p, 2p) reactions
 - Comparison with Faddeev/AGS
- 3. Core excitation in breakup

Part I: Continuum effects in transfer reactions

(work done with R. Johnson and F. Nunes)

One-nucleon transfer reaction in an effective three-body model



• Effective three-body model Hamiltonian for A(p,d)B or B(d,p)A:

$$H = K + V_{np} + V_{pn} + U_{nB} + U_{pB}$$

• Internal d.o.f. of B not explicitly included \Rightarrow all SF are 1.

Test example: ¹⁰Be(d,p)¹¹Be

- $U_{\mathrm{p}^{10}\mathrm{Be}} U_{\beta} \equiv U_{\mathrm{rem}}$ (remnant term)
- $\Psi_d^{(+)}$: exact 3-body WF (unknown)
- U_{β} : auxiliary arbitrary (even 0!)
- $\Phi_{\beta}^{(-)}$: 3-body WF, obtained as solution of the equation:

$$\left[E - i\epsilon - K - V_{\mathrm{n}^{10}\mathsf{Be}} - U_{\beta}\right]\Phi_{\beta}^{(-)}(\mathbf{r}', \mathbf{R}') = 0$$

Approximations:

• $\Psi_d^{(+)} \approx \chi_d(\mathbf{R})\phi_d(\mathbf{r})$ ("product" approximation)

•
$$U_{\beta} = U_{opt}(\mathbf{R}') \Rightarrow \tilde{\Phi}_{\beta}^{(-)} \approx \chi_p(\mathbf{R}')\phi_{^{11}\mathsf{Be}}(\mathbf{r}')$$

$$T_{\text{post}}^{\text{DWBA}} = \langle \chi_p(\mathbf{R}')\phi_{^{11}\text{Be}}(\mathbf{r}')|V_{pn} + U_{p^{10}\text{Be}} - U_\beta|\chi_d(\mathbf{R})\phi_d(\mathbf{r})\rangle$$

✗ Only first order

- **X** Ignores coupling to breakup channels
- **X** Results can be very much dependent on $U_d(\mathbf{R})$ and $U_p(\mathbf{R}')$

Approximations:

• $\Psi_d^{(+)} \approx \Psi_d^{\text{CDCC}}(\mathbf{r}, \mathbf{R}) = \sum_i \chi_d^i(\mathbf{R}) \phi_d^i(\mathbf{r})$ (accurate within the range of $V_{pn}(\mathbf{r})$)

•
$$U_{\beta} = \langle \phi_{^{11}\mathsf{Be}} | V_{pn} + U_{p^{10}\mathsf{Be}} | \phi_{^{11}\mathsf{Be}} \rangle \equiv U_{00}(\mathbf{R}')$$

$$T_{\text{post}}^{\text{CDCC}} = \langle \chi_p(\mathbf{R}')\phi_{^{11}\text{Be}}(\mathbf{r}')|V_{pn} + U_{p^{10}\text{Be}} - U_{00}(\mathbf{R}')|\Psi_d^{CDCC}\rangle$$

- Only two-body interactions needed
- Continuum effects in entrance channel explicitly included
- $\textbf{X}^{-11} \textbf{Be}$ continuum not explicitly included
- ★ $\Psi_d^{\text{CDCC}}(\mathbf{r}, \mathbf{R})$ accurate within V_{pn} range but, what about $V_{pn} + U_{\text{rem}}$?

Timofeyuk-Johnson amplitude: N.T. and R.C.J, PRC59, 1545 (1999)

In the exact expression: $U_{\beta} \equiv U_{p^{10}Be}(\mathbf{r}_{p^{10}Be}) \Rightarrow U_{rem} = 0$

$$T_{\rm post}^{\rm TJ} = \langle \tilde{\Phi}_{\beta}^{(-)} | V_{pn} | \Psi_d^{(+)} \rangle$$

•
$$\left[E - i\epsilon - K - V_{\mathrm{n}^{10}\mathsf{Be}} - U_{\mathrm{p}^{10}\mathsf{Be}}\right]\tilde{\Phi}_{\beta}^{(-)}(\mathbf{r}',\mathbf{R}') = 0$$

- ✓ Only binary interactions are needed (n-p, $p^{-10}Be$ and $n^{-10}Be$)
- ✓ $\Psi_d^{(+)}(\mathbf{r}, \mathbf{R})$ is only required at small n-p separations ($r \approx 0$)

$$\bigstar \tilde{\Phi}_{\beta}^{(-)}$$
 and $\Psi_{d}^{(+)}(\mathbf{r}, \mathbf{R})$ difficult to calculate.

Timofeyuk and Johnson, Phys.Rev. C59, 1545 (1999)

$$T_{\rm post}^{\rm TJ} = \langle \tilde{\Phi}_{\beta}^{(-)} | V_{pn} | \Psi_d^{(+)} \rangle$$

If $\epsilon_x \ll E_{
m c.m.}$:

•
$$\tilde{\Phi}^{(-)}_{\beta} \approx \tilde{\Phi}^{ad}_{\beta} = \chi_{\mathrm{p}^{10}\mathsf{Be}}(\mathbf{r}_{\mathrm{p}^{10}\mathsf{Be}})\phi_{^{11}\mathsf{Be}}(\mathbf{r}')e^{-i\alpha\mathbf{k}_{\beta}\mathbf{r}'}$$

(Johnson, Al-Khalili and Tostevin, PRL79 (1997) 2771)

•
$$\Psi_d^{(+)} \approx \chi_d^{JS}(\mathbf{R})\phi_d(\mathbf{r})$$

 $(\chi_d^{JS}(\mathbf{R}) \text{ calculated with the Johnson-Soper potential})$

(Johnson and Soper, PRC1 (1979) 976)

Evaluation of "no-remnant" amplitude in the CDCC approximation

$$T_{\rm post}^{\rm TJ} = \langle \tilde{\Phi}_{\beta}^{(-)} | V_{pn} | \Psi_d^{(+)} \rangle$$

- $\tilde{\Phi}_{\beta}^{(-)}$ and $\Psi_{d}^{(+)}$ are approximated by CDCC expansions:
 - $\Psi_d^{(+)}$ expanded in p-n states
 - $\tilde{\Phi}_{\beta}^{(-)}$ expanded in n-¹⁰Be states

Evaluation of "no-remnant" amplitude in the CDCC approximation

$$T_{\rm post}^{\rm TJ} = \langle \tilde{\Phi}_{\beta}^{(-)} | V_{pn} | \Psi_d^{(+)} \rangle$$

- $\tilde{\Phi}_{\beta}^{(-)}$ and $\Psi_{d}^{(+)}$ are approximated by CDCC expansions:
 - $\Psi_d^{(+)}$ expanded in p-n states
 - $\tilde{\Phi}_{\beta}^{(-)}$ expanded in **n**-¹⁰Be states
- ✓ No adiabatic approximation is involved
- ✓ Short-ranged ransition potential (V_{pn})
- ✓ $\Psi_d^{(+)}$ accurate within V_{pn} .

• Post DWBA:

$$T_{\text{post}}^{\text{DWBA}} = \langle \chi_p(\mathbf{R}')\phi_{^{11}\text{Be}}(\mathbf{r}')|V_{pn} + U_{p^{10}\text{Be}} - U_p|\chi_d(\mathbf{R})\phi_d(\mathbf{r})\rangle$$

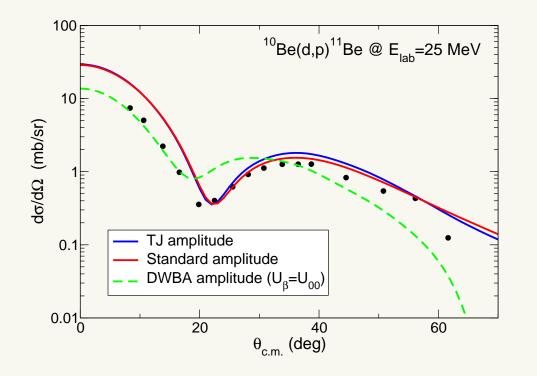
• Post CDCC-TR amplitude:

$$T_{\text{post}}^{\text{CDCC}} = \langle \chi_p(\mathbf{R}')\phi_{^{11}\text{Be}}(\mathbf{r}')|V_{pn} + U_{p^{10}\text{Be}} - U_{00}(\mathbf{R}')|\Psi_d^{\text{CDCC}}\rangle$$

• "No-remnant" TJ amplitude:

$$T_{\rm post}^{\rm TJ} = \langle \tilde{\Phi}_{\beta}^{\rm CDCC} | V_{pn} | \Psi_d^{\rm CDCC} \rangle$$

Comparison for ¹⁰**Be(d,p)**¹¹**Be**



Data: Zwieglinski et al, NPA315, 124 (1979)

Calculations: A.M.M, Nunes, Johnson, PRC80 064606(20009

- The TJ and "standard" amplitudes provide consistent results
- rightarrow The data are overestimated $\Rightarrow S_f < 1$
- rightarrow DWBA out of phase and very dependent on U_{β}

• Exact prior transition amplitude:

$$T_{\text{prior}}^{\text{exact}} = \langle \Psi_p^{(-)} | V_{n^{10}\text{Be}} + U_{p^{10}\text{Be}} - U_\alpha | \Phi_\alpha^{(+)} \rangle$$

• DWBA approximation:

$$T_{\text{prior}}^{\text{DWBA}} = \langle \chi_p(\mathbf{R}')\phi_{^{11}\text{Be}}(\mathbf{r}')|V_{n^{10}\text{Be}} + U_{p^{10}\text{Be}} - U_d|\chi_d(\mathbf{R})\phi_d(\mathbf{r})\rangle$$

• CDCC-TR approximation:

$$T_{\text{prior}}^{\text{CDCC}} = \langle \Psi_p^{\text{CDCC}} | V_{n^{10}\text{Be}} + U_{p^{10}\text{Be}} - U_d^{fold} | \chi_d(\mathbf{R})\phi_d(\mathbf{r}) \rangle$$

• "No-remnant" approximation:

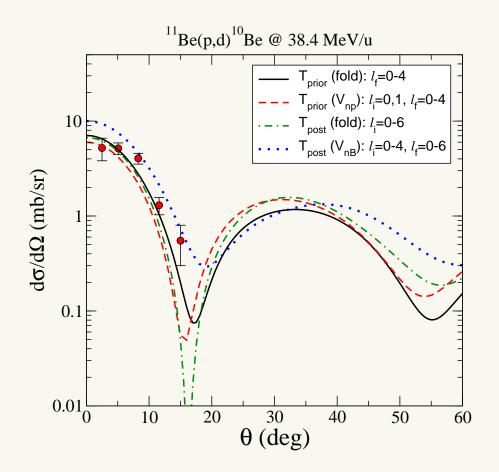
$$T_{\rm prior}^{\rm TJ} = \langle \Psi_p^{\rm CDCC} | V_{\rm n^{10}Be} | \tilde{\Phi}_{\alpha}^{(+)} \rangle$$

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

Comparison of post/prior amplitudes

rightarrow Same effective Hamiltonian: $H = K + V_{np} + V_{pn} + U_{p^{10}Be} + V_{n^{10}Be}$



Data:

Winfield et al, Nucl. Phys. A683, 48 (2001)

Calculations: A.M.M, Nunes, Johnson, PRC80, 064606(20009

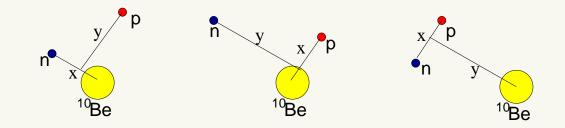
Consistent results

Slow convergence of **post CDCC-TR** ($V_{n^{10}Be}$ vs V_{pn})

ESNT workshop

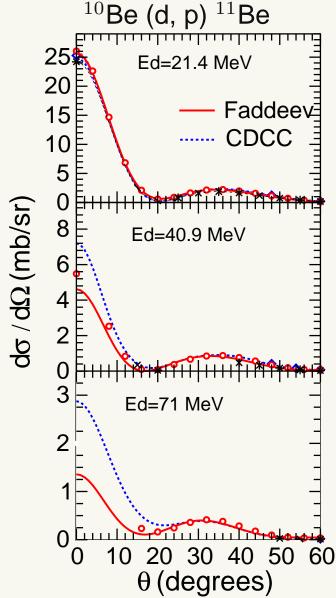
CEA-Saclay SPhN 6-8 February 2013

- The *exact* solution of a three-body scattering problem is formally given by the Faddeev equations.
- The 3-body WF is expanded in the (overcomplete) basis formed by the three Jacobi sets ⇒ includes breakup and rearrangement channels on equal footing.



- Numerical complexities has limited its application to few-body problems (eg. n+d)
- Recent developments (eg. inclusion of Coulomb) permits its application to heavier systems within the momentum-space formulation of Alt, Grassberger and Sandhas (AGS).

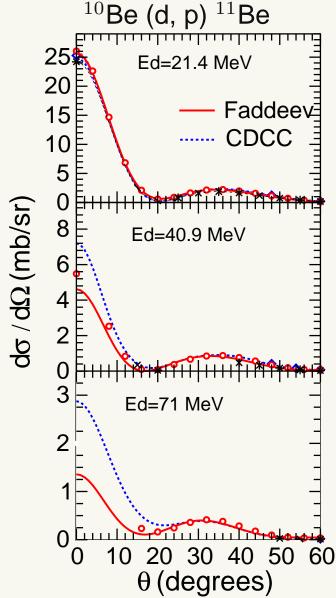
However...



N.J. Upadhyay, A. Deltuva, F.M. Nunes, PRC85, 054621 (2012)

Good agreement at low energies (10 MeV/u) but differences become more and more important as the incident energy increases.

However...



N.J. Upadhyay, A. Deltuva, F.M. Nunes, PRC85, 054621 (2012)

Good agreement at low energies (10 MeV/u) but differences become more and more important as the incident energy increases.

Further investigation is required!

Conclusions from this part

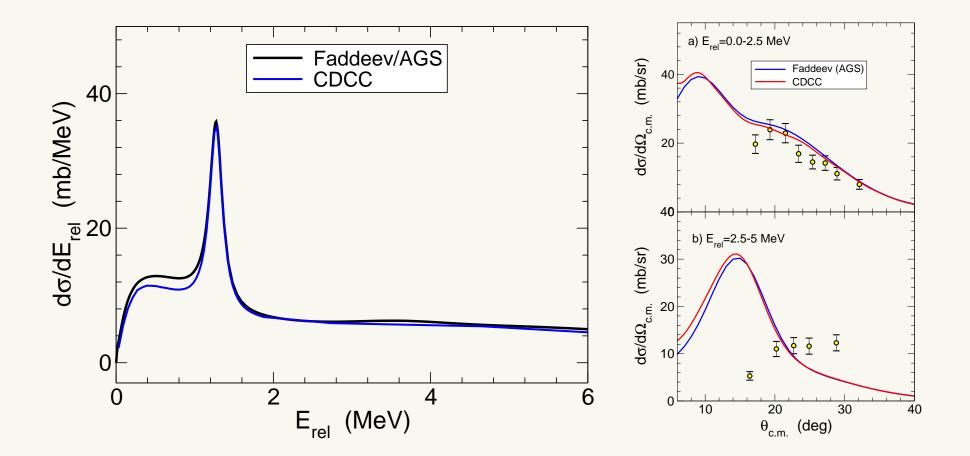
- Starting with a few-body effective Hamiltonian, scattering theory provide a series of alternative and formally equivalent transfer amplitudes.
- Continuum effects can be naturally incorporated approximating the exact wfs by CDCC counterparts.
- Benchmark calculations for ¹⁰Be(d,p)¹¹Be confirm the practical equivalence of these expressions, when the CDCC wfs are used to approximate the exact wfs.
- Post/prior equivalence is hold but one of the representations is clearly preferable.
- To compare with data, additional degrees of freedom should be incorporated (eg. core excitation).
- Comparison with the "exact" solution (Faddeev/AGS) shows an excellent agreement at low energies, but as the energy increases worrying discrepancies appear.

Part II: Application of CDCC to knock-out and QFS

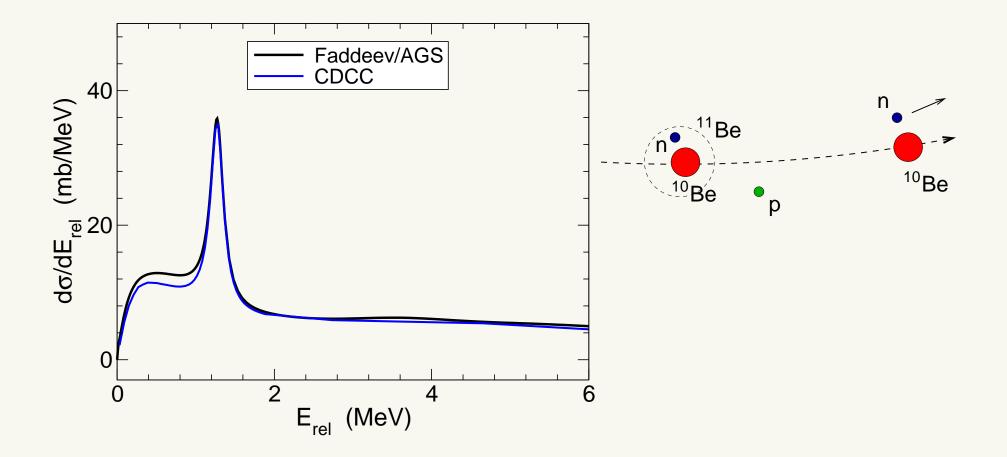
(collaboration with R. Crespo, A. Deltuva and F. Nunes)

- Different breakup reactions explore different regions of the continuum:
 - Inelastic-like exclusive breakup: ${}^{11}\text{Be} + \text{A} \rightarrow ({}^{10}\text{Be} + \text{n}) + \text{A}$
 - Knock-out / QFS: 10 Be + p \rightarrow 10 Be + (np)
 - Inclusive breakup: ${}^{11}\text{Be} + \text{A} \rightarrow + {}^{10}\text{Be} + \text{anything}$
- Ideally, one should be able to treat all these processes within a common consistent framework ⇒ Faddeev?
- In practice, approximate methods are tailored to specific processes, so their range of validity needs to be carefully assessed.

Exclusive direct breakup for ¹¹Be + $p \rightarrow (^{10}Be+n) + p @ E \simeq 70 MeV/u$

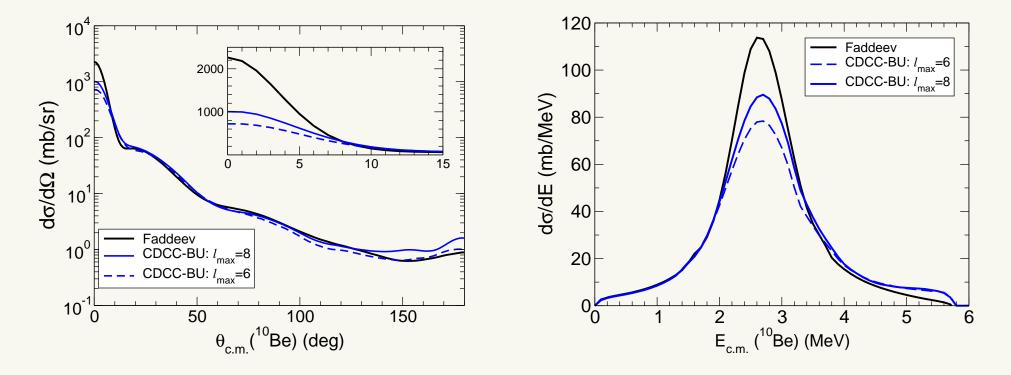


Exclusive direct breakup for ¹¹Be + p \rightarrow (¹⁰Be+n) +p @ $E \simeq 70$ MeV/u



Good agreement between CDCC and Faddeev/AGS

The reaction is dominated by small ¹⁰Be+n energy/angular momenta, where CDCC is at it best



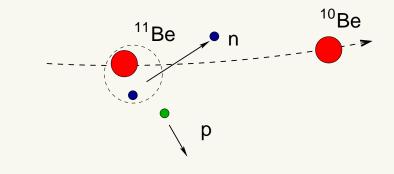
CDCC converges very slowly to the *exact* solution.

- Backward angles: dominated by ¹¹Be low lying continuum ⇒ inelastic-like picture (direct breakup).
- Forward angles: dominated by p-n interaction (quasi-free scattering) ⇒ best described in terms of p-n states

Practical implementation of CDCC-TR*

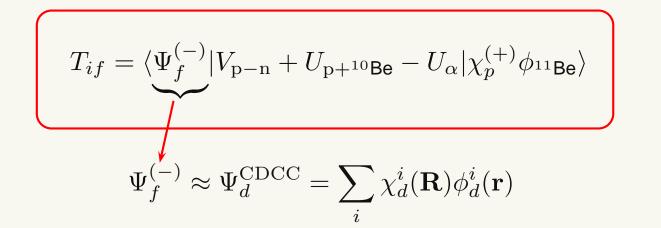
Prior form of transition amplitude

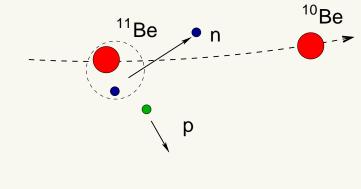
$$T_{if} = \langle \Psi_f^{(-)} | V_{p-n} + U_{p+10Be} - U_{\alpha} | \chi_p^{(+)} \phi_{11Be} \rangle$$



- Three-body wf expanded in target (p-n) internal states.
- Breakup formally treated as transfer to n+p continuum.
- Provides transfer to bound and unbound states (ie, breakup)

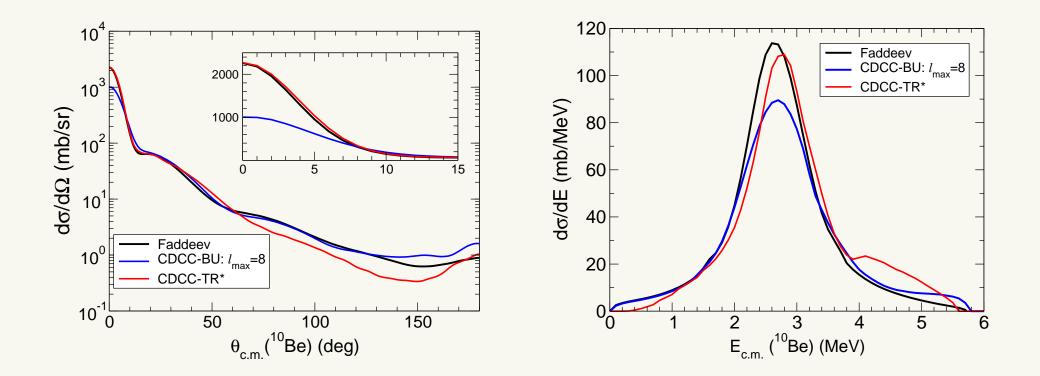
Prior form of transition amplitude





- Three-body wf expanded in target (p-n) internal states.
- Breakup formally treated as transfer to n+p continuum.
- Provides transfer to bound and unbound states (ie, breakup)

 $^{11}\text{Be} + p \rightarrow ^{10}\text{Be} + p + n$

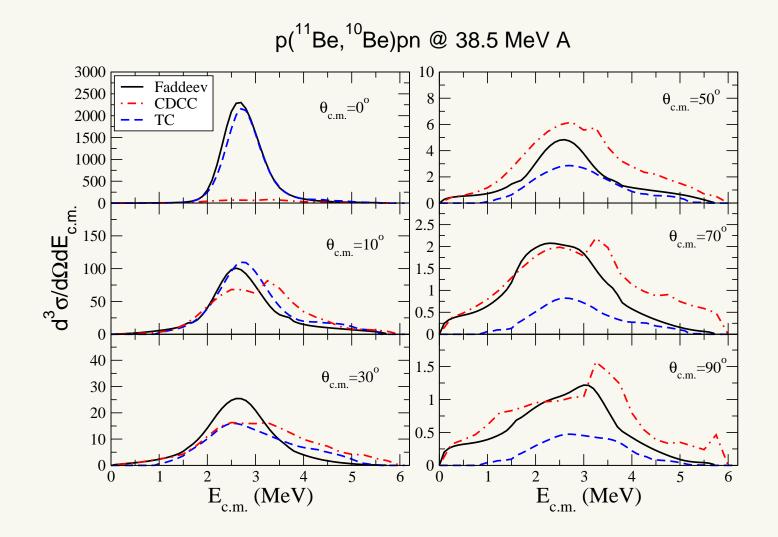


- Forward angles: dominated by p-n interaction (QFS) \Rightarrow CDCC-TR*
- Backward angles: dominated by ¹¹Be low lying continuum \Rightarrow CDCC-BU

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

CDCC vs Faddeev: inclusive breakup x-sections

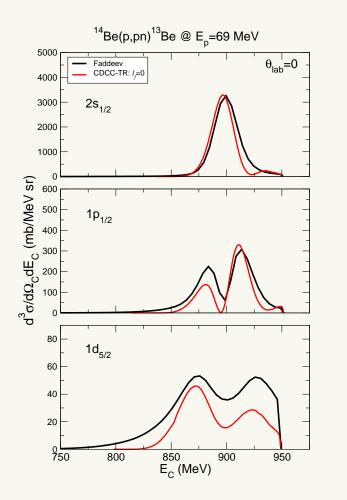


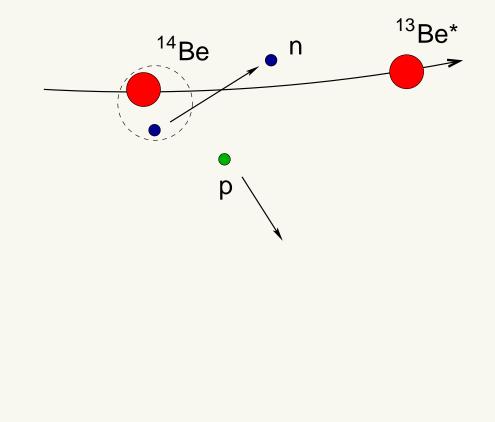
Forward angles are dominated by quasi-free *p*-*n* scattering

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

CDCC vs Faddeev: inclusive breakup x-sections





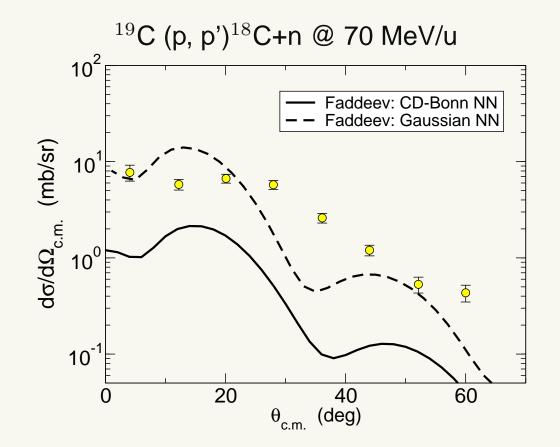
- *Forward angles are dominated by* quasi-free *p*-*n* scattering
- result CDCC-TR* with just $\ell = 0$ between p-n gives a reasonable account of the AGS result

ESNT workshop

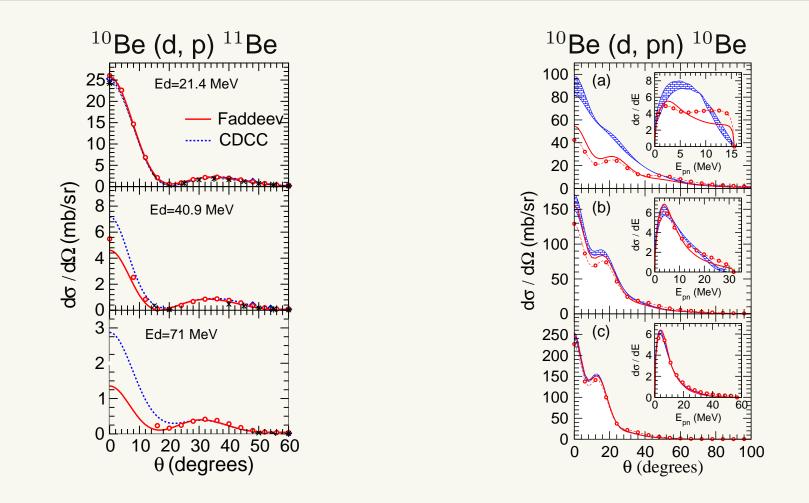
CEA-Saclay SPhN 6-8 February 2013

Sensitivity on p-n interaction

- (d, p) and (p, d) reactions are mostly sensitive to the ${}^{3}S_{1}$ part of the V_{pn} potential.
- This is no longer true for (p, pn) reactions!



Comparison with AGS: dependence with beam energy



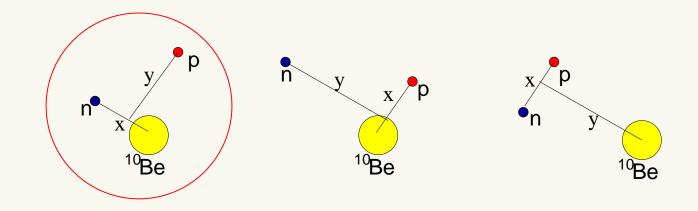
Differences have been recently reported for breakup (low energies) and transfer (high energies) in ¹⁰Be+d reaction (*N.J. Upadhyay, A. Deltuva, F.M. Nunes, PRC85, 054621 (2012)*)

Further investigation is required!

ESNT workshop

Beyond CDCC: few-body CRC

• For a three-body problem, there are three possible rearrangement (Jacobi sets): α , β , γ



- In Faddeev: $\Psi = \Phi_{\alpha} + \Phi_{\beta} + \Phi_{\gamma}$
- In CDCC only the α set is used:

$$\Psi^{3b} \approx \Psi^{CDCC} = \sum_{n}^{N} \phi_{\alpha,n}(\mathbf{r}) \chi(\mathbf{R})$$

• LS form of (CD)CC method: $H = K_{\alpha} + h_{\alpha} + V_{\alpha}$

$$T = V_{\alpha} + V_{\alpha}G_0T$$

• Inserting a model-space set $\Pi_{\alpha} \equiv \sum_{n}^{N} |\alpha n \rangle \langle \alpha n |$

$$T_{fi}^{CC} = \langle f\alpha | T^{CC} | \alpha i \rangle = \langle \alpha_f | V_\alpha | \alpha i \rangle + \sum_{n}^{N} \langle \alpha f | V_\alpha | \alpha n \rangle \langle \alpha n | G_0 | \alpha n \rangle \langle \alpha n | T^{CC} | \alpha i \rangle$$

• A more accurate solution should be obtained using the augmented space $\Pi_{\alpha} \oplus \Pi_{\beta} \oplus \Pi_{\beta}$ (*Kuruoglu, PRC43, 1061 (1991)*)

$$T_{\beta f;\alpha i}^{\text{CRC}} = \langle \beta_f | V_{\beta}^{CRC} | \alpha i \rangle + \sum_{\gamma=1}^{3} \sum_{n}^{N} \langle \beta f | V_{\beta}^{CRC} | \gamma n \rangle \langle \gamma n | G_0 | \gamma n \rangle \langle \gamma n | T^{\text{CRC}} | \alpha i \rangle$$

with

$$V_{\beta}^{CRC} = V_{\beta} + V_{\beta}^{NO}$$

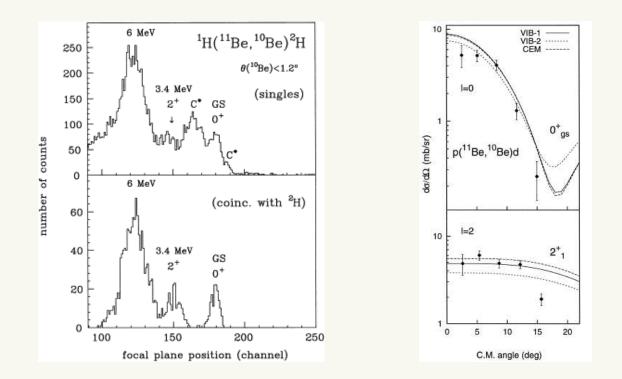
Conclusions

- Standard CDCC provides a good description of breakup in "direct breakup" (*inelastic-like*) processes.
- QFS is not well described by standard CDCC, but it can be modeled within the CDCC-TR* method.
- Scattering of halo nuclei on protons is very sensitive to the p-n interaction on several partial waves.
- A more general CC framework is probably needed in situations in which CDCC fails ⇒ few-body CRC?

Part III: Core excitations effects in breakup reactions

Core excitation in transfer

¹H(¹¹Be,¹⁰Be)²H *Fortier et al, PLB461, 22 (1999)*



Transfer experiments provide information on the amount of core excitation

$$|^{11}\text{Be}\rangle = \alpha |^{10} \text{Be}(0^+) \otimes \nu 2s_{1/2}\rangle + \beta |^{10} \text{Be}(2^+) \otimes \nu 1d_{5/2}\rangle + \dots$$

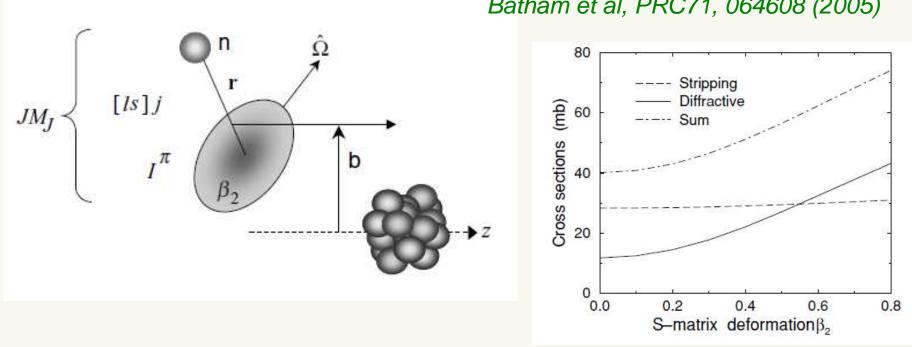
In DWBA:

$$\sigma(0^+) \propto |\boldsymbol{\alpha}|^2; \quad \sigma(2^+) \propto |\boldsymbol{\beta}|^2$$

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

Core excitation in knock-out experiments



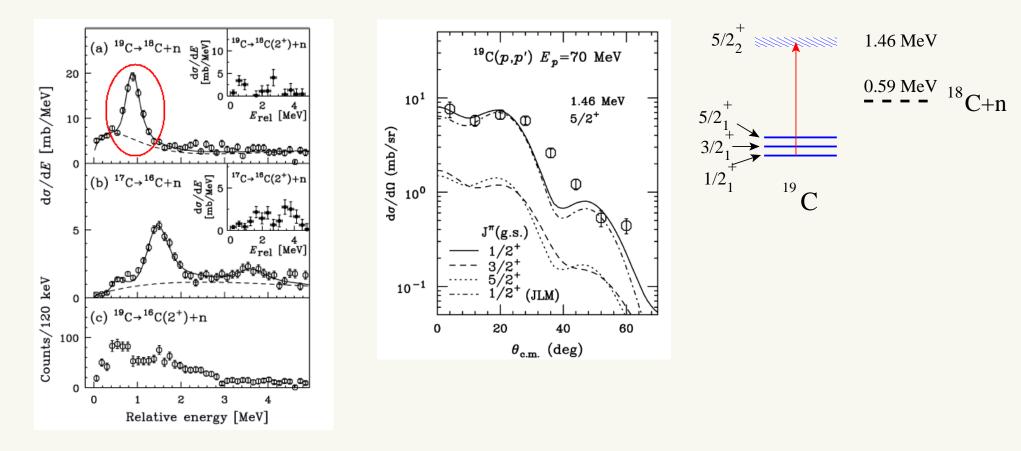
Batham et al, PRC71, 064608 (2005)

Enhancement of diffractive breakup

Open questions:

- How does deformation affect the momentum distributions?
- Effect in exclusive cross sections?

 $^{19}C + p @ E/A = 69 MeV (RIKEN), Satou et el., PLB 660 (2008) 320.$



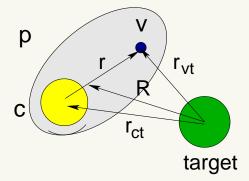
 \ll Microscopic DWBA calculations suggest a $1/2^+ \rightarrow 5/2^+$ transition.

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

Few-body DWBA approach to inelastic scattering

Standard DWBA model for inelastic scattering:



$$T_{if}^{JM,J'M'} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r}) | V_{vt}(\vec{r}_{vt}) + V_{ct}(\vec{r}_{ct}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r}) \rangle$$

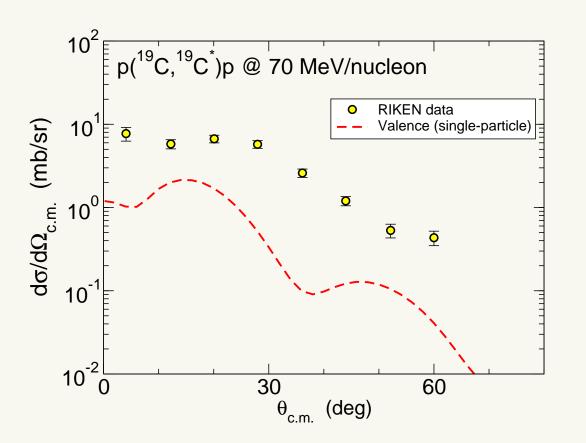
- $\chi_{f}^{(-)}(\vec{R})$, $\chi_{i}^{(+)}(\vec{R})$ describe projectile-target relative motion
- $\Psi^i_{JM}(\vec{r})$, $\Psi^f_{J'M'}(\vec{r})$ projectile single-particle states

• ¹⁹C states treated as s.p. configurations on top of the ¹⁸C(g.s.).

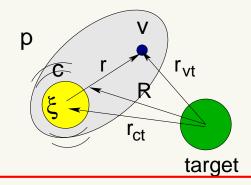
•
$${}^{19}C(1/2^+) = |{}^{18}C(0^+) \otimes \nu s_{1/2}\rangle$$

 ${}^{19}C(5/2^+) = |{}^{18}C(0^+) \otimes \nu s_{1/2}\rangle$

•
$${}^{19}\mathrm{C}(5/2^+) = |{}^{18}\mathrm{C}(0^+) \otimes \nu d_{5/2} \rangle$$



- The valence excitation mechanism does not explain the observed xsections
- Core excitation?



$$T_{if}^{JM,J'M'} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r},\vec{\xi}) | V_{vt}(\vec{r}_{vt}) + V_{ct}(\vec{r}_{ct},\vec{\xi}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r},\vec{\xi}) \rangle$$

- Core excitation affects in two ways:
- $rightarrow V_{ct}(\vec{r}_{ct}, \vec{\xi})$ responsible for dynamic core excitation.
- $\Psi_{JM}(\vec{r}, \vec{\xi})$ = projectile states \Rightarrow "static" deformation effect.

$$\Psi_{JM}(\vec{r},\vec{\xi}) = \sum_{\ell,j,I} \left[\varphi^J_{\ell,j,I}(\vec{r}) \otimes \Phi_I(\vec{\xi}) \right]_{JM}$$

• Particle-rotor Hamiltonian:

$$H_{\text{proj}} = T_r + h_{\text{core}}(\vec{\xi}) + V_{vc}(\vec{r}, \vec{\xi})$$

• Projectile states expanded in $|\alpha; JM\rangle \equiv |(\ell s)j, I; JM\rangle$ basis:

$$\Psi_{JM}(\vec{r},\vec{\xi}) = \sum_{\ell,j,I} R^J_{\ell,j,I}(r) \left[[Y_\ell(\hat{r}) \otimes \chi_s]_j \otimes \Phi_I(\vec{\xi}) \right]_{JM}$$

• The unknowns $R^J_{\ell,j,I}(r)$ can be obtained by direct integration of the Schrödinger equation or by diagonalization in a suitable discrete basis (pseudo-state method).

1. Deformed potential:

$$V_{ct}(\vec{r}_{ct}, \vec{\xi}) \simeq \underbrace{V_{ct}^{(0)}(r_{ct})}_{\text{Valence excitation}} + \underbrace{V_{ct}^{\text{def}}(\vec{r}_{ct}, \hat{\xi})}_{\text{Core excitation}}$$

2. Double-folding with microscopic (AMD) transition densities

$$\langle I'||V_{ct}(\vec{r}_{ct},\vec{\xi})||I\rangle = \int d\mathbf{r}_p \int d\mathbf{r}_t \langle I'||\rho_p(r_p)||I\rangle \rho_t(r_t) v_{NN}(|\mathbf{R}-\mathbf{r}_p+\mathbf{r}_t|),$$

AMD densities provide by Y. Kanada En'yo

• Multipole expansion for the core-target potential

$$V_{ct}(\vec{r}_{ct}, \vec{\xi}) \simeq \underbrace{V_{ct}^{(0)}(r_{ct})}_{\text{Valence excitation}} + \underbrace{V_{ct}^{\text{tran}}(\vec{r}_{ct}, \hat{\xi})}_{\text{Core excitation}}$$

• Replacing $V_{ct}(\vec{r}_{ct}, \vec{\xi})$ in the transition amplitude:

$$T^{if} = T^{if}_{\rm val} + T^{if}_{\rm corex}$$

• Valence excitation amplitude:

$$T_{\rm val}^{if} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r},\vec{\xi}) | V_{vt}(r_{vt}) + V_{ct}^{(0)}(r_{ct}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r},\vec{\xi}) \rangle$$

• Core excitation amplitude:

$$T_{\rm corex}^{if} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r},\vec{\xi}) | V_{ct}^{\rm tran}(\vec{r}_{ct},\hat{\xi}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r},\vec{\xi}) \rangle$$

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

Neglecting core-recoil effects ($\vec{r}_{ct} \approx \vec{R}$):

$$T_{\rm corex}^{JM,J'M'} = \sum_{\lambda>0,\mu} \langle J'M' | JM\lambda\mu \rangle \sum_{\alpha,\alpha'} \langle R_{\alpha'}^{J'} | R_{\alpha}^{J} \rangle G_{\alpha J,\alpha' J'}^{(\lambda)} \widetilde{T}_{\rm ct}^{(\lambda\mu)} (I \to I')$$

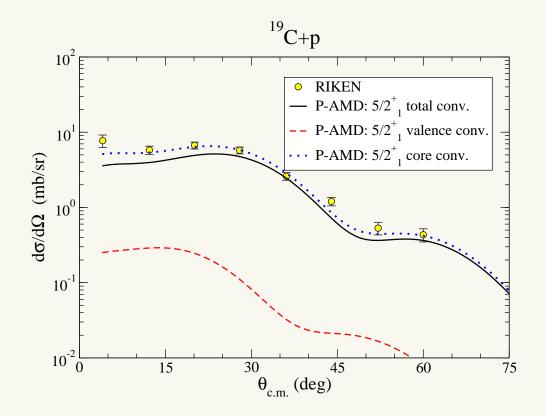
• $\widetilde{T}_{ct}^{(\lambda\mu)}(I \to I')$ is related to the free core-target inelastic amplitude for a core transition $IM_I \to IM'_I$:

$$\widetilde{T}_{\rm ct}^{(\lambda\mu)}(I \to I') = T_{ct}^{IM_I, IM_I'} / \langle I'M_I' | IM_I \lambda \mu \rangle$$

•
$$G^{(\lambda)}_{\alpha J, \alpha', J'} \equiv \delta_{j, j'} (-1)^{\lambda + j + J' + I} \hat{J} \hat{I'} \left\{ \begin{array}{ccc} J' & J & \lambda \\ I & I' & j \end{array} \right\}$$

A.M.M. and R. Crespo, Phys. Rev. C 85, 054613 (2012)

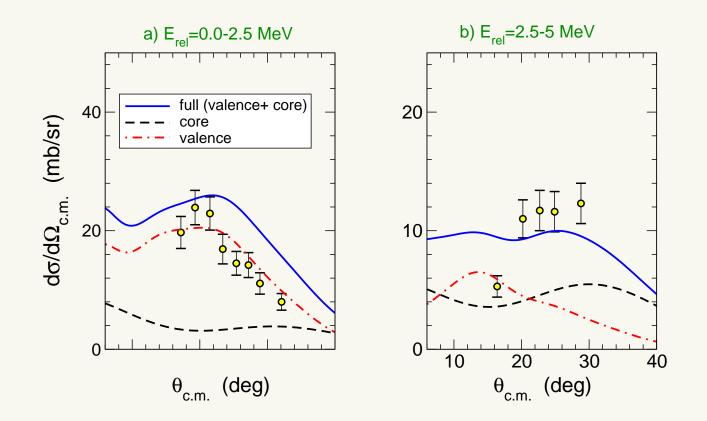
Application to ${}^{19}C+p \rightarrow {}^{18}C+n+p$



- The core-excitation mechanism gives the dominant contribution to the cross section.
- Inclusion of core excitation essential to extract reliable spectroscopic information

ESNT workshop

Application to ¹¹Be+p \rightarrow ¹⁰Be +n +p



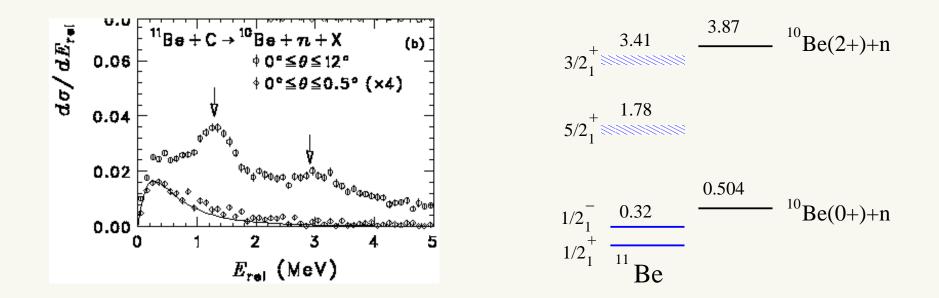
(A.M.M. and R. Crespo, to be published in PRC)

Core-excitation mechanism essential to explain observed cross sections!

ESNT workshop

CEA-Saclay SPhN 6-8 February 2013

Application to ${}^{11}\text{Be} + {}^{12}\text{C}$



- Nuclear effects dominant (EPM model not valid!)
- At these energies the DWBA approximation should be valid, so we use the *core-excitation* model:

$$T_{if} = T_{if}^{(val)} + T_{if}^{(corex)}$$

CEA-Saclay SPhN 6-8 February 2013

ESNT workshop

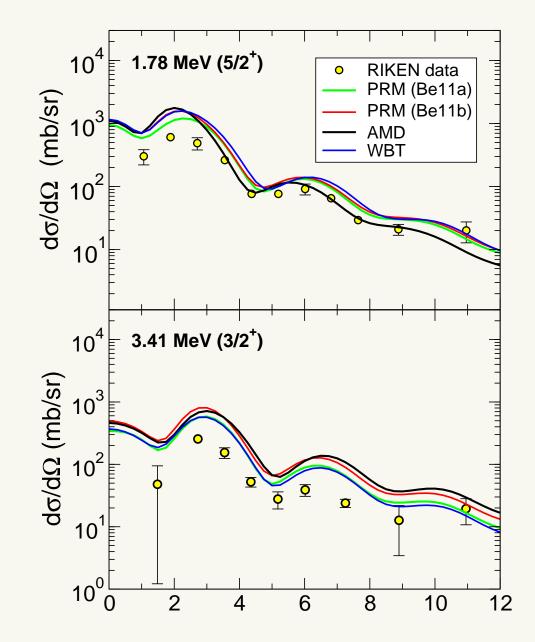
State	Model	$ 0^+\otimes (\ell s)j angle$	$ 2^+ \otimes s_{1/2}\rangle$	$ 2^+ \otimes d_{5/2}\rangle$
$1/2^+$ (g.s.)	PRM (Be11-a)	0.799	_	0.187
	PRM (Be11-b)	0.857	-	0.121
	AMD	0.972	-	0.021
	WBT	0.76	-	0.184
$5/2^+$ (1.78 MeV)	PRM (Be11-a)	0.741	0.126	0.143
	PRM (Be11-b)	0.702	0.177	0.112
	AMD	0.895	0.055	0.047
	WBT	0.682	0.177	0.095
$3/2^+$ (3.41 MeV)	PRM (Be11-a)	0.088	0.633	0.274
	PRM (Be11-b)	0.165	0.737	0.081
	AMD	0.070	0.890	0.025
	WBT	0.068	0.534	0.167

PRM: Particle-rotor model with $\beta_2 = 0.67$ (*Nunes et al, NPA609, 43 (1996*)

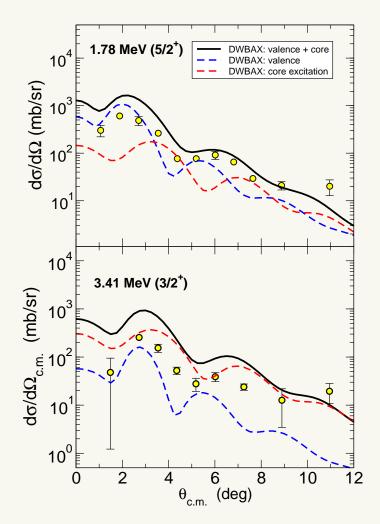
AMD: Semi-microscopic model with 10 Be AMD densities.

WBT: Shell-model calculation with WBT interaction

Application to ${}^{11}\text{Be} + {}^{12}\text{C}$



Application to ${}^{11}\text{Be} + {}^{12}\text{C}$



- Neither the valence nor core excitation alone describe the shape of the data
- $5/2^+$ x-section dominated by s.p. excitation
- 3/2⁺ x-section dominated by core excitation mechanism
- Interference effects between valence & core mechanisms are essential to explain the shape.
- For the 3/2⁺ state, the magnitude is overestimated (?)

A.M.M. and J.A. Lay, PRL109, 232502 (2012)

Full CDCC calculations with core excitation

- DWBA only valid for intermediate and high energies.
- Does not provide elastics

- DWBA only valid for intermediate and high energies.
- Does not provide elastics

In more general situations, one needs to solve full coupled-channels calculations (CDCC)

• Standard CDCC. \Rightarrow use coupling potentials:

$$V_{\alpha;\alpha'}(\mathbf{R}) = \langle \Psi_{J'M'}^{\alpha'}(\vec{r}) | V_{vt}(r_{vt}) + V_{ct}(r_{ct}) | \Psi_{JM}^{\alpha}(\vec{r}) \rangle$$

• Extended CDCC \Rightarrow use generalized coupling potentials

$$V_{\alpha;\alpha'}(\mathbf{R}) = \langle \Psi_{J'M'}^{\alpha'}(\vec{r},\vec{\xi}) | V_{vt}(r_{vt}) + V_{ct}(r_{ct},\vec{\xi}) | \Psi_{JM}^{\alpha}(\vec{r},\vec{\xi}) \rangle$$

Summers et al, PRC74 (2006) 014606, PRC76 (2007) 014611

ESNT workshop