

Effect of collective and non-collective pairing excitations in transfer reactions

Denis Lacroix

GANIL-Caen

Outline:

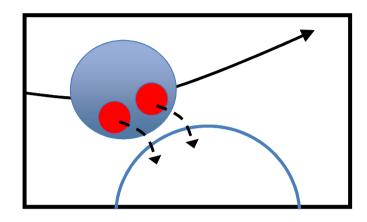
- Pair transfer (the nuclear structure point of view)
- Pair transfer (the nuclear reaction point of view)
- Treatment of continuum
 Coll: M. Grasso, A. Vitturi

D. Gambacurta

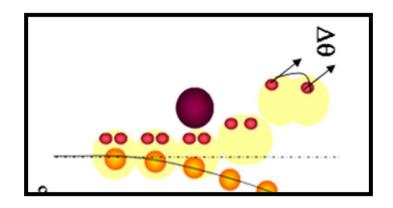
G. Scamps

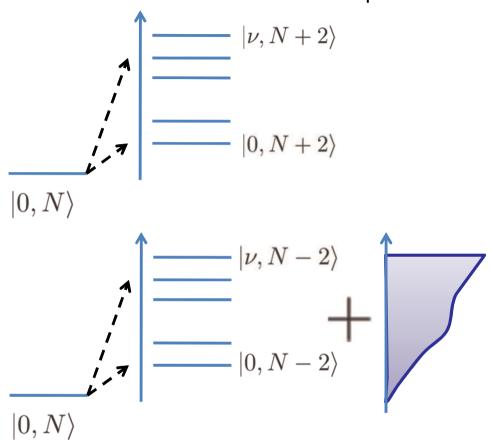
transfer and break-up reactions

2n-transfer reactions



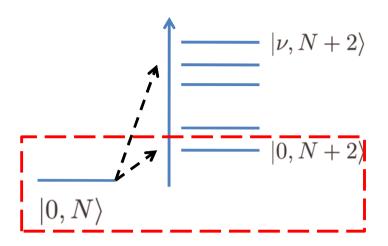
2n-break-up reactions





Description

$$|\Psi(t)\rangle = e^{-itE_0^N/\hbar} \left\{ \sum_{\nu} c_{\nu}^N e^{-it(E_{\nu}^N - E_0^N)/\hbar} |\nu, N\rangle + \sum_{\nu} c_{\nu}^{N-2} e^{-it(E_{\nu}^{N-2} - E_0^N)/\hbar} |\nu, N - 2\rangle + \sum_{\nu} c_{\nu}^{N+2} e^{-it(E_{\nu}^{N+2} - E_0^N)/\hbar} |\nu, N + 2\rangle \right\}$$



Assuming a pair transfer excitation operator:

Bes and Broglia, NPA 80 (1966), Ripka and R. Padjen, NPA132 (1969).

$$\hat{T} = \sum_{i} (T_{i\bar{i}} a_i^{\dagger} a_{\bar{i}}^{\dagger} + T_{i\bar{i}}^* a_{\bar{i}} a_i)$$

$$|\Psi(t)\rangle \longrightarrow S(E) = \sum_{\nu} |\langle N+2,\nu|\hat{T}|N,0\rangle|^2 \delta\left(E-\Delta E_{\nu}^{N+2}\right) \\ + \sum_{\nu} |\langle N-2,\nu|\hat{T}|N,0\rangle|^2 \delta\left(E-\Delta E_{\nu}^{N-2}\right)$$
Nuclear structure input

Transfer from Ground state (GS) to GS: the mean-field strategy based on quasi-particles

$$|0,N\rangle \simeq |QP\rangle = \prod_{i>0} \left(U_i + V_i a_i^{\dagger} a_{\bar{i}}^{\dagger} \right) |0\rangle$$

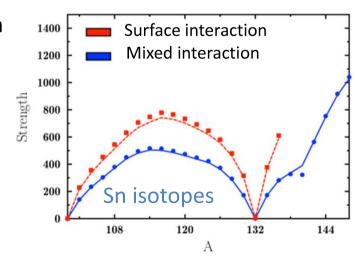
$$|\langle N+2,0|\hat{T}|N,0\rangle|^2$$

$$|\langle N-2,0|\hat{T}|N,0\rangle|^2$$

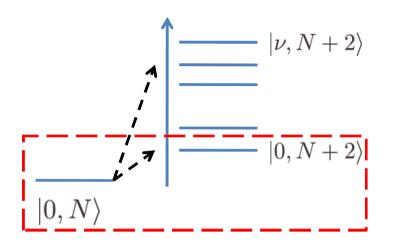
$$|\langle N-2,0|\hat{T}|N,0\rangle|^2$$

$$|\langle N-2,0|\hat{T}|N,0\rangle|^2$$

Illustration

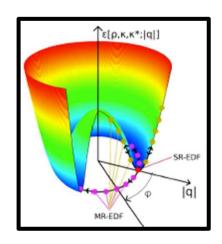


Grasso, Lacroix, Vitturi, PRC85 (2012) (see also Marcella talk)

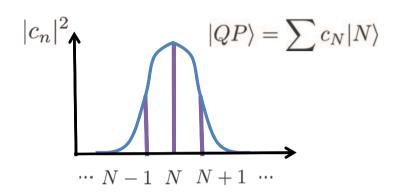


$$|N\rangle = P_N |QP\rangle$$

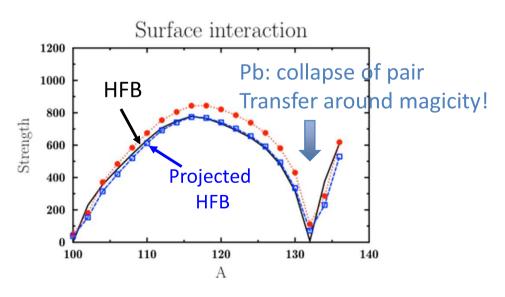
$$P^{N} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi \ e^{i\varphi(\hat{N}-N)}$$



Particle number non-conservation



Projection After Variation applied to pair transfer

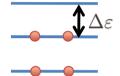


Grasso, Lacroix, Vitturi, PRC85 (2012)

Testing ideas with the pairing model

$$H = \sum_{i=1}^{\Omega} \varepsilon_i a_i^{\dagger} a_i + \sum_{i \neq j}^{\Omega} v_{ij} a_i^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_j$$

Mean-Field



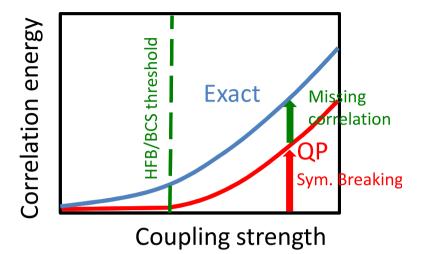
$$\Delta \varepsilon \quad \delta \langle QP|H|QP\rangle = 0 \quad \blacksquare$$

Projection After Variation

Does not solve the threshold problem

Variation After Projection

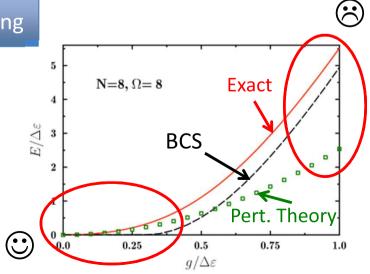
$$\delta \langle QP|P_NHP_N|QP\rangle = 0$$



Solve the problem but is rather involved. (Hupin, Lacroix, PRC86 (2012).)

Simple perturbative approach to pairing at weak coupling

Normal phase: standard perturbation theory



From particles to quasi-particles

$$\begin{vmatrix} 0, N \rangle \\ a_i^{\dagger} \end{vmatrix} \implies \begin{vmatrix} QP \rangle \\ \beta_i^{\dagger} \end{vmatrix}$$

$$H \implies H_0 = E_0 + \sum E_i \beta_i^{\dagger} \beta_i$$

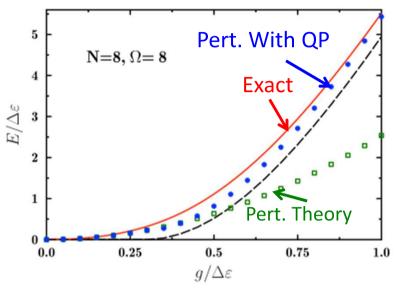
$$H|QP\rangle = \left(H_0 - \sum_{i \neq j} v_{ij} U_i^2 V_j^2 \beta_i^{\dagger} \beta_i^{\dagger} \beta_j^{\dagger} \beta_j^{\dagger} \right) |QP\rangle$$

Step 1: Perturbation theory

$$|\Phi_0'\rangle = |QP\rangle + \sum c_{4QP} |\Phi_{4QP}\rangle$$

Step 2: Projection on particle number

$$E_0 = \frac{\langle \Phi_0'|P_NHP_N|\Phi_0'\rangle}{\langle \Phi_0'|P_N|\Phi_0'\rangle} \quad \text{(PAV like method)}$$

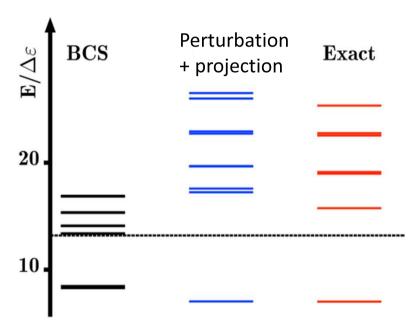




Lacroix and Gambacurta PRC86, (2012).

From ground states to excited states

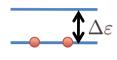
Result of perturbation + projection technique



Lacroix and Gambacurta, PRC86, (2012).

- Very good for the ground state.
- Still not satisfactory for excited state.
- Alternative: use QRPA

$$H = \sum_{i=1}^{\Omega} \varepsilon_i a_i^{\dagger} a_i + g \sum_{i \neq j}^{\Omega} a_i^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_j$$



QRPA applied to pair transfer

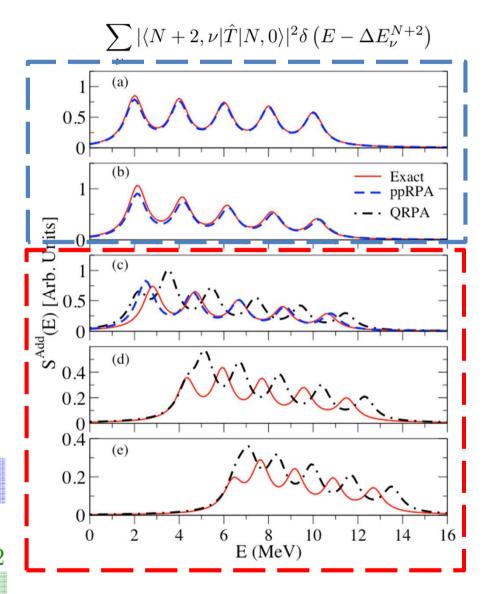
$$|\nu\rangle = Q_{\nu}^{\dagger}|0\rangle$$

$$Q^\dagger_\nu = \sum_p X^\nu_p a^\dagger_p a^\dagger_{\bar p} + \sum_h Y^\nu_h a^\dagger_h a^\dagger_{\bar h},$$

Superfluid phase:
$$Q_{\nu}^{\dagger} = \sum_{i} (X_{j}^{\nu} \alpha_{i}^{\dagger} \alpha_{\bar{i}}^{\dagger} - Y_{j}^{\nu} \alpha_{\bar{i}} \alpha_{i})$$

Role of particle number non-conservation?

$$N_{
u} = \langle
u | \hat{N} |
u
angle$$



Gambacurta and Lacroix, PRC86 (2012).

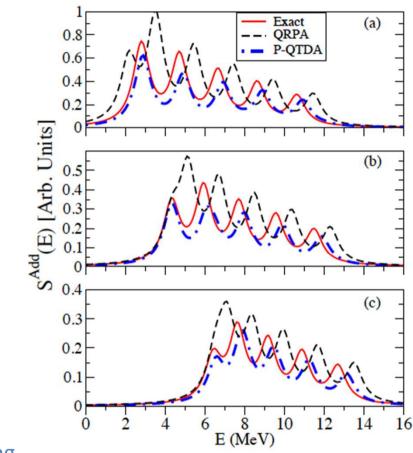
Including particle number conservation

Recipe:

$$|\Phi_k\rangle = \hat{P}_{N+2}\alpha_k^{\dagger}\alpha_{\bar{k}}^{\dagger}|0,QP\rangle$$

orthonormalization

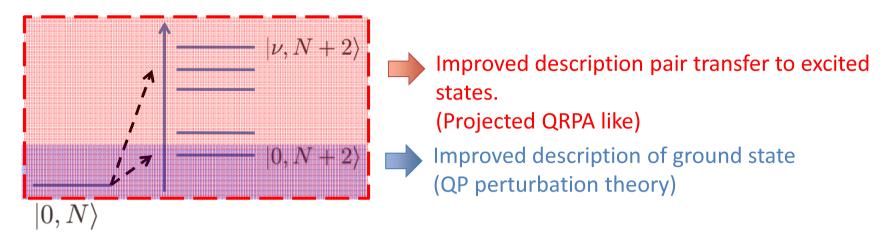
Diagonalize H in the reduced space



(a)
$$G/\Delta \varepsilon =$$
 0.5 , (b) 0.7, (c) 0.9

Gambacurta and Lacroix, PRC86 (2012).

The nuclear structure point of view



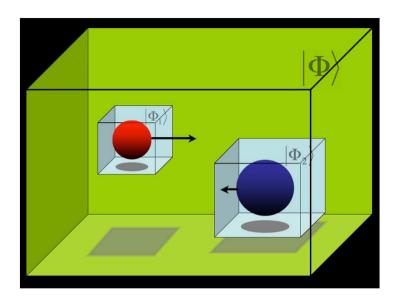
Present status:

- Directly applicable on existing HFB codes
- Application to nuclei
- Need to couple to reactions codes

Other strategy:

Perform nuclear structure and reaction in a unique framework

Nuclear reaction on a mesh



TDHF is a standard tool $|\Phi_i\rangle$: Slater

$$i\hbar \frac{d\rho}{dt} = [h(\rho), \rho]$$
 Single-particle evolution

Simenel, Lacroix, Avez, arXiv:0806.2714v2

Introduction of pairing: TDHFB

$$i\hbar \frac{d}{dt}\mathcal{R} = [\mathcal{H}(\mathcal{R}), \mathcal{R}]$$
 $\mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1 - \rho \end{pmatrix}$

Quasi-particle evolution

(Active Groups: France, US, Japan...)

BCS limit of TDHFB (also called Canonical basis TDHFB)

TDHFB = 1000 * (TDHF)

Neglect Δ_{ij}

$$|\Phi(t)\rangle = \prod_{k>0} \left(u_k(t) + v_k(t) a_k^{\dagger}(t) a_{\bar{k}}^{\dagger}(t) \right) |-\rangle.$$

Less demanding than TDHFB

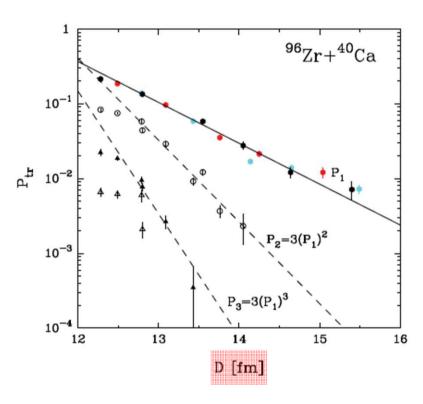
Reasonable results for collective motion

Ebata, Nakatsukasa et al, PRC82 (2010)

Sometimes more predictive than TDHFB

Scamps, Lacroix, Bertsch, Washiyama, PRC85 (2012)

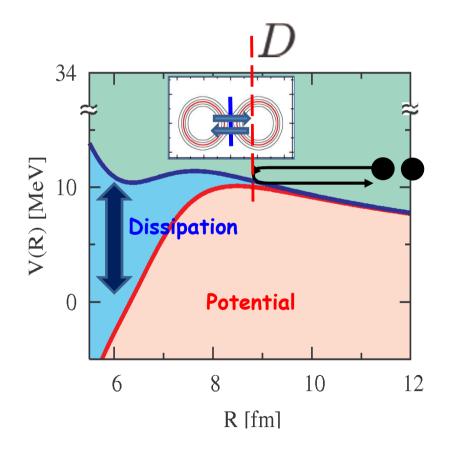
Illustration of useful data (for us)

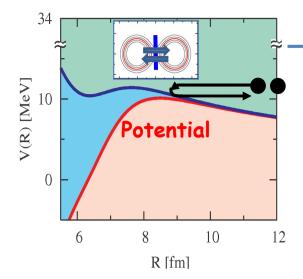


Corradi et al, Phys. Rev. C 84 (2011)

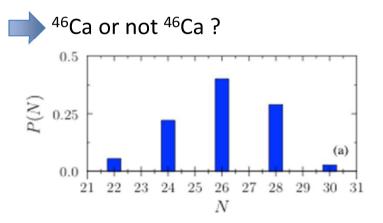
Our goal:

Perform time-dependent simulation
Close to be compared with experiments





Besides the numerical difficulty, interpreting results is not so easy...



superfluid normal ⁴⁶Ca 10 ⁴⁰Ca y [fm] approach -10 10 y [fm] contact -10 10 y [fm] separation -10 -20 -10 -30 10 20 30 x [fm]

Requires

Requires 2 projection (total and left side)

Scamps, Lacroix, PRC 87 (2013)

The no pairing limit?

HFB: spherical

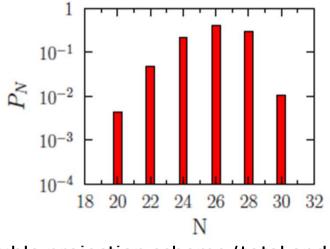
HF: deformed

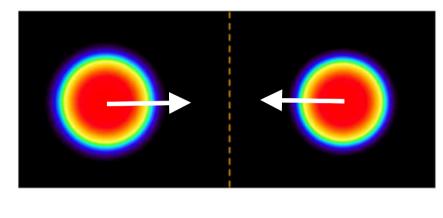
We used a generalization of TDHF to statistical Density matrix (filling approximation)

Illustration

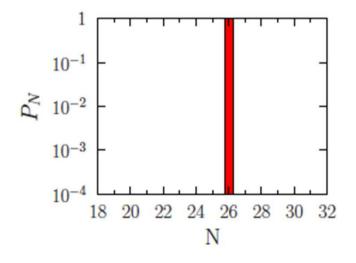
Initial time

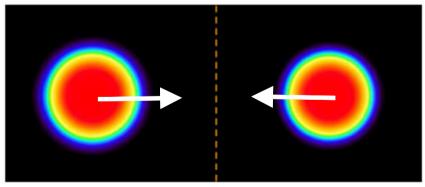
Single projection scheme (only on the left side)





Double projection scheme (total and left side)





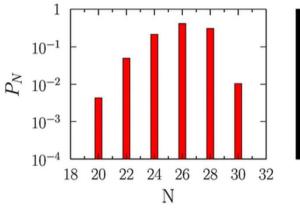
(Courtesy G. Scamps)

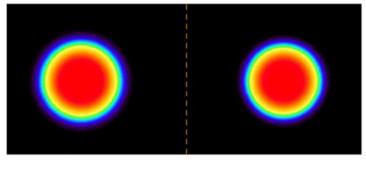
Illustration

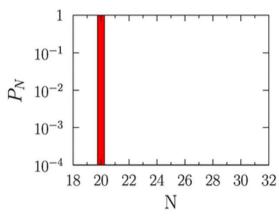
Initial time

Single projection scheme (only on the left side)

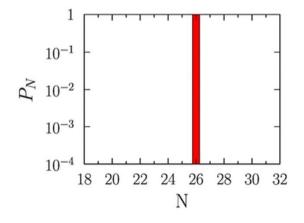
46
Ca + 40 Ca

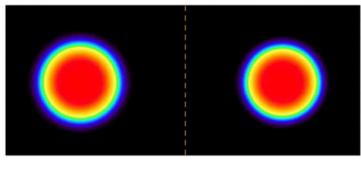


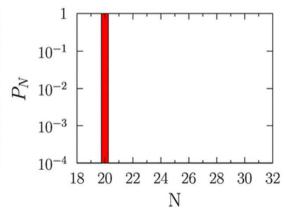




Double projection scheme (total and left side)





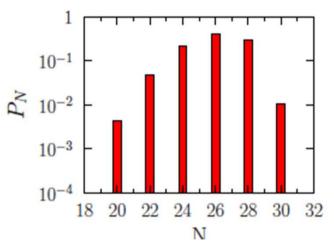


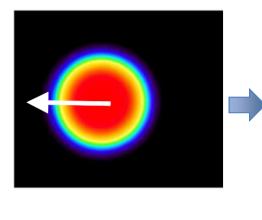
(Courtesy G. Scamps)

Illustration

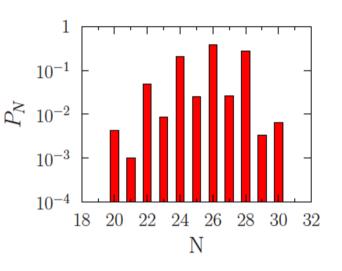
Initial time

Single projection scheme (only on the left side)

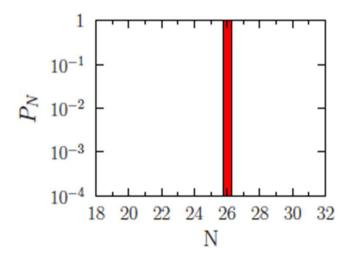


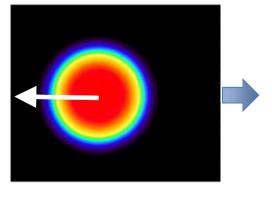


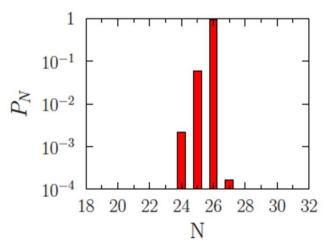
Final time



Double projection scheme (total and left side)



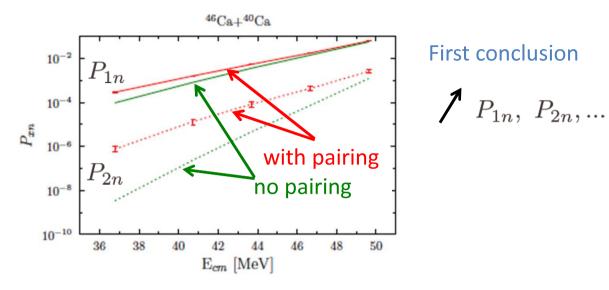




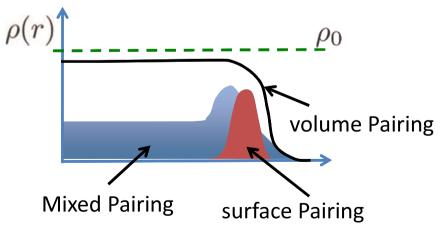
(Courtesy G. Scamps)

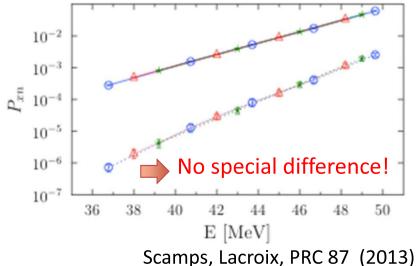
Results on Ca+Ca reactions

Enhancement of the pair transfer probability



Can the pair transfer really probe the nature of the pairing force?





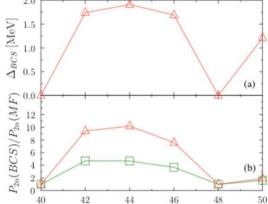
Some general conclusions

Systematic study

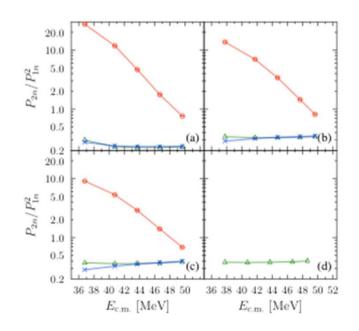
 10^{-2} 10^{-4} with pairing 10^{-8} ⁴²Ca+⁴⁰Ca (a) ⁴⁴Ca+⁴⁰Ca (b) 10^{-10} 10^{-2} 10^{-4} P_{xn} no pairing 10^{-8} ⁴⁶Ca+⁴⁰Ca ⁴⁸Ca+⁴⁰Ca 10^{-10} 50 36 38 $E_{\text{c.m.}}$ [MeV] $E_{\text{c.m.}}$ [MeV]

Scamps, Lacroix, PRC 87 (2013)

Link between pairing strength and pairing gap:

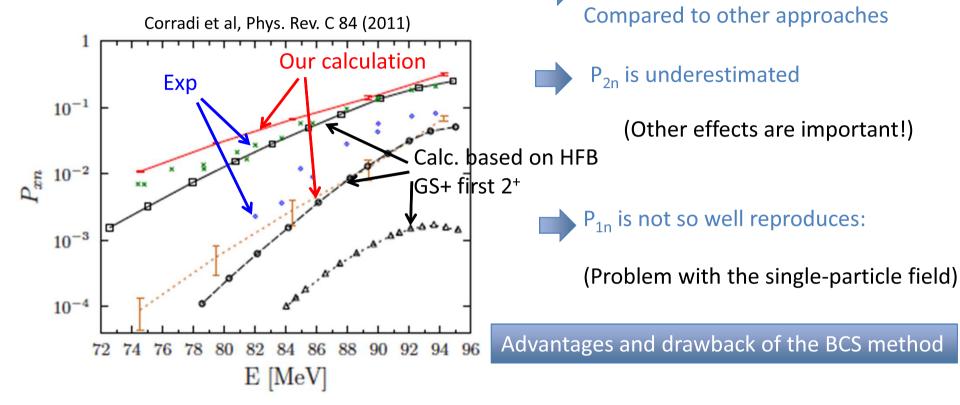


The enhancement depends strongly
On the beam energy



The dynamical approach is competitive

Comparison with experiment



Valid for not too exotic nuclei (gas problem)

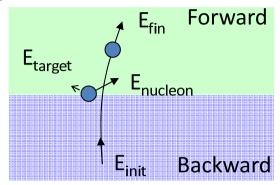
TDHFB? (has also some problems)

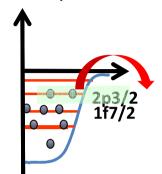
- Easy to perform
- Continuum for free! (r-space solution)

Success of the time-dependent independent particle picture

Break-up and continuum emission of one particle

Experimental motivation: 58 Ni break-up @44 MeV/A

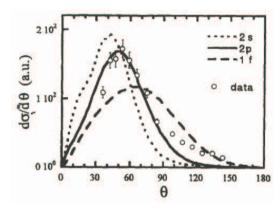




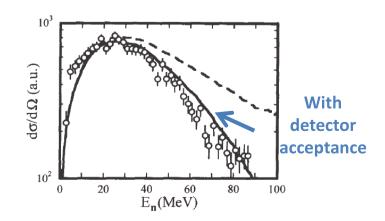
Time-dependent description

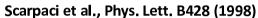
$$i\hbar\partial_t|\Phi_{\alpha}(t)\rangle = \left\{\frac{\mathbf{p}^2}{2m} + V_P(\vec{\mathbf{r}},t) + V_T(\vec{\mathbf{r}},t)\right\}|\Phi_{\alpha}(t)\rangle$$

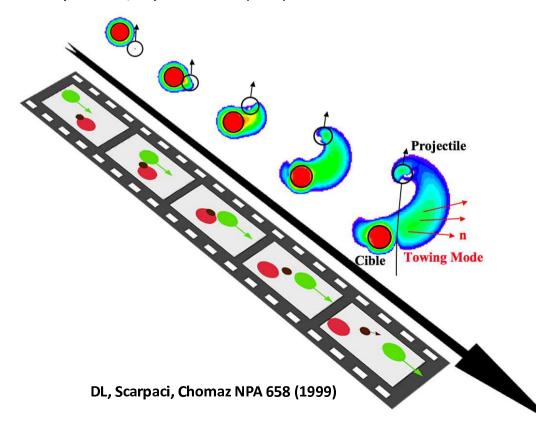
Angular distribution:

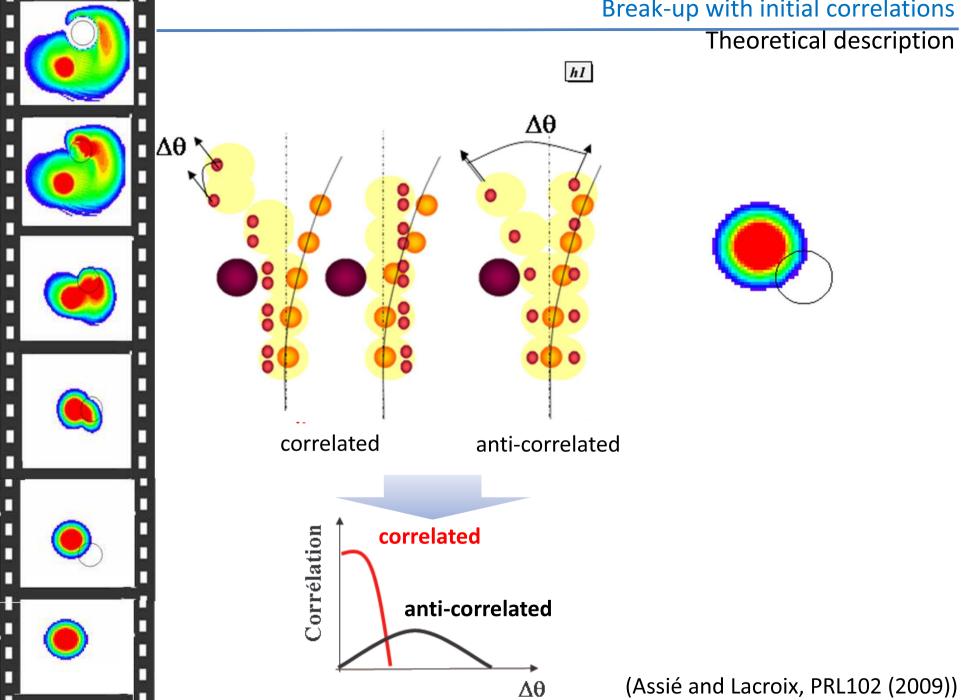


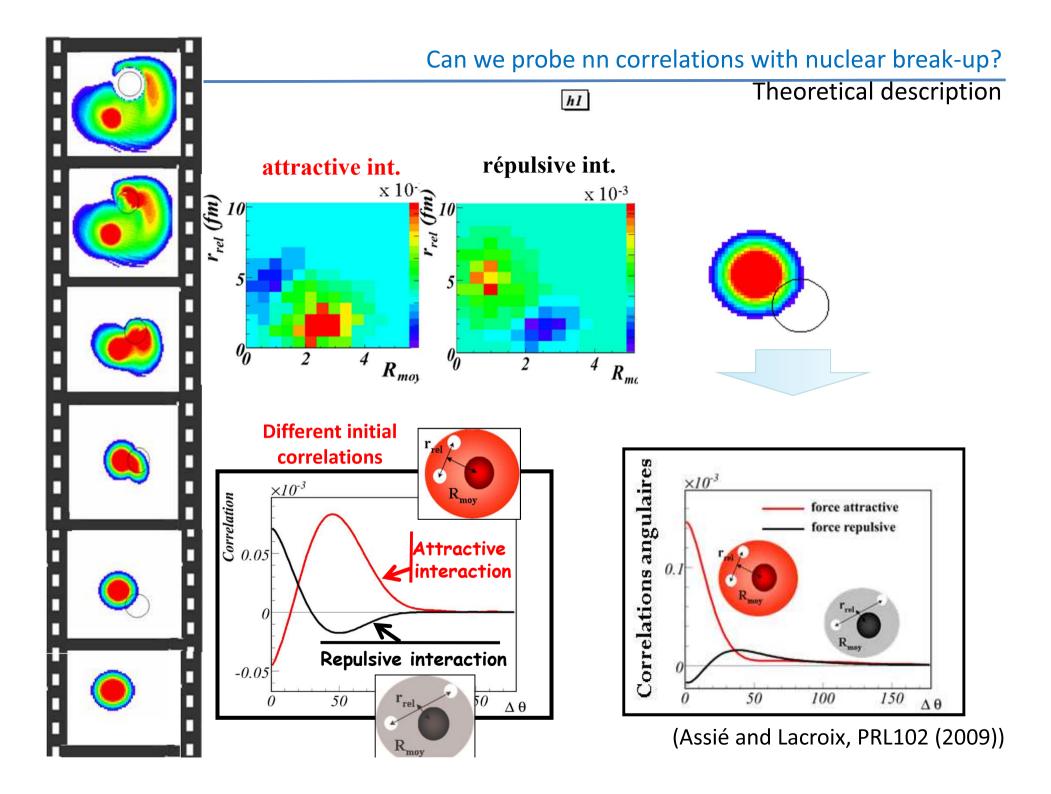
Kinetic Energy distribution:











It contains naturally continuum effects

My feeling

- Going to higher energies requires to treat relativity, to include other degrees of freedoms (pions,...)
- Pairing correlations can have important effects
- But this is certainly not the end of the story...
- Need to incorporate other important quantal effect:
 - -Fluctuations in collective space (see our recent work on stochastic mean-field)
 - -configuration mixing effects
 - -quantum interferences