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Introduction and Outline

This talk will be devoted to two particle transfer reactions as the specific
probe to study pairing correlations. Emphasis will be made in the
connection between structure aspects and the resulting two particle
transfer cross sections.

Outline:

Reaction mechanism: two particle transfer in 2–step DWBA

Pairing in well bound nuclei. Pairing vibrations and rotations.

Pairing in weakly bound nuclei. Induced interaction and core
excitations.
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Reaction mechanism:

2–step DWBA
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Elements of the calculation

Ψa(~r1,~r2), ΨB(~r1,~r2): internal wave functions of the transferred nucleons
in each nucleus
χ(R): distorted wave describing the relative motion in the optical

potential U(R) = V (R) + iW (R)
(
P2
R

2µ + U(R)
)
χ(R) = ECMχ(R)

VA,Va: mean field
potentials of the two
nuclei

VA (Va) is the interaction potential that transfers
the nucleons from one nucleus to the other in the
prior (post) representation

it is a single particle
potential!!
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simultaneous and successive contributions

|α〉 = φa(ξb, r1, r2)×
φA(ξA)χaA(raA)

|β〉 = φb(ξb)φB(ξA, r1, r2)×
χbB(rbB)
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Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for
two–nucleon transfer reactions

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
dσ

dΩ
=

µiµf
(4π~2)2

kf
ki
|T2NT |2

Simultaneous transfer

T (1)(ji , jf ) = 2
∑
σ1σ2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0 χ

(−)∗
bB (rbB)

× v(rb1)[Ψji (rb1, σ1)Ψji (rb2, σ2)]Λµχ
(+)
aA (raA)
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T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
Successive transfer

T
(2)
succ(ji , jf ) = 2

∑
K ,M

∑
σ1σ2
σ′1σ
′
2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0

× χ(−)∗
bB (rbB)v(rb1)[Ψjf (rA2, σ2)Ψji (rb1, σ1)]KM

×
∫

dr′fFdr
′
b1dr

′
A2G (rfF , r

′
fF )[Ψjf (r′A2, σ

′
2)Ψji (r′b1, σ

′
1)]KM

× 2µfF
~2

v(r′f 2)[Ψji (r′b2, σ
′
2)Ψji (r′b1, σ

′
1)]Λµχ

(+)
aA (r′aA)
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Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for
two–nucleon transfer reactions

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
Non–orthogonality term

T
(2)
NO(ji , jf ) = 2

∑
K ,M

∑
σ1σ2
σ′1σ
′
2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0

× χ(−)∗
bB (rbB)v(rb1)[Ψjf (rA2, σ2)Ψji (rb1, σ1)]KM

×
∫

dr′b1dr
′
A2[Ψjf (r′A2, σ

′
2)Ψji (r′b1, σ

′
1)]KM

× [Ψji (r′b2, σ
′
2)Ψji (r′b1, σ

′
1)]Λµχ

(+)
aA (r′aA)
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Cancellation of simultaneous and non-orthogonal
contributions

very schematically, the first order (simultaneous) contribution is

T (1) = 〈β|V |α〉,

while the second order contribution can be separated in a successive and a
non-orthogonality term

T (2) = T
(2)
succ + T

(2)
NO

=
∑
γ

〈β|V |γ〉G 〈γ|V |α〉 −
∑
γ

〈β|γ〉〈γ|V |α〉.

If we sum over a complete basis of intermediate states γ, we can apply the

closure condition and T
(2)
NO exactly cancels T (1)

the transition potential being single particle, two-nucleon transfer is a
second order process.
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Contributions to the 112Sn(p,t)110 total cross section
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Essentially a successive process!
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Contributions to the 112Sn(p,t)110 total cross section
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Reaction and structure models

Structure:

Φi (r1, σ1, r2, σ2) =
∑
ji

Bji

[
ψji (r1, σ1)ψji (r2, σ2)

]Λ
µ

Φf (r1, σ1, r2, σ2) =
∑
jf

Bjf

[
ψjf (r1, σ1)ψjf (r2, σ2)

]0
0

Reaction:

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
dσ

dΩ
=

µiµf
(4π~2)2

kf
ki
|T2NT |2

with:

T (1)(ji , jf ) = 2
∑
σ1σ2

∫
drfFdrb1drA2[ψjf (rA1, σ1)ψjf (rA2, σ2)]0∗0 χ

(−)∗
bB (rbB)

× v(rb1)[ψji (rb1, σ1)ψji (rb2, σ2)]Λµχ
(+)
aA (raA)

etc...
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Ingredients of the calculation

Structure input for, e.g., the 112Sn(p,t)110Sn reaction:
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proton−neutron potential

plus the Bj spectroscopic amplitudes needed to define the two–neutron
wavefunction:

Φ(r1, σ1, r2, σ2) =
∑
j

Bj

[
ψj(r1, σ1)ψj(r2, σ2)

]0
0
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Two–neutron transfer

in well bound nuclei
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112Sn(p,t)110Sn, results
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112Sn(p,t)110Sn, E
lab

=26 MeV

enhancement factor with
respect to the transfer of
uncorrelated neutrons:
ε = 20.6

Experimental data and shell model wavefunction from Guazzoni et al.
PRC 74 054605 (2006)

experiment very well reproduced with mean field (BCS) wavefunctions
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ASn(p,t)A−2Sn, results
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data available so far for superfluid tin
isotopes
Potel et al., PRL 107, 092501 (2011)
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ASn(p,t)A−2Sn, superfluid isotopic chain
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Two–neutron transfer

in weakly bound nuclei
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1H(11Li,9Li)3H reaction

We will try to draw information about the halo structure of 11Li from the
reactions 1H(11Li,9Li)3H and 1H(11Li,9Li∗(2.69 MeV))3H (I. Tanihata et
al., Phys. Rev. Lett. 100, 192502 (2008))

Schematic depiction of 11Li First excited state of 9Li
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Structure of the 11Li (3/2−) ground state

11Li=9Li core+2–neutron halo (single Cooper pair). According to
Barranco et al. (2001), the two neutrons correlate by means of the bare
interaction (accounting for ≈ 20% of the 11Li binding energy) and by
exchanging 1− and 2+ phonons (≈ 80% of the binding energy)

1− 2++ +
≈

Within this model, the 11Li wavefunction can be written as

|0̃〉 = 0.45|s2
1/2(0)〉+ 0.55|p2

1/2(0)〉+ 0.04|d2
5/2(0)〉

+ 0.70|(ps)1− ⊗ 1−; 0〉+ 0.10|(sd)2+ ⊗ 2+; 0〉.

highly renormalized single particle states coupled to excited states of the
core
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Transition to the ground state of 9Li
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pure (p1/2)2 configuration
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configuration (Barranco et al.
(2001)).

compared with experimental data.

1H(11Li,9Li)3H at 33 MeV. Data from Tanihata et.al. (2008).
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Transition to the first 1/2−(2.69 MeV) excited state of 9Li
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the Barranco et. al. (2001) 11Li ground
state wavefunction, compared with
experimental data. According to this
model, the 9Li excited state is found
after the transfer reaction because it is
already present in the 11Li ground state.

1H(11Li,9Li∗(2.69 MeV))3H at 33 MeV. Data from Tanihata et.al. (2008).
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Examples of calculations
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good results obtained for halo nuclei,
population of excited states,
superfluid nuclei,
normal nuclei (pairing vibrations),
heavy ion reactions...
Potel et al., arXiv:0906.4298.
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Conclusions

We have presented examples of studies of pairing in nuclei with the
help of two–nucleon transfer reaction within a 2–step DWBA
formalism.

Good agreement with experiment obtained from very different
structure inputs, from well bound superfluid Sn isotopes (mean field,
BCS wavefunctions) to very loosely bound neutron rich nuclei as 11Li
(single particle states highly renormalized by coupling to collective
vibrations)
Two–particle transfer nuclear reactions are seen to be a valuable tool
for studying pairing correlations in nuclei in a quantitative way,
providing insight into:

the nature of the pairing interaction (interplay of bare and induced
interactions)
the structure of the BCS condensate in superfluid nuclei.

We can describe consistently other reaction processes (one–nucleon
transfer, knockout, breakup) within the same reaction mechanism and
with the same structure ingredients (will talk about this tomorrow).
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Thank You!
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