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Introduction
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Reaction A + a −→ a + b + c ′, in which the cluster b is knocked out
from the nucleus A(= c + b).

Residual nucleus c may be left in an excited state c∗.
Energies, scattering directions and polarization of some of the
products are measured.
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Motivation

Knock–Out reactions being used for

spectroscopy of deeply bound single–particle states,

determination of spectroscopic factors,

probe in–medium nucleon–nucleon interaction.

We will aim at a reaction formalism that

neatly incorporate structure ingredients in the reaction formalism,

can be consistently applied to other reaction channels
(one– and two–particle transfer) within the same structure theoretical
framework,

reproduce the absolute values of

dσ

dEadΩadΩb
(Ea, k̂

′
a, k̂
′
b)
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Reaction Formalisms

Eikonal

σstrip =

∫
db〈Φ|(1− |Sn|2)|S2

c ||Φ〉

high energy approximation,

describe only residual nucleus observables,

approximate description of scattering states,

relatively easy to use,

recent developments incorporate coupling to other channels

CDCC–CRC

[E − εn − TR − Vn,n(R)]χn(R) =
∑
n 6=n′

Vn,n(R)χn′(R)

correct description of scattering states,

coupling to other channels,

problem to describe knock–out observables (scattering angles and
momenta)
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Transition Amplitude in the DWBA
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first order in the interaction
potential,

transition amplitude explicitly in
terms of knock–out observables
k′a, k

′
b,

no explicit coupling to other
reaction channels.

T
m′

a,m
′
b

ma,mb (k′a, k
′
b) =

∑
σa,σb

∫
draAdrbcχ

(−)∗
m′

a
(k′a; rac , σa)χ

(−)∗
m′

b
(k′b; rbc , σb)

× V (rab, σa, σb)χ
(+)
ma (raA, σa)ψlb,jb

mb
(rbc , σb).
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From Structure to Reactions (I): Optical Potentials

From optical potentials U(r) + iW (r) + VSO(r)l · s (with absorption and
spin–orbit terms)...
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...we obtain distorted waves (after partial wave decomposition):

χ
(+)
m (r,k, σ) =

∑
l ,ml ,j

4π

kr
i l(−1)l+ml e iσ

l
Fl ,j(r)

× 〈l ml 1/2 m|j ml + m〉
[
Y l(r̂)φ1/2(σ)

]j
ml+m

Y l
−ml

(k̂),
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From Structure to Reactions (II): Wavefunctions and
Interactions

From structure models (Nuclear Field Theory, Shell Model...) we get

single–particle states ψl ,j
m (r, σ) = ul ,j

[
Y l(r̂)φ1/2(σ)

]j
m

, spectroscopic
factors SF and nucleon–nucleon interaction V (|ra − rb|, σa, σb)
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Consistency between structure and reaction theory
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DWBA: Zero–Range Approximation for T
m′

a,m
′
b

ma,mb

Assume contact interaction V (|ra − rb|, σa, σb) = T (σ, σ′, k, k′)δ(ra − rb).
Matrix T fitted from N–N scattering in vacuum for asymptotic k, k′

unreliable absolute value of cross sections?

T
m′

a,m
′
b

ma,mb (k′a, k
′
b) ∼ T (σ, σ′, k, k′)

kak ′ak
′
b

∑
la,ja

∑
l ′a,j

′
a

∑
l ′b,j

′
b

e i(σ
la+σl′a+σl′b )

×〈l ′a ma−m′a−M 1/2 m′a|j ′a ma−M〉〈l ′b mb−m′b +M 1/2 m′b|j ′b M +mb〉

× 〈l 0 1/2 ma|j ma〉Y
l ′b
M+mb+m′

b
(k̂′b)Y

l ′a
ma+m′

a−M
(k̂′a)IZR(la, l

′
a, l
′
b, ja, j

′
a, j
′
b),

where the 1–dimensional integral to evaluate for each {la, l ′a, l ′b, ja, j ′a, j ′b} is

IZR(la, l
′
a, l
′
b, ja, j

′
a, j
′
b) =

∫
dr ulb,jb(r)Fla,ja( c

A r)Fl ′a,j ′a(r)Fl ′b,j
′
b
(r)/r .
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Finite–Range DWBA

Assume an interaction separable in spin/spatial coordinates
V (|ra − rb|, σa, σb) = v((|ra − rb|)vσ(σa, σb).
The 3–dimensional integral to be evaluated now is

I(la, l
′
a, l
′
b, ja, j

′
a, j
′
b,K ) =

∫
draAdrbcdθraArbc

sin θ

rac
ulb(rbc)v(rab)

× Fla,ja(raA)Fl ′a,j ′a(rac)Fl ′b,j
′
b
(rbc)

×
∑
MK

〈la 0 l ′a MK |K MK 〉
[
Y lb(cos θ, 0)Y l ′b(cos θ, 0)

]K
−MK

Y
l ′a
MK

(cos θac , 0).

should obtain reliable absolute values
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Consistency with other channels: The RS problem

Measured from knock-out within
        eikonal approximation

Measured from transfer with 
            CDCC-CRC

Need for a unified reaction formalism
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Consistency with other channels: 1-nucleon transfer

a
b
c

A

c'
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bB

The 3–dimensional integral to be evaluated now is

I (la, l
′
a, ja, j

′
a,K ) =

∫
draAdrbcdθraAr

2
bc

sin θ

rBc
× Fla,ja(raA)Fl ′a,j ′a(rac)u∗l ′b,j

′
b
(rab)ulb,jb(rbc)v(rab)

×
∑
MK

〈la 0 l ′a MK |K MK 〉
[
Y lb(cos θ, 0)Y l ′b(cos θab, 0)

]K
−MK

Y
l ′a
MK

(cos θBc , 0),

replace the final scattering state for b with a bounded state to form
nucleus B,

same structure ingredients as for knock–out
Paris, February 7th, 2013 slide 11/12



Issues to address

role of nucleon–nucleon interaction (need to include spin–orbit,
L–dependence, tensor term...?)

application to deformed states,

include static and dynamic core excitations,

extend to 2–nucleon knockout (possible loss of coherence in
two–nucleon correlation?),

full relativistic treatment of scattering states (solve Dirac equation)
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