

Comprendre le monde, construire l'avenir®

Collective modes in the neutron star inner crust and in trapped Fermi gases

Michael Urban

(IPN Orsay)

Outline

Neutron star inner crust

- Introduction
- Hydrodynamic model for collective modes
- Results for the lasagne phase: mode spectrum and specific heat

Trapped Fermi gases

- Introduction
- Dynamical regimes
- Superfluid to normal transition: QRPA and semiclassical studies
- Transition from collisional hydrodynamic to collisionless regime

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Summary and outlook

Collaborations

- Collective modes in the neutron star crust Luc Di Gallo, Micaela Oertel (LUTH Meudon)
- QRPA in superfluid trapped Fermi gases Marcella Grasso, Elias Khan (IPN Orsay)
- Quasiparticle transport theory Peter Schuck (IPN Orsay)
- Boltzmann equation for normal-fluid Fermi gases Silvia Chiacchiera (Coimbra)
 Dany Davesne, Thomas Lepers (IPN Lyon)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Neutron stars

- Neutron star formed at the end of the "life" of an intermediate-mass star (supernova)
- ► $M \sim 1 2 \ M_{\odot}$ in a radius of $R \sim 10 15 \ \text{km}$ → average density $\sim 5 \times 10^{14} \ \text{g/cm}^3$ ($\sim 2 \times$ nuclear matter saturation density)
- \blacktriangleright Cools down rapidly by neutrino emission within ~ 1 month: $T \lesssim 10^9 \mbox{ K} \sim 100 \mbox{ keV}$
- Internal structure of a neutron star:
 outer crust: Coulomb lattice of neutron rich nuclei in a degenerate electron gas
 inner crust: unbound neutrons form a neutron gas between the nuclei
 outer core: homogeneous matter (n, p, e⁻)
 inner core: new degrees of freedom: hyperons? quark matter?

RCW103 [Chandra X-ray telescope]

Collective modes in the neutron star inner crust

- Case of uniform neutron matter
 - Energy gap Δ
 - ightarrow specific heat $c_{
 m v}$ due to quasiparticles suppressed by $e^{-\Delta/\mathcal{T}}$
 - ► However: phase ϕ of the gap can oscillate: $\Delta \rightarrow |\Delta| e^{i\phi(\vec{r},t)}$ \rightarrow low-lying collective oscillations (Bogoliubov-Anderson sound) $\rightarrow c_v \propto T^3$
- Neutron star inner crust
 - Nuclei, rods ("spaghetti"), slabs ("lasagne") embedded in a neutron gas ("pasta phases")
 - \blacktriangleright Coulomb \rightarrow clusters arrange in regular lattice

Collective modes in these complicated geometries?

- ▶ QRPA studies: consider an isolated Wigner-Seitz (WS) cell → cannot describe wavelengths $\lambda > R_{WS}$
- But long wavelengths are most important at low T!

Hydrodynamic model

- Neutrons in the gas and neutrons and protons in the clusters are superfluid
- Collective modes: small oscillations of the phases $\phi_a(\vec{r}, t)$ of Δ_a (a = n, p)
- Superfluid hydrodynamics
 - \rightarrow coupled equations for the velocities $\vec{v}_{a}(\vec{r},t) = \frac{\hbar}{2m} \vec{\nabla} \phi_{a}(\vec{r},t)$
 - Continuity equations: $\dot{n}_a + \vec{\nabla} \cdot (n_a \vec{v}_a) = 0$
 - Euler equations: $\dot{\vec{p}}_a + \vec{\nabla}(\mu_a + \vec{v}_a \cdot \vec{p}_a \frac{1}{2}m_a v_a^2) = 0$

here: $\mu_a(n_n, n_p)$ calculated within a RMF model (DDH δ model) Coulomb interaction neglected

- Linearize around equilibrium
- Periodicity of the lattice \rightarrow Bloch waves:

 $\phi(\vec{r},t) = \Phi_{\vec{q}}(\vec{r})e^{i(\vec{q}\cdot\vec{r}-\omega t)}$

 $(\Phi_{\vec{q}}(\vec{r})$ periodic with the periodicity of the lattice)

Interface between gas and dense phase

Approximation for the ground state: hydrostatic equilibrium

$$P_1 = P_2$$
 and $\mu_{a,1} = \mu_{a,2}$ for $a = n, p$

 $\rightarrow~$ sharp interface between clusters and gas

- Ground state properties taken from Avancini et al. PRC 79 (2009) (calculated within RMF model (DDHδ) and TF approximation)
- Appropriate boundary conditions at the cluster-gas interfaces:
 - pressure is continuous
 - ▶ normal components $v_{\perp a}$ of the velocities are continuous
 - $v_{\perp n} = v_{\perp p}$ at the interface

(surface tension and penetrability of the interface neglected)

Results for the lasagne phase

- Simplest geometry: parallel slabs
- Predicted for densities 0.077...0.084 fm⁻³ [Avancini et al., PRC 79 (2009)]
- $\begin{array}{c}
 n \\
 n, p \\
 \hline
 n, p \\
 n, p
 \end{array}$

- Example: spectrum for $n_B = 0.08 \text{ fm}^{-3}$
- $\theta = 0$ $\theta = \pi/4$ $\theta = \pi/2$ • one $(\theta = 0)$ or two ($\theta \neq 0$) 5 5 acoustic branches 1st acoustic branch: ۵[MeV] م $\omega \approx u_s q, \ u_s \approx \frac{dP}{dr}|_{Y_n}$ 3 2nd acoustic branch: 2 2 $\omega \approx u'_{s}q\sin\theta$ \rightarrow new kind of wave propagating only in parallel to the slabs 50 0 10 20 30 0 10 20 30 10 50 |q| [MeV] a [MeV] a [MeV] 3 1 4 3 < 口 > < 同 >

Specific heat

- Contribution of collective modes: *T* dependence
 - At low temperature: c_v ∝ T² due to mode propagating only in parallel to the slabs
 - T³ contribution due to other acoustic mode

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

- Comparison with other contributions (T = 10⁹ K)
 - Almost same order of magnitude as the electron contribution
 - ► Much larger than contributions of neutron quasiparticles (∝ e^{-∆/T})

Cold atomic gases

► Example: sodium BEC experiment (group of W. Ketterle, MIT)

 Experiments on fermionic atoms: ENS Paris (C. Salomon), Innsbruck (R. Grimm), Duke Univ. (J. Thomas), Rice Univ. (R. Hulet), MIT (W. Ketterle), JILA (D. Jin), ...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Schematic view of experiments with trapped Fermi gases

- Create trap potential (combining lasers and/or magnetic fields) near its minimum: $V(\vec{r}) = \frac{1}{2}m \sum_{i=x,y,z} \omega_i^2 r_i^2$ typically: $\omega_z \ll \omega_x, \omega_y$ (cigar shape)
- \blacktriangleright Load the atoms into the trap: $N\sim 10^5-10^6$
- ► Cool them down: T ~ 10 100 nK (laser cooling, evaporative cooling)
- Measure density profile by taking a picture (if the cloud is too small, let it first expand by switching off the trap)

Collective modes in cold atoms

- Trapped atoms: small oscillations of the cloud size or shape
- Modes can be excited by a sudden change of the trap potential
- Experiments done at Duke, Innsbruck, ENS
- Sloshing mode:

measurement of trap frequencies

Axial breathing mode:

 \leftrightarrow \rightarrow equation of state

Radial modes (cut through the xy plane):

radial breathing mode

radial quadrupole mode

scissors mode

Dynamical regimes

- \blacktriangleright Axial breathing mode: $\omega\sim\omega_z$ very low $~\rightarrow~$ always hydrodynamic
- ▶ Radial modes: $\omega \sim \omega_x, \omega_y \rightarrow \text{different regimes depending on interaction strength (scattering length$ *a*) and temperature*T*
- ► T = 0 → superfluid hydrodynamics
- ► Near unitarity $(1/k_Fa \approx 0)$ \rightarrow large cross section $d\sigma/d\Omega$ \rightarrow collisional hydrodyn. $(T > T_c)$ or two-fluid hydrodyn. $(T < T_c)$
- ► High T → cloud expands and gets more and more dilute → collisionless regime
- Intermediate cases
 - $\rightarrow~$ modes are strongly damped

Superfluid and collisionless regimes on the BCS side

- **•** BCS side: $1/k_Fa \leq -1$ (weak coupling)
 - \blacktriangleright T = 0: superfluid hydrodynamics (if $\Delta \gg \hbar \omega$)
 - \blacktriangleright 0 < T < T_c: superfluid and collisionless normal components
 - $T > T_c$: collisionless Vlasov equation (if $\epsilon_F \gg \hbar \omega$)

Quasiparticle RPA study

- Small-amplitude limit of time-dependent BdG equations
- Includes temperature and shell $(\Delta \gg \hbar \omega)$ effects (pair breaking)
- Example: deviation of the guadrupole response from the hydrodynamic prediction (red line: $\omega = \sqrt{2}$)

э

Semiclassical study

- Current limitations of QRPA: $N \lesssim 10^4$, spherical symmetry
- Semiclassical approach for 0 < T < T_c: quasiparticle transport theory (Betbeder-Matibet and Nozières (1969))
- ► Hydrodynamic eq. for the phase $\phi(\vec{r}, t)$ of the order parameter coupled to Vlasov-like eq. for the quasiparticle distribution function $\nu(\vec{r}, \vec{p}, t)$
- Numerical solution using the test-particle method
- Example: quadrupole mode
- Transport theory vs. QRPA: reasonable agreement
- Two peaks corresponding to the superfluid and normal parts, respectively

Frequency jump in quadrupole mode?

- Experiment at Innsbruck: Radial quadrupole mode as function of interaction strength
- Determine frequency and damping by fitting quadrupole moment with a damped cosine function
- Main results are qualitatively reproduced by the calculation

 Jump of frequency is a consequence of the presence of two peaks in the spectrum

< ロ > < 同 > < 回 > < 回 >

Collisional effects in the normal phase

Starting point: Boltzmann equation for distribution function $f(\vec{r}, \vec{p})$:

$$\dot{f} + \frac{\vec{p}}{m} \cdot \vec{\nabla}_r f - \vec{\nabla}_r V \cdot \vec{\nabla}_p f = -I[f]$$

 $V = V_{trap} + U$ = potential [trap + mean field $(U = \text{Re}\Sigma)$] I = collision term (with Pauli blocking: $\overline{f} = 1 - f$):

$$I[f] = \int \frac{d^3 p_1}{(2\pi)^3} \int d\Omega \frac{d\sigma}{d\Omega} |\vec{v} - \vec{v}_1| (ff_1 \bar{f}' \bar{f}_1' - f' f_1' \bar{f} \bar{f}_1)$$

 $d\sigma/d\Omega =$ in medium cross section (ladder approximation)

▶ Collisions $\rightarrow f$ approaches local equilibrium f_{le} within relaxation time τ

- Hydrodynamics valid if the system is always in local equilibrium: $\omega au \ll 1$

Example: quadrupole mode in the unitary Fermi gas

▶ Here: method of moments for approximate solution of Boltzmann equation

• Ansatz:
$$\delta f(\vec{r}, \vec{p}, t) = \frac{df_{eq}(\vec{r}, \vec{p})}{d\mu} \Phi(\vec{r}, \vec{p}, t)$$

 $\Phi(\vec{r}, \vec{p}, t) =$ polynomial in \vec{r} and \vec{p} with time-dependent coefficients

- Comparison with numerical simulation
 - \rightarrow necessary to go beyond 2nd order and to include 4th-order terms in Φ
- Comparison with Innsbruck experiment [Riedl et al., PRA 78 (2008)]:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Summary: neutron star crust

- Hydrodynamic model for collective modes in the inhomogeneous phases of the neutron star crust
- Acoustic and optical modes
- Acoustic modes with $\lambda \gg R_{WS}$ are crucial for c_v at low T

Outlook

- Improve the boundary conditions at the cluster-gas interface: allow neutrons to cross the interface, include surface tension
- Include Coulomb repulsion between protons: unified model for neutron sound waves and lattice vibrations
- More complicated geometries: crystal lattice, rods ("spaghetti")
- How to go beyond the WS approximation within quantum QRPA approaches?

Summary: cold atoms

- Radial collective modes have rather high frequencies
 different dynamical regimes, depending on system parameters
- Superfluid hydrodynamics valid at T = 0 and if $\Delta \gg \hbar \omega$
- Normal component present at T > 0 even if the system is still superfluid
- Normal phase can be in collisionless, intermediate, or hydrodynamic regime

Outlook

- ▶ Include possibility of spin imbalance $(n_{\uparrow} \neq n_{\downarrow})$
 - Spin modes
 - Modes in imbalanced Fermi gases
 - \rightarrow PhD thesis P.-A. Pantel (IPN Lyon)
- Include collisions into quasiparticle transport theory