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Neutron stars

◮ Neutron star formed at the end of the “life” of an
intermediate-mass star (supernova)

◮ M ∼ 1− 2 M⊙ in a radius of R ∼ 10− 15 km
→ average density ∼ 5× 1014 g/cm3

(∼ 2× nuclear matter saturation density)

◮ Cools down rapidly by neutrino emission
within ∼ 1 month: T . 109 K ∼ 100 keV

◮ Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich
nuclei in a degenerate electron gas

inner crust: unbound neutrons form a
neutron gas between the nuclei

outer core: homogeneous matter (n, p, e−)

inner core: new degrees of freedom:
hyperons? quark matter?

RCW103 [Chandra X-ray telescope]

~10 km

1−2 km



Collective modes in the neutron star inner crust

◮ Case of uniform neutron matter
◮ Energy gap ∆

→ specific heat cv due to quasiparticles suppressed by e−∆/T

◮ However: phase φ of the gap can oscillate: ∆ → |∆|e iφ(~r ,t)

→ low-lying collective oscillations (Bogoliubov-Anderson sound)
→ cv ∝ T 3

◮ Neutron star inner crust
◮ Nuclei, rods (“spaghetti”), slabs (“lasagne”)

embedded in a neutron gas (“pasta phases”)

◮ Coulomb → clusters arrange in regular lattice

[K. Oyamatsu, NPA 561 (1993)]

◮ Collective modes in these complicated geometries?

◮ QRPA studies: consider an isolated Wigner-Seitz (WS) cell
→ cannot describe wavelengths λ > RWS

◮ But long wavelengths are most important at low T !



Hydrodynamic model

◮ Neutrons in the gas and neutrons and protons in the clusters are superfluid

◮ Collective modes: small oscillations of the phases φa(~r , t) of ∆a (a = n, p)

◮ Superfluid hydrodynamics
→ coupled equations for the velocities ~va(~r , t) =

ℏ

2m
~∇φa(~r , t)

◮ Continuity equations: ṅa + ~∇ · (na~va) = 0

◮ Euler equations: ~̇pa + ~∇(µa + ~va · ~pa −
1
2
mav

2
a ) = 0

here: µa(nn, np) calculated within a RMF model (DDHδ model)

Coulomb interaction neglected

◮ Linearize around equilibrium

◮ Periodicity of the lattice → Bloch waves:

φ(~r , t) = Φ~q(~r )e
i(~q·~r−ωt)

(Φ~q(~r) periodic with the periodicity of the lattice)



Interface between gas and dense phase

◮ Approximation for the ground state: hydrostatic equilibrium

P1 = P2 and µa,1 = µa,2 for a = n, p

→ sharp interface between clusters and gas
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◮ Ground state properties taken from Avancini et al. PRC 79 (2009)
(calculated within RMF model (DDHδ) and TF approximation)

◮ Appropriate boundary conditions at the cluster-gas interfaces:
◮ pressure is continuous
◮ normal components v⊥a of the velocities are continuous
◮ v⊥n = v⊥p at the interface

(surface tension and penetrability of the interface neglected)



Results for the lasagne phase

◮ Simplest geometry: parallel slabs

◮ Predicted for densities 0.077. . . 0.084 fm−3

[Avancini et al., PRC 79 (2009)]

◮ Example: spectrum for nB = 0.08 fm−3

θ
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◮ one (θ = 0)
or two (θ 6= 0)
acoustic branches

◮ 1st acoustic branch:
ω ≈ usq, us ≈ dP

dn
|Yp

◮ 2nd acoustic branch:
ω ≈ u′sq sin θ
→ new kind of wave
propagating only in
parallel to the slabs
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Specific heat

◮ Contribution of collective
modes: T dependence

◮ At low temperature: cv ∝ T 2

due to mode propagating
only in parallel to the slabs

◮ T 3 contribution due to other
acoustic mode

◮ Comparison with other
contributions (T = 109 K)

◮ Almost same order of
magnitude as the electron
contribution

◮ Much larger than
contributions of neutron
quasiparticles (∝ e−∆/T )
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Cold atomic gases

◮ Example: sodium BEC experiment (group of W. Ketterle, MIT)

◮ Experiments on fermionic atoms:
ENS Paris (C. Salomon), Innsbruck (R. Grimm), Duke Univ. (J. Thomas),
Rice Univ. (R. Hulet), MIT (W. Ketterle), JILA (D. Jin), . . .



Schematic view of experiments with trapped Fermi gases

◮ Create trap potential
(combining lasers and/or magnetic fields)

near its minimum: V (~r ) =
1

2
m

∑
i=x,y,z

ω2
i r

2
i

typically: ωz ≪ ωx , ωy (cigar shape)

◮ Load the atoms into the trap: N ∼ 105 − 106

◮ Cool them down: T ∼ 10− 100 nK
(laser cooling, evaporative cooling)

◮ Measure density profile by taking a picture
(if the cloud is too small, let it first expand
by switching off the trap)

~0.1 mm



Collective modes in cold atoms

◮ Trapped atoms: small oscillations of the cloud size or shape

◮ Modes can be excited by a sudden change of the trap potential

◮ Experiments done at Duke, Innsbruck, ENS

◮ Sloshing mode: → measurement of trap frequencies

◮ Axial breathing mode: → equation of state

◮ Radial modes (cut through the xy plane):

radial
breathing
mode

radial
quadrupole

mode

scissors
mode



Dynamical regimes

◮ Axial breathing mode: ω ∼ ωz very low → always hydrodynamic

◮ Radial modes: ω ∼ ωx , ωy → different regimes depending on interaction
strength (scattering length a) and temperature T

◮ T = 0
→ superfluid hydrodynamics

◮ Near unitarity (1/kFa ≈ 0)
→ large cross section dσ/dΩ
→ collisional hydrodyn. (T > Tc )
or two-fluid hydrodyn. (T < Tc)

◮ High T → cloud expands
and gets more and more dilute
→ collisionless regime

◮ Intermediate cases
→ modes are strongly damped

BCSBEC

less
collision−

Figure: Wright et al., PRL 99, 150403 (2007)



Superfluid and collisionless regimes on the BCS side

◮ BCS side: 1/kFa . −1 (weak coupling)
◮ T = 0: superfluid hydrodynamics

(if ∆ ≫ ℏω)
◮ 0 < T < Tc : superfluid and

collisionless normal components
◮ T > Tc : collisionless Vlasov equation

(if ǫF ≫ ℏω) BCSBEC

less
collision−

Figure: Wright et al., PRL 99, 150403 (2007)

Quasiparticle RPA study

◮ Small-amplitude limit of
time-dependent BdG equations

◮ Includes temperature and shell
(∆ 6≫ ℏω) effects (pair breaking)

◮ Example: deviation of the quadrupole
response from the hydrodynamic
prediction (red line: ω =

√
2)
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Semiclassical study

◮ Current limitations of QRPA: N . 104, spherical symmetry

◮ Semiclassical approach for 0 < T < Tc : quasiparticle transport theory
(Betbeder-Matibet and Nozières (1969))

◮ Hydrodynamic eq. for the phase φ(~r , t) of the order parameter coupled to
Vlasov-like eq. for the quasiparticle distribution function ν(~r , ~p, t)

◮ Numerical solution using the
test-particle method

◮ Example: quadrupole mode

◮ Transport theory vs. QRPA:
reasonable agreement

◮ Two peaks corresponding to
the superfluid and normal
parts, respectively

 0

 5

 10

 15

 20

 0  1  2  3

Ω
 〈2

r z2 −r
x2 −r

y2 〉 /
 (

α 
〈r

2 〉 0
)

ω   (Ω)

semiclass.
QRPA

N=16000

T=0.4Tc

∆(0)=6



Frequency jump in quadrupole mode?

◮ Experiment at Innsbruck:
Radial quadrupole mode as function of
interaction strength

◮ Determine frequency and damping by
fitting quadrupole moment with a damped
cosine function

◮ Main results are qualitatively reproduced
by the calculation
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◮ Jump of frequency is a consequence of the
presence of two peaks in the spectrum
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Collisional effects in the normal phase

◮ Starting point: Boltzmann equation for distribution function f (~r , ~p):

ḟ +
~p

m
· ~∇r f − ~∇rV · ~∇pf = −I [f ]

V = Vtrap + U = potential [trap + mean field (U = ReΣ)]

I = collision term (with Pauli blocking: f̄ = 1− f ):

I [f ] =

∫
d3p1

(2π)3

∫
dΩ

dσ

dΩ
|~v − ~v1|(ff1 f̄

′ f̄ ′1 − f ′f ′1 f̄ f̄1)

dσ/dΩ = in medium cross section (ladder approximation)

◮ Collisions → f approaches local equilibrium fle within relaxation time τ

◮ Hydrodynamics valid if the system is always in local equilibrium: ωτ ≪ 1



Example: quadrupole mode in the unitary Fermi gas

◮ Here: method of moments for approximate solution of Boltzmann equation

◮ Ansatz: δf (~r , ~p, t) =
dfeq(~r , ~p)

dµ
Φ(~r , ~p, t)

Φ(~r , ~p, t) = polynomial in ~r and ~p with time-dependent coefficients

◮ Comparison with numerical simulation
→ necessary to go beyond 2nd order and to include 4th-order terms in Φ

◮ Comparison with Innsbruck experiment [Riedl et al., PRA 78 (2008)]:
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Summary: neutron star crust

◮ Hydrodynamic model for collective modes in the inhomogeneous phases of
the neutron star crust

◮ Acoustic and optical modes

◮ Acoustic modes with λ ≫ RWS are crucial for cv at low T

Outlook

◮ Improve the boundary conditions at the cluster-gas interface:
allow neutrons to cross the interface, include surface tension

◮ Include Coulomb repulsion between protons:
unified model for neutron sound waves and lattice vibrations

◮ More complicated geometries: crystal lattice, rods (“spaghetti”)

◮ How to go beyond the WS approximation within quantum QRPA
approaches?



Summary: cold atoms

◮ Radial collective modes have rather high frequencies
→ different dynamical regimes, depending on system parameters

◮ Superfluid hydrodynamics valid at T = 0 and if ∆ ≫ ~ω

◮ Normal component present at T > 0 even if the system is still superfluid

◮ Normal phase can be in collisionless, intermediate, or hydrodynamic regime

Outlook

◮ Include possibility of spin imbalance (n↑ 6= n↓)
◮ Spin modes
◮ Modes in imbalanced Fermi gases

→ PhD thesis P.-A. Pantel (IPN Lyon)

◮ Include collisions into quasiparticle transport theory


