( UNIVERSITE
P PARIS
IN2P3 Comprendre le monde

Les deux infinis construire U'avenir®

4PN

INSTITUT DE PHYSIQUE NUCLEAIRE

Collective modes in the neutron star inner crust
and in trapped Fermi gases

Michael Urban

(IPN Orsay)



Outline

» Neutron star inner crust
> Introduction
» Hydrodynamic model for collective modes
> Results for the lasagne phase: mode spectrum and specific heat

» Trapped Fermi gases

> Introduction

» Dynamical regimes

» Superfluid to normal transition: QRPA and semiclassical studies
» Transition from collisional hydrodynamic to collisionless regime

» Summary and outlook



Collaborations

» Collective modes in the neutron star crust
Luc Di Gallo, Micaela Oertel (LUTH Meudon)

» QRPA in superfluid trapped Fermi gases
Marcella Grasso, Elias Khan (IPN Orsay)

» Quasiparticle transport theory
Peter Schuck (IPN Orsay)

» Boltzmann equation for normal-fluid Fermi gases
Silvia Chiacchiera (Coimbra)
Dany Davesne, Thomas Lepers (IPN Lyon)



Neutron stars

» Neutron star formed at the end of the “life” of an
intermediate-mass star (supernova)

» M ~1—2 Mg in a radius of R ~ 10 — 15 km
— average density ~ 5 x 10'* g/cm3
(~ 2% nuclear matter saturation density)

» Cools down rapidly by neutrino emission
within ~ 1 month: T 5 10° K ~ 100 keV RCW103 [Chandra X-ray telescope]

» Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich f
nuclei in a degenerate electron gas 1=2km

inner crust: unbound neutrons form a

neutron gas between the nuclei

— ~10 km
outer core: homogeneous matter (n, p, )

inner core: new degrees of freedom:
hyperons? quark matter?



Collective modes in the neutron star inner crust

» Case of uniform neutron matter
> Energy gap A
— specific heat ¢, due to quasiparticles suppressed by e~
ip(F,t)

AJT

> However: phase ¢ of the gap can oscillate: A — |Ale
— low-lying collective oscillations (Bogoliubov-Anderson sound)
— ¢ x T3

» Neutron star inner crust

> Nuclei, rods ( “spaghetti”), slabs (“lasagne”)
embedded in a neutron gas (“pasta phases”)

» Coulomb — clusters arrange in regular lattice

@
[K. Oyamatsu, NPA 561 (1993)]

» Collective modes in these complicated geometries?

» QRPA studies: consider an isolated Wigner-Seitz (WS) cell
— cannot describe wavelengths A > Rws

» But long wavelengths are most important at low T!



Hydrodynamic model

» Neutrons in the gas and neutrons and protons in the clusters are superfluid

» Collective modes: small oscillations of the phases ¢,(7, t) of A,

v

Superfluid hydrodynamics

— coupled equations for the velocities V,(7,t) = %6@(?, t)

» Continuity equations: n, + V- (nava) =0

» Euler equations: E’a + ﬁ(,ua + Vs Pa— %mavaz) =0
here: pa(nn, np) calculated within a RMF model (DDHJ model)

Coulomb interaction neglected

v

Linearize around equilibrium

v

Periodicity of the lattice — Bloch waves:
B(7, 1) = Gg(7)F7—)

(®5(7) periodic with the periodicity of the lattice)

(a=n,p)



Interface between gas and dense phase

» Approximation for the ground state: hydrostatic equilibrium
Pi =P, and a1 =pa2 for a=n,p

— sharp interface between clusters and gas

p p

n n
—
p l’ Y
M x
» Ground state properties taken from Avancini et al. PRC 79 (2009)
(calculated within RMF model (DDH4J) and TF approximation)

» Appropriate boundary conditions at the cluster-gas interfaces:

> pressure is continuous
> normal components v, , of the velocities are continuous
> Vin, = V1, at the interface

(surface tension and penetrability of the interface neglected)



Results for the lasagne phase

» Simplest geometry: parallel slabs

n
» Predicted for densities 0.077...0.084 fm—3 nhp
[Avancini et al., PRC 79 (2009)] n, p
» Example: spectrum for ng = 0.08 fm—3
8=0 =174 0=m2
> one (0 =0) 8 ey 6 6 [

or two (6 # 0)
acoustic branches

» 1st acoustic branch:
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» 2nd acoustic branch: 2 2l J2}
w = ulgsinf
— new kind of wave !
propagating only in
parallel to the slabs o 10 2 2 Co 10 2 . 4 00 10 2 3 4 50
fol (Mev] ol (Mev] fol Mev)




Specific heat

» Contribution of collective
modes: T dependence
» At low temperature: ¢, x T2
due to mode propagating
only in parallel to the slabs
» T3 contribution due to other
acoustic mode

» Comparison with other
contributions (T = 10° K)

> Almost same order of
magnitude as the electron
contribution

» Much larger than
contributions of neutron
quasiparticles (o< e 2/T)
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Cold atomic gases

» Example: sodium BEC experiment (group of W. Ketterle, MIT)

» Experiments on fermionic atoms:
ENS Paris (C. Salomon), Innsbruck (R. Grimm), Duke Univ. (J. Thomas),
Rice Univ. (R. Hulet), MIT (W. Ketterle), JILA (D. Jin), ...



Schematic view of experiments with trapped Fermi gases

» Create trap potential
(combining lasers and/or magnetic fields)

. " o 1
near its minimum: V(7) = 5m Z w?r?

i=x,y,z

typically: w, < wy,w, (cigar shape)
> Load the atoms into the trap: N ~ 10° — 100

» Cool them down: T ~ 10 — 100 nK
(laser cooling, evaporative cooling)

» Measure density profile by taking a picture
(if the cloud is too small, let it first expand % s =
by switching off the trap)



Collective modes in cold atoms

v

Trapped atoms: small oscillations of the cloud size or shape

» Modes can be excited by a sudden change of the trap potential

» Experiments done at Duke, Innsbruck, ENS

» Sloshing mode: ‘ | — measurement of trap frequencies

» Axial breathing mode: NN equation of state
» Radial modes (cut through the xy plane):

=N

. g7
radial radial scissors

breathing quadrupole mode
mode mode



Dynamical regimes

» Axial breathing mode: w ~ w, very low — always hydrodynamic

» Radial modes: w ~ wy,w, — different regimes depending on interaction
strength (scattering length a) and temperature T

» T = 0
— superfluid hydrodynamics

> Near unitarity (1/kra = 0)
— large cross section do/dQQ
— collisional hydrodyn. (T > T¢)
or two-fluid hydrodyn. (T < T¢)

» High T — cloud expands
and gets more and more dilute
— collisionless regime

» Intermediate cases
— modes are strongly damped
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Superfluid and collisionless regimes on the BCS side

» BCS side: 1/kra < —1 (weak coupling)
» T = 0: superfluid hydrodynamics
(if A > hw)
» 0 < T < T.: superfluid and
collisionless normal components
» T > T,.: collisionless Vlasov equation
(If €EF > ﬁw)

Quasiparticle RPA study

» Small-amplitude limit of
time-dependent BdG equations

» Includes temperature and shell
(A # hw) effects (pair breaking)
» Example: deviation of the quadrupole

response from the hydrodynamic
prediction (red line: w = 1/2)

Figure: Wright et al., P{QL S)Tﬁ 150403 (2007)
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Semiclassical study

» Current limitations of QRPA: N < 10*, spherical symmetry

» Semiclassical approach for 0 < T < T.: quasiparticle transport theory
(Betbeder-Matibet and Nozieres (1969))

» Hydrodynamic eq. for the phase ¢(7, t) of the order parameter coupled to
Vlasov-like eq. for the quasiparticle distribution function v(7, p, t)

» Numerical solution using the
test-particle method

» Example: quadrupole mode

» Transport theory vs. QRPA:
reasonable agreement

» Two peaks corresponding to
the superfluid and normal
parts, respectively
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Frequency jump in quadrupole mode?

> Experiment at Innsbruck: o Figure: Wright et al., P?L 9; 150403 (2007)
Radial quadrupole mode as function of . ¢ thcgnisgonauy $ T. colision
. . = ydrodynamic less
interaction strength = o ¢
» Determine frequency and damping by - superfuid
fitting quadrupole moment with a damped BEC g X
cosine function oS 10 o5 0o 05 A0 s
i i i 1/k.a
» Main results are qualitatively reproduced AP wer———y
by the calculation pol AT0E0Cm [y
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» Jump of frequency is a consequence of the 1ka

presence of two peaks in the spectrum



Collisional effects in the normal phase

» Starting point: Boltzmann equation for distribution function f(7, p):

—

f+ = V=V, V. -V,f=—I[f]

3o

V = Viap + U = potential [trap 4+ mean field (U = Re X)]
| = collision term (with Pauli blocking: f =1 — f):

d3p1 do N N - = -
If] = /W/dQEW— W(mFF — FETR)
do/dQ = in medium cross section (ladder approximation)

» Collisions — f approaches local equilibrium f,e within relaxation time 7

» Hydrodynamics valid if the system is always in local equilibrium: wr < 1



Example: quadrupole mode in the unitary Fermi gas

W/ Wy

» Here: method of moments for approximate solution of Boltzmann equation

» Ansatz:

6f (¥, p, t)

_ dfeq(7, P)

du

®(7, B, t) = polynomial in ¥ and p with time-dependent coefficients

» Comparison with numerical simulation
— necessary to go beyond 2nd order and to include 4th-order terms in ¢

» Comparison with Innsbruck experiment [Ried! et al., PRA 78 (2008)]:
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Summary: neutron star crust

» Hydrodynamic model for collective modes in the inhomogeneous phases of
the neutron star crust

» Acoustic and optical modes

» Acoustic modes with A > Ry are crucial for ¢, at low T

Outlook

» Improve the boundary conditions at the cluster-gas interface:
allow neutrons to cross the interface, include surface tension

» Include Coulomb repulsion between protons:
unified model for neutron sound waves and lattice vibrations

» More complicated geometries: crystal lattice, rods (“spaghetti”)

» How to go beyond the WS approximation within quantum QRPA
approaches?



Summary: cold atoms
» Radial collective modes have rather high frequencies
— different dynamical regimes, depending on system parameters
» Superfluid hydrodynamics valid at T =0 and if A > hw
» Normal component present at T > 0 even if the system is still superfluid

» Normal phase can be in collisionless, intermediate, or hydrodynamic regime

Outlook

» Include possibility of spin imbalance (4 # ny)
» Spin modes
» Modes in imbalanced Fermi gases

— PhD thesis P.-A. Pantel (IPN Lyon)

» Include collisions into quasiparticle transport theory



