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QRPA solver project

We want to solve hard QRPA problems with modest resources...

Lowest QRPA eigenmodes without full diagonalization

QRPA strength functions without full diagonalization

Deformed nuclei (axial/triaxial/isospin mixing)

As few approximations and truncations as possible (HFB and
QRPA consistent, full functional, all quasiparticles)

Large basis sets

Continuum basis (PTG)
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Starting point

Density functional with (generalized) Skyrme particle-hole part,
Coulomb terms and pairing functional

E[ρ] = T [ρ] + USkyrme[ρ] + UCoulomb[ρ] + UCou.ex[ρ] + UPair.[ρ̄]

Typical number of oscillator shells in HFB and QRPA is 15− 25.
Maximum 70− 80...

Coulomb exchange usually in Slater approximation.

Pairing can be mixed delta pairing or finite range pairing.

V (|r1 − r2|, |r′1 − r′2|) = Ge−|r1−r2|
2/a2e−|r

′
1−r

′
2|

2/a2

We can also just import TBMEs and/or mix with Skyrme
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QRPA with Lanczos?

One can do Lanczos iteration starting from a special pivot vector:

(Johnson and Bertsch, CPC 120, 155-161 (1999))
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Basic iterative Arnoldi procedure

Instead of Lanczos, we use Arnoldi method

More stable than Lanczos for non-hermitean problems.

Only matrix-vector products are needed.

(
Xk+1

Y k+1

)
=

(
W k

W ′k

)
−

k∑
i=1

(
Xi

Y i

)
aik +

k∑
i=1

(
Y i∗

Xi∗

)
bik ,

(
Y k+1∗

Xk+1∗

)
= −

(
W ′k∗

W k∗

)
+

k∑
i=1

(
Xi

Y i

)
b∗ik −

k∑
i=1

(
Y i∗

Xi∗

)
a∗ik .

(1)

Krylov space (small) QRPA matrix:

→
(

a b
−b∗ −a∗

)(
xn
yn

)
= ~ωn

(
xn
yn

)
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QRPA matrix-vector products

The QRPA matrix - vector products are calculated using linearized
RPA mean fields, without construction of the actual matrix(

Wn

W ′n

)
=

(
A B
−B∗ −A∗

)(
Xn

Y n

)
Definitions:

U, V : Bogoliubov-Valatin transformation from HFB

ρ̃, κ̃, κ̃′: Density matrix and pairing tensors of QRPA

E: Diagonal matrix of HFB quasiparticle energies

RPA norm: 〈Qω|Qω′〉 =
∑
k<k′ X

ω∗
kk′X

ω′

kk′ − Y ω∗kk′Y ω
′

kk′
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From TDHFB to QRPA

From linearized TDHFB equations:

TDHFB linearized

~ωR̃ =
[
H(Rg.s.), R̃

]
+
[
H1(R̃), R̃g.s.

]
Matrix elements between occupied and unoccupied states give
QRPA equations

~ωZ̃ = EZ̃ + Z̃E + W̃

−~ωZ̃ ′† = EZ̃ ′† + Z̃ ′†E + W̃ ′†
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QRPA matrix-vector products in more detail

From linearized TDHFB equations:

Transformation from quasiparticle amplitudes to density matrices

ρ̃ = UXnV T + V ∗Y n†U†

κ̃ = UXnUT + V ∗Y n†V †, κ̃′ = V XnV T + U∗Y n†U†

Calculation of normal and pairing fields

h̃kk′ =
∑
ll′

v̄kl′k′lρ̃ll′ + . . . ∆̃kk′ =
1

2

∑
ll′

v̄kk′ll′ κ̃ll′ + . . .

Transforming back to quasiparticle amplitudes

Xn+1 = U†h̃V ∗ − V †h̃TU∗ + U†∆̃U∗ + V †∆̃′†V ∗ + EXn +XnE

Y n+1 = −UT h̃TV + V T h̃U + UT ∆̃′†U + V T ∆̃V + EY n + Y nE

Done with modified mean-field code (HOSPHE)
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Starting the Arnoldi iteration: Pivot vector

The initial vector, pivot, is important with strength functions.

QRPA satisfies odd energy weighed sum rules (EWSR) and
violates even ones

Iterative Arnoldi satisfies all odd EWSR up to kth after k
iterations, if we set

X1
kk′ = (UOV T − VOTUT )kk′ ,

Y 1
kk′ = 0.

O is the matrix of EM transition operator elements.

pnQRPA satisfies the Ikeda sum rule

Iterative Arnoldi satisfies the Ikeda sum rule also, if we set

X1,pn
kk′ = (UpOGT−V Tn − VpOTGT−UTn )kk′ ,

Y 1,pn
kk′ = 0.

And similarly for the beta+ channel.
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Spurious mode mixing
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Spurious QRPA modes

Each broken symmetry of the ground state wave function produces a
pair of large amplitude RPA modes (spurious & boost).

(
A B
−B∗ −A∗

)(
S
S∗

)
= 0(

A B
−B∗ −A∗

)(
B
B∗

)
= δλ

(
S
S∗

)

Both modes have RPA norm zero, 〈S|S〉 = 〈B|B〉 = 0, but their
overlap 〈S|B〉 is non-zero.

Q†S =
∑
k<k′

Skk′β
†
kβ
†
k′ + S∗kk′βk′βk Q†B =

∑
k<k′

Bkk′β
†
kβ
†
k′ +B∗kk′βk′βk
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Spurious RPA mode generation

Tanslational invariance: both are known beforehand (QS = P ,
QB = R)

Particle number non-conservation and rotational invariance
violation: Use a different method to find the boost mode
(QS = J , QS = N̂).

Bkk′ = (V ∗12U
T
12)kk′ ,

U12 = U†0U1 + V †0 V1 ,

V12 = UT0 V1 − V T0 U1 .

The boost mode amplitudes are generated using Thouless
theorem.

U0 and V0 are from HFB ground state calculation, U1 and V1
from another HFB calculation with slightly changed cranking
frequency/chemical potential, λ′ = λ+ δλ, ω′ = ω + δω.
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Spurious RPA mode removal

The spurious and boost mode components are removed with a
Gram-Schmidt procedure

(
Xk,2

Y k,2

)
=

(
Xk

Y k

)
+

ns∑
i=1

((
Si

Si∗

)
〈Bi|Qk〉
〈Si|Bi〉

−
(
Bi∗

Bi

)
〈Si|Qk〉
〈Si|Bi〉

)

It is not sufficient to remove just the spurious components!
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Arnoldi applications: EM strength functions

J. Toivanen et al., ”Linear response strength functions with iterative
Arnoldi diagonalization”, Phys. Rev. C 81, 034312 (2010)

RPA satisfies odd-order
sum rules

pivot vector X-amplitudes
equal to EM operator

vector Y -amplitudes zero

Arnoldi iteration generates
moments of EM strength
and preserves the odd ones
(S1, S3, S5, ...)
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Arnoldi applications: EM strength functions

Higher multipoles (1-, 2+):
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Monopole strength function and nuclear
incompressibility
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Finite Amplitude Method

RPA: T. Nakatsukasa et al., Phys. Rev. C76, 024318 (2007)

QRPA: P. Avogadro et al., Phys. Rev. C84, 014314 (2011)

QRPA in H.O. basis: M. Stoitsov et al., Phys. Rev. C84, 041305
(2011)

ρη = (V + ηU∗X∗)∗(V + ηU∗Y )T

κη = −(U + ηV ∗Y ∗)∗(V + ηU∗X)†

Xab = − δH20
ab (ω)− F 20

ab

Ea + Eb − ω + iγ
, Yab = − δH02

ab (ω)− F 02
ab

Ea + Eb + ω + iγ

Broyden method used to accelerate convergence

(F 20
ab external perturbing field, H20

ab QRPA fields, γ smoothing width)



university-logo

(16.8,7.85)

Finite Amplitude Method with H.O. basis

M. Kortelainen et al., implementation in code HFBTHO

In FAM the energy ω can
be freely chosen

→ freedom to investigate
only the interesting energy
range

Must use smoothing width
γ always

→ affects accuracy of
QRPA amplitudes

Work going on to
implement arbitrary
multipoles
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Restarted Arnoldi Method

Implicitly Restarted Arnoldi Method creates a Krylov basis set
and forms an upper Hessenberg matrix Hk after k iterations.

MVk = VkHk + fke
T
k ,

where M is the RPA matrix and matrix Vk contains Arnoldi
vectors as its columns. fk is a residual vector.

Approximate eigenvalues are calculated by making a
”quasi-diagonal” decomposition of Hk. If wanted number of
lowest eigenvalues have converged, the method stops.

Otherwise a new pivot is calculated using Vk and Hk

decomposition and the Arnoldi iteration is restarted from the
pivot.

(For more details, see e.g. Ph.D thesis of R. B. Lehoucq)
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Restarted Arnoldi Method

Energy spectrum example: Sixteen 2+ states of 120Sn requested, 20
harmonic oscillator shells, SkM* + separable pairing. D = 7590.

Small memory footprint
(100-200 Krylov vectors)

Gives both positive and
negative energy solutions
(ARPACK)

Accuracy is exact both for
energies and transition
amplitudes

Very good method for
deformed nuclei

No RPA matrix...
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Restarted Arnoldi Method

Large basis sizes ”easy”

Convergence can be studied

Allows less severe
truncations

Practical application: B.G. Carlsson, J. Toivanen and A. Pastore,
arXiv:1203.5236v1 (published soon in PRC)
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Applications: Semimagic nuclei

2+ states of N = 126 isotones:
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Applications: Semimagic nuclei

2+ states of semimagic Ca and Ni isotopes:
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Applications: Semimagic nuclei

2+ states of semimagic Sn and Pb isotopes:
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Applications: Semimagic nuclei

3− states of semimagic Sn and Pb isotopes:
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FAM versus Arnoldi

Pros:

Moment Arnoldi: Fastest
for moments of strength
function

FAM: Free choice of energy
range, finds the ”real”
smoothed strength function

Restarted Arnoldi: Lowest
excitations come out
exactly, saves memory

Cons:

Moment Arnoldi: Low-lying
states converge slowly

FAM: Lots of ω points have
to be calculated to not miss
states, must use smoothing.

Restarted Arnoldi: Can not
calculate huge number of
states.
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Particle-Vibration Coupling

(Dimiter Tarpanov, J.D., J.T.). PVC calculates the energy shifts
when particle is added to or removed from a even-even nucleus.

ρkαβ = ρAαβ + U∗αkUβk − VαkV ∗βk
PVC vertex with quasiparticle fields:

〈k|Hpv|ωk〉 =
∑
αβ

W k
αβX

ω
αβ +W ′kαβY

ω
αβ
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Particle-Vibration Coupling

Added (quasi)particle polarizes the nucleus. Polarization
contribution is calculated with QRPA m−1 sum rule.

Ea(N + 1)− E0(N) = ea −
∑
ω>0

|〈a|Hpv|ωa〉|2

ω
+Ha

aa ± λ

Not strictly perturbation theory based. Energy shifts generally
smaller than with second-order PT

Comparison against blocked mean field calculations (same space
and EDF) to study the accuracy.

Useful tool with EDF fitting...
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PVC

Preliminary PVC results by Dimiter Tarpanov, SLy5 + delta pairing:
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Other QRPA related projects: Correlations

Correlation energies of even-even semimagic nuclei using QRPA...

Ecorr. =
∑
ω>0

∑
kk′

~ω|Y ωkk′ |2

=
1

4

∑
k<k′,l<l′

|Bkk′ll′ |2

Ek + Ek′ + El + El′
+ . . .

using momentum-truncated Skyrme forces.

Skyrme ultraviolet divergence
V (k − k′) ≈ V0 + α(k − k′)2

Not a problem in very small model
spaces (one major shell), but
produces divergent correlation
energy in large spaces.

Skyrme forces not fitted for this...
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Correlation energy

Calculate HFB mean field
and QRPA correlation
energy with truncated
Skyrme force and
finite-range pairing force

Fit mass formula to the
total energies
(HFB+QRPA)

Study fluctuations around
the average value
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Summary

We have developed some practical QRPA solution methods that
fit well with the EDF prescription

QRPA excitations without forming large matrices and without
full diagonalizations (like FAM)

Reduction of computational work

Methods are implemented to HOSPHE, HFBTHO, HFODD
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