Efficient solution methods for Quasiparticle Random Phase Approximation equations

Jussi Toivanen

Department of Physics, University of Jyväskylä, Finland

Workshop of the Espace de Structure Nuclaire Thorique at Saclay

May $30^{\text {th }}$ - June $1^{\text {st }}, 2012$

QRPA solver project

We want to solve hard QRPA problems with modest resources...

- Lowest QRPA eigenmodes without full diagonalization
- QRPA strength functions without full diagonalization
- Deformed nuclei (axial/triaxial/isospin mixing)
- As few approximations and truncations as possible (HFB and QRPA consistent, full functional, all quasiparticles)
- Large basis sets
- Continuum basis (PTG)

Starting point

- Density functional with (generalized) Skyrme particle-hole part, Coulomb terms and pairing functional

$$
E[\rho]=T[\rho]+U_{\text {Skyrme }}[\rho]+U_{\text {Coulomb }}[\rho]+U_{\text {Cou.ex }}[\rho]+U_{\text {Pair. }}[\bar{\rho}]
$$

- Typical number of oscillator shells in HFB and QRPA is $15-25$. Maximum 70 - 80...
- Coulomb exchange usually in Slater approximation.
- Pairing can be mixed delta pairing or finite range pairing.

$$
V\left(\left|r_{1}-r_{2}\right|,\left|r_{1}^{\prime}-r_{2}^{\prime}\right|\right)=G e^{-\left|r_{1}-r_{2}\right|^{2} / a^{2}} e^{-\left|r_{1}^{\prime}-r_{2}^{\prime}\right|^{2} / a^{2}}
$$

- We can also just import TBMEs and/or mix with Skyrme

QRPA with Lanczos?

One can do Lanczos iteration starting from a special pivot vector:

(Johnson and Bertsch, CPC 120, 155-161 (1999))

Basic iterative Arnoldi procedure

Instead of Lanczos, we use Arnoldi method

- More stable than Lanczos for non-hermitean problems.
- Only matrix-vector products are needed.

$$
\begin{align*}
& \binom{X^{k+1}}{Y^{k+1}}=\binom{W^{k}}{W^{\prime k}}-\sum_{i=1}^{k}\binom{X^{i}}{Y^{i}} a_{i k}+\sum_{i=1}^{k}\binom{Y^{i *}}{X^{i *}} b_{i k}, \\
& \binom{Y^{k+1 *}}{X^{k+1 *}}=-\binom{W^{\prime k *}}{W^{k *}}+\sum_{i=1}^{k}\binom{X^{i}}{Y^{i}} b_{i k}^{*}-\sum_{i=1}^{k}\binom{Y^{i *}}{X^{i *}} a_{i k}^{*} . \tag{1}
\end{align*}
$$

Krylov space (small) QRPA matrix:

$$
\rightarrow\left(\begin{array}{cc}
a & b \\
-b^{*} & -a^{*}
\end{array}\right)\binom{x_{n}}{y_{n}}=\hbar \omega_{n}\binom{x_{n}}{y_{n}}
$$

QRPA matrix-vector products

The QRPA matrix - vector products are calculated using linearized RPA mean fields, without construction of the actual matrix

$$
\binom{W^{n}}{W^{\prime n}}=\left(\begin{array}{cc}
A & B \\
-B^{*} & -A^{*}
\end{array}\right)\binom{X^{n}}{Y^{n}}
$$

Definitions:

- U, V : Bogoliubov-Valatin transformation from HFB
- $\tilde{\rho}, \tilde{\kappa}, \tilde{\kappa}^{\prime}$: Density matrix and pairing tensors of QRPA
- E: Diagonal matrix of HFB quasiparticle energies
- RPA norm: $\left\langle\boldsymbol{Q}_{\omega} \mid \boldsymbol{Q}_{\omega^{\prime}}\right\rangle=\sum_{k<k^{\prime}} X_{k k^{\prime}}^{\omega *} X_{k k^{\prime}}^{\omega^{\prime}}-Y_{k k^{\prime}}^{\omega *} Y_{k k^{\prime}}^{\omega^{\prime}}$

From TDHFB to QRPA

From linearized TDHFB equations:

- TDHFB linearized

$$
\hbar \omega \tilde{\mathcal{R}}=\left[\mathcal{H}\left(\mathcal{R}_{\text {g.s. }}\right), \tilde{\mathcal{R}}\right]+\left[\mathcal{H}^{1}(\tilde{\mathcal{R}}), \tilde{\mathcal{R}}_{\text {g.s. }}\right]
$$

- Matrix elements between occupied and unoccupied states give QRPA equations

$$
\begin{aligned}
\hbar \omega \tilde{Z} & =E \tilde{Z}+\tilde{Z} E+\tilde{W} \\
-\hbar \omega \tilde{Z}^{\prime \dagger} & =E \tilde{Z}^{\prime \dagger}+\tilde{Z}^{\prime \dagger} E+\tilde{W}^{\prime \dagger}
\end{aligned}
$$

QRPA matrix-vector products in more detail

From linearized TDHFB equations:

- Transformation from quasiparticle amplitudes to density matrices

$$
\begin{aligned}
\tilde{\rho} & =U X^{n} V^{T}+V^{*} Y^{n \dagger} U^{\dagger} \\
\tilde{\kappa} & =U X^{n} U^{T}+V^{*} Y^{n \dagger} V^{\dagger}, \quad \tilde{\kappa}^{\prime}=V X^{n} V^{T}+U^{*} Y^{n \dagger} U^{\dagger}
\end{aligned}
$$

- Calculation of normal and pairing fields

$$
\tilde{h}_{k k^{\prime}}=\sum_{l l^{\prime}} \bar{v}_{k l^{\prime} k^{\prime} l} \tilde{\rho}_{l l^{\prime}}+\ldots \quad \tilde{\Delta}_{k k^{\prime}}=\frac{1}{2} \sum_{l l^{\prime}} \bar{v}_{k k^{\prime} l l^{\prime}} \tilde{\kappa}_{l l^{\prime}}+\ldots
$$

- Transforming back to quasiparticle amplitudes

$$
\begin{aligned}
X^{n+1} & =U^{\dagger} \tilde{h} V^{*}-V^{\dagger} \tilde{h}^{T} U^{*}+U^{\dagger} \tilde{\Delta} U^{*}+V^{\dagger} \tilde{\Delta}^{\prime \dagger} V^{*}+E X^{n}+X^{n} E \\
Y^{n+1} & =-U^{T} \tilde{h}^{T} V+V^{T} \tilde{h} U+U^{T} \tilde{\Delta}^{\dagger \dagger} U+V^{T} \tilde{\Delta} V+E Y^{n}+Y^{n} E
\end{aligned}
$$

Done with modified mean-field code (HOSPHE)

Starting the Arnoldi iteration: Pivot vector

The initial vector, pivot, is important with strength functions.

- QRPA satisfies odd energy weighed sum rules (EWSR) and violates even ones
- Iterative Arnoldi satisfies all odd EWSR up to $k^{\text {th }}$ after k iterations, if we set

$$
\begin{aligned}
X_{k k^{\prime}}^{1} & =\left(U \mathcal{O} V^{T}-V \mathcal{O}^{T} U^{T}\right)_{k k^{\prime}} \\
Y_{k k^{\prime}}^{1} & =0
\end{aligned}
$$

\mathcal{O} is the matrix of EM transition operator elements.

- pnQRPA satisfies the Ikeda sum rule
- Iterative Arnoldi satisfies the Ikeda sum rule also, if we set

$$
\begin{aligned}
X_{k k{ }^{\prime}}^{1, \mathrm{pn}} & =\left(U_{p} \mathcal{O}_{G T-} V_{n}^{T}-V_{p} \mathcal{O}_{G T-}^{T} U_{n}^{T}\right)_{k k^{\prime}}, \\
Y_{k k^{\prime}}^{1, \mathrm{pn}} & =0 .
\end{aligned}
$$

And similarly for the beta+ channel.

Spurious mode mixing

Spurious QRPA modes

Each broken symmetry of the ground state wave function produces a pair of large amplitude RPA modes (spurious \& boost).

$$
\begin{aligned}
& \left(\begin{array}{cc}
A & B \\
-B^{*} & -A^{*}
\end{array}\right)\binom{\boldsymbol{S}}{\boldsymbol{S}^{*}}=0 \\
& \left(\begin{array}{cc}
A & B \\
-B^{*} & -A^{*}
\end{array}\right)\binom{\boldsymbol{B}}{\boldsymbol{B}^{*}}=\delta \lambda\binom{\boldsymbol{S}}{\boldsymbol{S}^{*}}
\end{aligned}
$$

Both modes have RPA norm zero, $\langle\boldsymbol{S} \mid \boldsymbol{S}\rangle=\langle\boldsymbol{B} \mid \boldsymbol{B}\rangle=0$, but their overlap $\langle\boldsymbol{S} \mid \boldsymbol{B}\rangle$ is non-zero.

$$
Q_{S}^{\dagger}=\sum_{k<k^{\prime}} S_{k k^{\prime}} \beta_{k}^{\dagger} \beta_{k^{\prime}}^{\dagger}+S_{k k^{\prime}}^{*} \beta_{k^{\prime}} \beta_{k} \quad Q_{B}^{\dagger}=\sum_{k<k^{\prime}} B_{k k^{\prime}} \beta_{k}^{\dagger} \beta_{k^{\prime}}^{\dagger}+B_{k k^{\prime}}^{*} \beta_{k^{\prime}} \beta_{k}
$$

Spurious RPA mode generation

- Tanslational invariance: both are known beforehand $\left(Q_{S}=\boldsymbol{P}\right.$, $\left.Q_{B}=\boldsymbol{R}\right)$
- Particle number non-conservation and rotational invariance violation: Use a different method to find the boost mode $\left(Q_{S}=\boldsymbol{J}, Q_{S}=\hat{N}\right)$.

$$
\begin{aligned}
B_{k k^{\prime}} & =\left(V_{12}^{*} U_{12}^{T}\right)_{k k^{\prime}}, \\
U_{12} & =U_{0}^{\dagger} U_{1}+V_{0}^{\dagger} V_{1} \\
V_{12} & =U_{0}^{T} V_{1}-V_{0}^{T} U_{1} .
\end{aligned}
$$

The boost mode amplitudes are generated using Thouless theorem.

- U_{0} and V_{0} are from HFB ground state calculation, U_{1} and V_{1} from another HFB calculation with slightly changed cranking frequency/chemical potential, $\lambda^{\prime}=\lambda+\delta \lambda, \omega^{\prime}=\omega+\delta \omega$.

Spurious RPA mode removal

The spurious and boost mode components are removed with a Gram-Schmidt procedure

$$
\binom{X^{k, 2}}{Y^{k, 2}}=\binom{X^{k}}{Y^{k}}+\sum_{i=1}^{n_{s}}\left(\binom{S^{i}}{S^{i *}} \frac{\left\langle\boldsymbol{B}_{i} \mid \boldsymbol{Q}_{k}\right\rangle}{\left\langle\boldsymbol{S}_{i} \mid \boldsymbol{B}_{i}\right\rangle}-\binom{B^{i *}}{B^{i}} \frac{\left\langle\boldsymbol{S}_{i} \mid \boldsymbol{Q}_{k}\right\rangle}{\left\langle\boldsymbol{S}_{i} \mid \boldsymbol{B}_{i}\right\rangle}\right)
$$

It is not sufficient to remove just the spurious components!

Arnoldi applications: EM strength functions

J. Toivanen et al., "Linear response strength functions with iterative Arnoldi diagonalization", Phys. Rev. C 81, 034312 (2010)

- RPA satisfies odd-order sum rules
- pivot vector X-amplitudes equal to EM operator
- vector Y-amplitudes zero
- Arnoldi iteration generates moments of EM strength and preserves the odd ones $\left(S_{1}, S_{3}, S_{5}, \ldots\right)$

Arnoldi applications: EM strength functions

Higher multipoles (1-, 2+):

Monopole strength function and nuclear incompressibility

Finite Amplitude Method

- RPA: T. Nakatsukasa et al., Phys. Rev. C76, 024318 (2007)
- QRPA: P. Avogadro et al., Phys. Rev. C84, 014314 (2011)
- QRPA in H.O. basis: M. Stoitsov et al., Phys. Rev. C84, 041305 (2011)

$$
\begin{gathered}
\rho_{\eta}=\left(V+\eta U^{*} X^{*}\right)^{*}\left(V+\eta U^{*} Y\right)^{T} \\
\kappa_{\eta}=-\left(U+\eta V^{*} Y^{*}\right)^{*}\left(V+\eta U^{*} X\right)^{\dagger} \\
X_{a b}=-\frac{\delta H_{a b}^{20}(\omega)-F_{a b}^{20}}{E_{a}+E_{b}-\omega+i \gamma}, \quad Y_{a b}=-\frac{\delta H_{a b}^{02}(\omega)-F_{a b}^{02}}{E_{a}+E_{b}+\omega+i \gamma}
\end{gathered}
$$

- Broyden method used to accelerate convergence
($F_{a b}^{20}$ external perturbing field, $H_{a b}^{20}$ QRPA fields, γ smoothing width)

Finite Amplitude Method with H.O. basis

M. Kortelainen et al., implementation in code HFBTHO

- In FAM the energy ω can be freely chosen
- \rightarrow freedom to investigate only the interesting energy range
- Must use smoothing width γ always
- \rightarrow affects accuracy of QRPA amplitudes
- Work going on to implement arbitrary
 multipoles

Restarted Arnoldi Method

- Implicitly Restarted Arnoldi Method creates a Krylov basis set and forms an upper Hessenberg matrix H_{k} after k iterations.

$$
M V_{k}=V_{k} H_{k}+f_{k} e_{k}^{T}
$$

where M is the RPA matrix and matrix V_{k} contains Arnoldi vectors as its columns. f_{k} is a residual vector.

- Approximate eigenvalues are calculated by making a "quasi-diagonal" decomposition of H_{k}. If wanted number of lowest eigenvalues have converged, the method stops.
- Otherwise a new pivot is calculated using V_{k} and H_{k} decomposition and the Arnoldi iteration is restarted from the pivot.
(For more details, see e.g. Ph.D thesis of R. B. Lehoucq)

Restarted Arnoldi Method

Energy spectrum example: Sixteen 2^{+}states of ${ }^{120} \mathrm{Sn}$ requested, 20 harmonic oscillator shells, $\mathrm{SkM}^{*}+$ separable pairing. $D=7590$.

- Small memory footprint (100-200 Krylov vectors)
- Gives both positive and negative energy solutions (ARPACK)
- Accuracy is exact both for energies and transition amplitudes
- Very good method for deformed nuclei
- No RPA matrix...

Restarted Arnoldi Method

- Large basis sizes "easy"
- Convergence can be studied
- Allows less severe truncations

Practical application: B.G. Carlsson, J. Toivanen and A. Pastore, arXiv:1203.5236v1 (published soon in PRC)

Applications: Semimagic nuclei

2^{+}states of $N=126$ isotones:

Applications: Semimagic nuclei

2^{+}states of semimagic Ca and Ni isotopes:

Applications: Semimagic nuclei

2^{+}states of semimagic Sn and Pb isotopes:

Applications: Semimagic nuclei

3^{-}states of semimagic Sn and Pb isotopes:

FAM versus Arnoldi

Pros:
Cons:

- Moment Arnoldi: Fastest for moments of strength function
- FAM: Free choice of energy range, finds the "real" smoothed strength function
- Restarted Arnoldi: Lowest excitations come out exactly, saves memory
- Moment Arnoldi: Low-lying states converge slowly
- FAM: Lots of ω points have to be calculated to not miss states, must use smoothing.
- Restarted Arnoldi: Can not calculate huge number of states.

Particle-Vibration Coupling

(Dimiter Tarpanov, J.D., J.T.). PVC calculates the energy shifts when particle is added to or removed from a even-even nucleus.

$$
\rho_{\alpha \beta}^{k}=\rho_{\alpha \beta}^{A}+U_{\alpha k}^{*} U_{\beta k}-V_{\alpha k} V_{\beta k}^{*}
$$

PVC vertex with quasiparticle fields:

$$
\langle k| H_{p v}|\omega k\rangle=\sum_{\alpha \beta} W_{\alpha \beta}^{k} X_{\alpha \beta}^{\omega}+W_{\alpha \beta}^{\prime k} Y_{\alpha \beta}^{\omega}
$$

Particle-Vibration Coupling

- Added (quasi)particle polarizes the nucleus. Polarization contribution is calculated with QRPA m_{-1} sum rule.

$$
E_{a}(N+1)-E_{0}(N)=e_{a}-\sum_{\omega>0} \frac{\left.\left|\langle a| H_{p v}\right| \omega a\right\rangle\left.\right|^{2}}{\omega}+H_{a a}^{a} \pm \lambda
$$

- Not strictly perturbation theory based. Energy shifts generally smaller than with second-order PT
- Comparison against blocked mean field calculations (same space and EDF) to study the accuracy.
- Useful tool with EDF fitting...

Preliminary PVC results by Dimiter Tarpanov, SLy5 + delta pairing:

Other QRPA related projects: Correlations

Correlation energies of even-even semimagic nuclei using QRPA...

$$
\begin{aligned}
E_{\text {corr. }} & =\sum_{\omega>0} \sum_{k k^{\prime}} \hbar \omega\left|Y_{k k^{\prime}}^{\omega}\right|^{2} \\
& =\frac{1}{4} \sum_{k<k^{\prime}, l<l^{\prime}} \frac{\left|B_{k k^{\prime} l l^{\prime}}\right|^{2}}{E_{k}+E_{k^{\prime}}+E_{l}+E_{l^{\prime}}}+\ldots
\end{aligned}
$$

using momentum-truncated Skyrme forces.

- Skyrme ultraviolet divergence $V\left(k-k^{\prime}\right) \approx V_{0}+\alpha\left(k-k^{\prime}\right)^{2}$
- Not a problem in very small model spaces (one major shell), but produces divergent correlation energy in large spaces.
- Skyrme forces not fitted for this...

Correlation energy

- Calculate HFB mean field and QRPA correlation energy with truncated Skyrme force and finite-range pairing force
- Fit mass formula to the total energies (HFB+QRPA)
- Study fluctuations around the average value

Summary

- We have developed some practical QRPA solution methods that fit well with the EDF prescription
- QRPA excitations without forming large matrices and without full diagonalizations (like FAM)
- Reduction of computational work
- Methods are implemented to HOSPHE, HFBTHO, HFODD

