Static spin susceptibility, infinite nuclear matter and effective tensor interactions

J. Navarro IFIC (CSIC & Universidad de Valencia)

Static spin susceptibility, infinite nuclear matter and effective tensor interactions

J. Navarro IFIC (CSIC & Universidad de Valencia)

- ➡ Instabilities and Landau parameters (SNM, nM)
- Static spin susceptibility
 - Skyrme plus zero-range tensor interaction
 - Finite-range interactions

The mean free path of a neutrino due to scattering inside neutron matter at temperature T is proportional to the optical potential. It can be expressed in the case of nondegenerate neutrinos as [1]

$$\frac{1}{\lambda(\mathbf{k}_{i},T)} = \frac{G_{F}^{2}}{32\pi^{3}(\hbar c)^{4}} \int d\mathbf{k}_{f} [(1+\cos\theta)S^{(0)}(\omega,\mathbf{q},T) + g_{A}^{2}(3-\cos\theta)S^{(1)}(\omega,\mathbf{q},T)],$$
(1)

where G_F is the Fermi constant, g_A the axial coupling constant, \mathbf{k}_i and \mathbf{k}_f are the initial and final neutrino momenta, \mathbf{q} is the transferred momentum $\mathbf{k}_i - \mathbf{k}_f$, ω is the transferred energy $|\mathbf{k}_i| - |\mathbf{k}_f|$, and $\cos \theta = \hat{\mathbf{k}}_i \cdot \hat{\mathbf{k}}_f$. The functions $S^{(S)}(\omega, \mathbf{q}, T)$ represent the dynamical structure factors in the spin symmetric (S=0) or spin antisymmetric (S=1) chan-

ρ, **k**_i, T

The mean free path of a neutrino due to scattering inside neutron matter at temperature T is proportional to the optical potential. It can be expressed in the case of nondegenerate neutrinos as [1]

$$\frac{1}{\lambda(\mathbf{k}_{i},T)} = \frac{G_{F}^{2}}{32\pi^{3}(\hbar c)^{4}} \int d\mathbf{k}_{f} [(1+\cos\theta)S^{(0)}(\omega,\mathbf{q},T) + g_{A}^{2}(3-\cos\theta)S^{(1)}(\omega,\mathbf{q},T)],$$
(1)

where G_F is the Fermi constant, g_A the axial coupling constant, \mathbf{k}_i and \mathbf{k}_f are the initial and final neutrino momenta, \mathbf{q} is the transferred momentum $\mathbf{k}_i - \mathbf{k}_f$, ω is the transferred energy $|\mathbf{k}_i| - |\mathbf{k}_f|$, and $\cos \theta = \hat{\mathbf{k}}_i \cdot \hat{\mathbf{k}}_f$. The functions $S^{(S)}(\omega, \mathbf{q}, T)$ represent the dynamical structure factors in the spin symmetric (S=0) or spin antisymmetric (S=1) chan-

ρ, **k**_i, T

FIG. 1. The scattering mean free path of a 5 MeV neutrino in neutron matter at 5 MeV temperature, as a function of neutron density, for various Skyrme force parametrizations.

The mean free path of a neutrino due to scattering inside neutron matter at temperature T is proportional to the optical potential. It can be expressed in the case of nondegenerate neutrinos as [1]

$$\frac{1}{\lambda(\mathbf{k}_{i},T)} = \frac{G_{F}^{2}}{32\pi^{3}(\hbar c)^{4}} \int d\mathbf{k}_{f} [(1+\cos\theta)S^{(0)}(\omega,\mathbf{q},T) + g_{A}^{2}(3-\cos\theta)S^{(1)}(\omega,\mathbf{q},T)], \quad (1)$$

where G_F is the Fermi constant, g_A the axial coupling constant, \mathbf{k}_i and \mathbf{k}_f are the initial and final neutrino momenta, \mathbf{q} is the transferred momentum $\mathbf{k}_i - \mathbf{k}_f$, ω is the transferred energy $|\mathbf{k}_i| - |\mathbf{k}_f|$, and $\cos \theta = \hat{\mathbf{k}}_i \cdot \hat{\mathbf{k}}_f$. The functions $S^{(S)}(\omega, \mathbf{q}, T)$ represent the dynamical structure factors in the spin symmetric (S=0) or spin antisymmetric (S=1) chan-

ρ, **k**_i, T

FIG. 1. The scattering mean free path of a 5 MeV neutrino in neutron matter at 5 MeV temperature, as a function of neutron density, for various Skyrme force parametrizations.

The mean free path of a neutrino due to scattering inside neutron matter at temperature T is proportional to the optical potential. It can be expressed in the case of nondegenerate neutrinos as [1]

$$\frac{1}{\lambda(\mathbf{k}_{i},T)} = \frac{G_{F}^{2}}{32\pi^{3}(\hbar c)^{4}} \int d\mathbf{k}_{f} [(1+\cos\theta)S^{(0)}(\omega,\mathbf{q},T) + g_{A}^{2}(3-\cos\theta)S^{(1)}(\omega,\mathbf{q},T)],$$
(1)

where G_F is the Fermi constant, g_A the axial coupling constant, \mathbf{k}_i and \mathbf{k}_f are the initial and final neutrino momenta, \mathbf{q} is the transferred momentum $\mathbf{k}_i - \mathbf{k}_f$, ω is the transferred energy $|\mathbf{k}_i| - |\mathbf{k}_f|$, and $\cos \theta = \hat{\mathbf{k}}_i \cdot \hat{\mathbf{k}}_f$. The functions $S^{(S)}(\omega, \mathbf{q}, T)$ represent the dynamical structure factors in the spin symmetric (S=0) or spin antisymmetric (S=1) chan-

Divergence in the S=1 static susceptibility $1+G^{(n)}_0 = 0$ S. Fantoni, A, Sarsa, K.E. Schmidt Spin susceptibility of neutron matter at zero temperature Phys. Rev. Lett. 87, 181101 (2001)

> TABLE I. Spin susceptibility ratio χ/χ_F of neutron matter. Our AFDMC results for the interactions AU6', AU8', and Reid6 are compared with those obtained from Refs. [8,9] by using Eq. (2). The statistical error is given in parentheses.

Conditions on the Skyrme parameters to avoid instabilities at densities $\rho > \rho_0$

Conditions on the Skyrme parameters to avoid instabilities at densities $\rho > \rho_0$

Ten parameters: $t_0, x_0, t_1, x_1, t_2, x_2, t_3, x_3, \sigma, W_0$

Conditions on the Skyrme parameters to avoid instabilities at densities $\rho > \rho_0$

Ten parameters: $t_0, x_0, t_1, x_1, t_2, x_2, t_3, x_3, \sigma, W_0$

W₀ plays no role in this analysis

Conditions on the Skyrme parameters to avoid instabilities at densities $\rho > \rho_0$

Ten parameters: $t_0, x_0, t_1, x_1, t_2, x_2, t_3, x_3, \sigma, W_0$

W₀ plays no role in this analysis

Input: ρ_0 , ϵ_0 , m^*_0 , K_0 , ϵ_s , ϵ_l

(0.16 fm⁻³, -16.0 MeV, 0.70, 230 MeV, 18.0 MeV, 32.0 MeV)

Conditions on the Skyrme parameters to avoid instabilities at densities $\rho > \rho_0$

Ten parameters: $t_0, x_0, t_1, x_1, t_2, x_2, t_3, x_3, \sigma, W_0$

W₀ plays no role in this analysis

Input: ρ_0 , ϵ_0 , m^*_0 , K_0 , ϵ_s , ϵ_l

(0.16 fm⁻³, -16.0 MeV, 0.70, 230 MeV, 18.0 MeV, 32.0 MeV)

3 free parameters: x=t₁ x₁, y=t₂ x₂, z=t₃ x₃

Conditions on the Skyrme parameters to avoid instabilities at densities $\rho > \rho_0$

Ten parameters: $t_0, x_0, t_1, x_1, t_2, x_2, t_3, x_3, \sigma, W_0$

W₀ plays no role in this analysis

Input: ρ₀, ε₀, m^{*}₀, K₀, ε_s, ε_l (0.16 fm⁻³, -16.0 MeV, 0.70, 230 MeV, 18.0 MeV, 32.0 MeV)

3 free parameters: x=t₁ x₁, y=t₂ x₂, z=t₃ x₃

Symmetric Nuclear Matter (SMN) and Neutron Matter (nM) F_L , F'_L , G_L , G'_L , F^n_L , G^n_L inequalities > - (2L+1)

$$x = t_1x_1$$
, $y = t_2x_2$, $z = t_3x_3$
T₀, T_S, C_i(ρ) combinations of inputs
 α_1 , α_2 constants

$$x - \frac{3}{5}y < \frac{4C_0(\rho)}{\rho} + \frac{4}{15}(T_0 - 2T_s)$$

$$x - \frac{1}{5}y < \frac{2C_0(\rho)}{\rho} - \frac{2}{15}(T_0 - 2T_S).$$

$$\begin{split} &\frac{1}{9\,\alpha_1}(\rho^\sigma \!-\! \rho_0^\sigma) z \!+\! (\rho^{2/3} \!-\! \rho_0^{2/3}) x \!+\! \frac{3}{5}(\rho^{2/3} \!+\! \rho_0^{2/3}) y \\ &> \!\! \frac{4}{3\,\alpha_1} \bigg(C_1(\rho) \!+\! C_1(\rho_0) \!+\! \frac{2\,\epsilon_I}{\rho_0} \bigg) \\ &- \!\frac{4}{15}(\rho^{2/3} \!+\! \rho_0^{2/3})(T_0 \!-\! 2T_S), \end{split}$$

$$\begin{split} &-\frac{1}{9\alpha_1}(\rho^{\sigma}-\rho_0^{\sigma})z-(\rho^{2/3}-\rho_0^{2/3})x+\frac{3}{5}(\rho^{2/3}-\rho_0^{2/3})y\\ &>\frac{4}{3\alpha_1}\bigg(C_1(\rho)-C_1(\rho_0)-\frac{2\epsilon_I}{\rho_0}\bigg)\\ &-\frac{4}{15}(\rho^{2/3}-\rho_0^{2/3})(T_0-2T_S). \end{split}$$

$$x = t_1x_1$$
, $y = t_2x_2$, $z = t_3x_3$
T₀, T_S, C_i(ρ) combinations of inputs
 α_1 , α_2 constants

A surface in the 3D space (x,y,z) $x - \frac{3}{5}y < \frac{4C_0(\rho)}{\rho} + \frac{4}{15}(T_0 - 2T_S)$ The interior volume lfixes the stability region

$$\begin{split} &\frac{1}{9\,\alpha_1}(\rho^\sigma-\rho_0^\sigma)z+(\rho^{2/3}-\rho_0^{2/3})x+\frac{3}{5}(\rho^{2/3}+\rho_0^{2/3})y\\ &>\frac{4}{3\,\alpha_1}\bigg(C_1(\rho)+C_1(\rho_0)+\frac{2\,\epsilon_I}{\rho_0}\bigg)\\ &-\frac{4}{15}(\rho^{2/3}+\rho_0^{2/3})(T_0-2T_S), \end{split}$$

$$\begin{split} &-\frac{1}{9\,\alpha_1}(\rho^\sigma-\rho_0^\sigma)z-(\rho^{2/3}-\rho_0^{2/3})x+\frac{3}{5}(\rho^{2/3}-\rho_0^{2/3})y\\ &>\frac{4}{3\,\alpha_1}\bigg(C_1(\rho)-C_1(\rho_0)-\frac{2\,\epsilon_I}{\rho_0}\bigg)\\ &-\frac{4}{15}(\rho^{2/3}-\rho_0^{2/3})(T_0-2T_S). \end{split}$$

 $x = t_1 x_1$ $y = t_2 x_2$ $Z = t_3 x_3$

A surface in the 3D space (x,y,z) The interior volume fixes the stability region. As the density increases, the volume is reduced

FIG. 1. Comparison (**Densities**: the volume $\Omega(\rho)$ by a horizontal plane z = const, from ρ_0 on and vertical axes are for from ρ_0 on units of MeV fm⁵. Cases in steps of spond to the constraints uclear matter. Cases (b) and (b') include also the $0.5\rho_0$ eutron matter. Two values of z have been used, namely, $z=2\times10^4$ for cases (a) and (b), and $z=-2\times10^4$ for cases (a') and (b'). The different closed contours correspond to different values of ρ . The largest area is for ρ

 $x = t_1 x_1$ $y = t_2 x_2$ $z = t_3 x_3$

A surface in the 3D space (x,y,z) The interior volume fixes the stability region. As the density increases, the volume is reduced

FIG. 4. Case (a) $\rho_{\rm er}$ as a function of z [in units of MeV fm³(1 + σ)] for different values of $m_0^*/m = 0.6$, 0.7, 0.8 (respectively, dotted, solid, dashed). Case (b) $\rho_{\rm er}$ as a function of relative variations of some empirical inputs; dotted line: variation of m_0^*/m , solid line: variation of K_0 , dashed line: variation of ϵ_s .

FIG. 4. Case (a) ρ_{er} as a function of z [in units of MeV fm³(1 + σ)] for different values of $m_0^*/m = 0.6$, 0.7, 0.8 (respectively, dotted, solid, dashed). Case (b) ρ_{er} as a function of relative variations of some empirical inputs; dotted line: variation of m_0^*/m , solid line: variation of K_0 , dashed line: variation of ϵ_s .

For any Skyrme interaction there is a ρ_{crit} above which $F_L, G_L, ... < -(2L+1)$ For a reasonable choice of empirical inputs $\rho_{crit} \le 3.5 \rho_0$

FIG. 4. Case (a) $\rho_{\rm er}$ as a function of z [in units of MeV fm³(1 + σ)] for different values of $m_0^*/m = 0.6$, 0.7, 0.8 (respectively, dotted, solid, dashed). Case (b) $\rho_{\rm er}$ as a function of relative variations of some empirical inputs; dotted line: variation of m_0^*/m , solid line: variation of K_0 , dashed line: variation of ϵ_s .

For any Skyrme interaction there is a ρ_{crit} above which $F_L, G_L, \ldots < -(2L+1)$ For a reasonable choice of empirical inputs $\rho_{crit} \le 3.5 \rho_0$

But the fine tuning in finite nuclei usually results in a lower value of ρ_{crit}

FIG. 4. Case (a) $\rho_{\rm cr}$ as a function of z [in units of MeV fm³(1 + σ)] for different values of $m_0^*/m = 0.6$, 0.7, 0.8 (respectively, dotted, solid, dashed). Case (b) $\rho_{\rm cr}$ as a function of relative variations of some empirical inputs; dotted line: variation of m_0^*/m , solid line: variation of K_0 , dashed line: variation of ϵ_s .

For any Skyrme interaction there is a ρ_{crit} above which $F_L, G_L, \ldots < -(2L+1)$ For a reasonable choice of empirical inputs $\rho_{crit} \le 3.5 \rho_0$

But the fine tuning in finite nuclei usually results in a lower value of ρ_{crit}

Effects of tensor?

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

The usual stability conditions [F_L , $G_{L\,,\,...}>$ - (2L+1)] are found to be appreciably modified by tensor forces

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

> > (G_0, G_1, H_0)

The usual stability conditions [F_L , $G_{L,...} > - (2L+1)$] are found to be appreciably modified by tensor forces

Li-Gang Cao, G. Colò, H. Sagawa Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations Phys. Rev. C 81, 044302 (2010)

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

The usual stability conditions [F_L , $G_{L,...} > - (2L+1)$] are found to be appreciably modified by tensor forces

Li-Gang Cao, G. Colò, H. Sagawa Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations Phys. Rev. C 81, 044302 (2010)

$$(G_0, G_1, H_0)$$

$$J = 0^{-}: \quad 1 + \frac{1}{3}G_{1} - \frac{10}{3}H_{0} > 0, \qquad (14)$$

$$J = 1^{-}: \quad 1 + \frac{1}{3}G_{1} + \frac{5}{3}H_{0} > 0, \qquad (15)$$

$$J = 2^{-}: \quad 1 + \frac{1}{3}G_{1} - \frac{1}{3}H_{0} > 0. \qquad (16)$$

10

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

The usual stability conditions [F_L , $G_{L,...} > - (2L+1)$] are found to be appreciably modified by tensor forces

Li-Gang Cao, G. Colò, H. Sagawa Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations Phys. Rev. C 81, 044302 (2010)

$$(G_0, G_1, H_0)$$

$$J = 0^{-}: \quad 1 + \frac{1}{3}G_{1} - \frac{10}{3}H_{0} > 0, \qquad (14)$$

$$J = 1^{-}: \quad 1 + \frac{1}{3}G_{1} + \frac{5}{3}H_{0} > 0, \qquad (15)$$

$$J = 2^{-}: \quad 1 + \frac{1}{3}G_{1} - \frac{1}{3}H_{0} > 0. \qquad (16)$$

10

$$H_0 = N_0 \frac{k_F^2}{24} (T + 3U) = N_0 \frac{k_F^2}{5} (\alpha_T + \beta_T),$$

$$H_0' = N_0 \frac{k_F^2}{24} (-T + U) = N_0 \frac{k_F^2}{5} (\alpha_T - \beta_T).$$

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

The usual stability conditions [F_L , $G_{L,...} > - (2L+1)$] are found to be appreciably modified by tensor forces

Li-Gang Cao, G. Colò, H. Sagawa Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations Phys. Rev. C 81, 044302 (2010)

$$J = 0^{-}: \quad 1 + \frac{1}{3}G_1 - \frac{10}{3}H_0 > 0, \tag{14}$$

$$J = 1^{-}: \quad 1 + \frac{1}{3}G_1 + \frac{5}{3}H_0 > 0, \tag{15}$$

$$J = 2^{-}: \quad 1 + \frac{1}{3}G_1 - \frac{1}{3}H_0 > 0.$$
 (16)

$$H_0 = N_0 \frac{k_F^2}{24} (T + 3U) = N_0 \frac{k_F^2}{5} (\alpha_T + \beta_T),$$

$$H_0' = N_0 \frac{k_F^2}{24} (-T + U) = N_0 \frac{k_F^2}{5} (\alpha_T - \beta_T).$$

G₀ appears in the coupling $l = 0, J = 1^+$ and $l = 2, J = 1^+$ modes: $\left(1 + \frac{G_0}{2}\right) \pm \frac{1}{2}\sqrt{G_0^2 + 8H_0^2} > 0.$

 (G_0, G_1, H_0)

> S.O. Bäckman, O. Sjöberg, A.D. Jackson The role of tensor forces in Fermi liquid theory Nucl. Phys. A 321, 10 (1979)

The usual stability conditions [F_L , $G_{L,...} > - (2L+1)$] are found to be appreciably modified by tensor forces

Li-Gang Cao, G. Colò, H. Sagawa Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations Phys. Rev. C 81, 044302 (2010)

$$I = 0^{-}: \quad 1 + \frac{1}{3}G_1 - \frac{10}{3}H_0 > 0, \tag{14}$$

$$J = 1^{-}: \quad 1 + \frac{1}{3}G_1 + \frac{5}{3}H_0 > 0, \tag{15}$$

$$J = 2^{-}: \quad 1 + \frac{1}{3}G_1 - \frac{1}{3}H_0 > 0.$$
 (16)

$$H_0 = N_0 \frac{k_F^2}{24} (T + 3U) = N_0 \frac{k_F^2}{5} (\alpha_T + \beta_T),$$

$$H_0' = N_0 \frac{k_F^2}{24} (-T + U) = N_0 \frac{k_F^2}{5} (\alpha_T - \beta_T).$$

G₀ appears in the coupling $l = 0, J = 1^+$ and $l = 2, J = 1^+$ modes: $\left(1 + \frac{G_0}{2}\right) \pm \frac{1}{2}\sqrt{G_0^2 + 8H_0^2} > 0.$

 (G_0, G_1, H_0)

Plus the analogous inequalities in the spin-isospin channel

Use V_{ph} in terms of Landau parameters (G_0,G_1,H_0) , (G'_0,G'_1,H'_0) , $(G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

Use V_{ph} in terms of Landau parameters (G₀,G₁,H₀), (G'₀,G'₁,H'₀), (G⁽ⁿ⁾₀,G⁽ⁿ⁾₁,H⁽ⁿ⁾₀)

 $V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$

Use V_{ph} in terms of Landau parameters $(G_0,G_1,H_0), (G'_0,G'_1,H'_0), (G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

 $V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$

Bethe-Salpeter equation for the RPA propagator

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_2$$

Use V_{ph} in terms of Landau parameters (G_0,G_1,H_0) , (G'_0,G'_1,H'_0) , $(G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

$$V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$$

Bethe-Salpeter equation for the RPA propagator

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_2$$

$$\chi_{RPA}^{(M)}(\omega,q) = 4 \langle G_{RPA}^{(M)} \rangle = 4 \int \frac{d^3k}{(2\pi^3)^3} G_{RPA}^{(M)}(k)$$

Use V_{ph} in terms of Landau parameters $(G_0,G_1,H_0), (G'_0,G'_1,H'_0), (G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

$$V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$$

Bethe-Salpeter equation for the RPA propagator

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_2$$

$$\chi_{RPA}^{(M)}(\omega,q) = 4 \langle G_{RPA}^{(M)} \rangle = 4 \int \frac{d^3k}{(2\pi^3)} G_{RPA}^{(M)}(k)$$

Dynamical susceptibility: $\omega \rightarrow 0$

Use V_{ph} in terms of Landau parameters $(G_0,G_1,H_0), (G'_0,G'_1,H'_0), (G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

$$V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$$

Bethe-Salpeter equation for the RPA propagator

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_2$$

$$\chi_{RPA}^{(M)}(\omega,q) = 4 \langle G_{RPA}^{(M)} \rangle = 4 \int \frac{d^3k}{(2\pi^3)} G_{RPA}^{(M)}(k)$$

Dynamical susceptibility: $\omega \rightarrow 0$

Proportional to the inverse energy weigthed sum rule
Static spin susceptibility:

Use V_{ph} in terms of Landau parameters $(G_0,G_1,H_0), (G'_0,G'_1,H'_0), (G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

$$V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$$

Bethe-Salpeter equation for the RPA propagator

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_2$$

$$\chi_{RPA}^{(M)}(\omega,q) = 4 \langle G_{RPA}^{(M)} \rangle = 4 \int \frac{d^3k}{(2\pi^3)} G_{RPA}^{(M)}(k)$$

Dynamical susceptibility: $\omega \rightarrow 0$

Proportional to the inverse energy weigthed sum rule

Static susceptibility: $\omega \rightarrow 0, q \rightarrow 0$

Static spin susceptibility:

Use V_{ph} in terms of Landau parameters $(G_0,G_1,H_0), (G'_0,G'_1,H'_0), (G^{(n)}_0,G^{(n)}_1,H^{(n)}_0)$

$$V_{ph}^{(S=1,I=0,M,M')}(1,2) = \delta(M,M') \left\{ 4g_0 + 4g_1(\hat{k}_1 \cdot \hat{k}_2) \right\} + 4h_0 \frac{k_{12}^2}{k_F^2} S_{12}(\hat{k}_{12}) \Big|_{k_i = k_F}$$

Bethe-Salpeter equation for the RPA propagator

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_2$$

$$\chi_{RPA}^{(M)}(\omega,q) = 4 \langle G_{RPA}^{(M)} \rangle = 4 \int \frac{d^3k}{(2\pi^3)} G_{RPA}^{(M)}(k)$$

Dynamical susceptibility: $\omega \rightarrow 0$

Proportional to the inverse energy weigthed sum rule

Static susceptibility: $\omega \rightarrow 0, q \rightarrow 0$

$$\frac{\chi_{HF}}{\chi_{RPA}}\Big|_{\text{no tensor}}^{\text{static}} = 1 + G_0$$

$$\begin{aligned} G_{RPA}^{(M)}(1) &= G_{HF}(1) + 4(g_0 - 2h_0)G_{HF}(1)\langle G_{RPA}^{(M)} \rangle \\ &+ 4(g_1 - 2h_0)\frac{4\pi}{3}\sum_{\mu}Y_{1,\mu}^*(1)G_{HF}(1)\langle Y_{1,\mu}G_{RPA}^{(M)} \rangle \\ &+ 16\pi h_0\sum_{M'}\left\{Y_{1,M}^*(1)Y_{1,M'}(1)G_{HF}(1)\langle G_{RPA}^{(M')} \rangle - Y_{1,M}^*(1)G_{HF}(1)\langle Y_{1,M'}G_{RPA}^{(M')} \rangle \\ &- Y_{1,M'}(1)G_{HF}(1)\langle Y_{1,M}^*G_{RPA}^{(M')} \rangle + G_{HF}(1)\langle Y_{1,M}^*Y_{1,M'}G_{RPA}^{(M')} \rangle \right\} \end{aligned}$$

$$\begin{aligned} G_{RPA}^{(M)}(1) &= G_{HF}(1) + 4(g_0 - 2h_0)G_{HF}(1)\langle G_{RPA}^{(M)} \rangle \\ &+ 4(g_1 - 2h_0)\frac{4\pi}{3}\sum_{\mu}Y_{1,\mu}^*(1)G_{HF}(1)\langle Y_{1,\mu}G_{RPA}^{(M)} \rangle \\ &+ 16\pi h_0\sum_{M'}\left\{Y_{1,M}^*(1)Y_{1,M'}(1)G_{HF}(1)\langle G_{RPA}^{(M')} \rangle - Y_{1,M}^*(1)G_{HF}(1)\langle Y_{1,M'}G_{RPA}^{(M')} \rangle \right. \\ &\left. - Y_{1,M'}(1)G_{HF}(1)\langle Y_{1,M}^*G_{RPA}^{(M')} \rangle + G_{HF}(1)\langle Y_{1,M}^*G_{RPA}^{(M')} \rangle \right\} \end{aligned}$$

Coupling between the quantities

$$\langle G_{RPA}^{(M)} \rangle \quad , \quad \langle Y_{1,\alpha} G_{RPA}^{(M')} \rangle \quad , \quad S(M) = 4\pi \sum_{M'} \langle Y_{1,M}^* Y_{1,M'} G_{RPA}^{(M')} \rangle$$

$$\begin{aligned} G_{RPA}^{(M)}(1) &= G_{HF}(1) + 4(g_0 - 2h_0)G_{HF}(1)\langle G_{RPA}^{(M)} \rangle \\ &+ 4(g_1 - 2h_0)\frac{4\pi}{3}\sum_{\mu}Y_{1,\mu}^*(1)G_{HF}(1)\langle Y_{1,\mu}G_{RPA}^{(M)} \rangle \\ &+ 16\pi h_0\sum_{M'}\left\{Y_{1,M}^*(1)Y_{1,M'}(1)G_{HF}(1)\langle G_{RPA}^{(M')} \rangle - Y_{1,M}^*(1)G_{HF}(1)\langle Y_{1,M'}G_{RPA}^{(M')} \rangle \\ &- Y_{1,M'}(1)G_{HF}(1)\langle Y_{1,M}^*G_{RPA}^{(M')} \rangle + G_{HF}(1)\langle Y_{1,M}^*Y_{1,M'}G_{RPA}^{(M')} \rangle \right\} \end{aligned}$$

Coupling between the quantities

$$\langle G_{RPA}^{(M)} \rangle$$
, $\langle Y_{1,\alpha} G_{RPA}^{(M')} \rangle$, $S(M) = 4\pi \sum_{M'} \langle Y_{1,M}^* Y_{1,M'} G_{RPA}^{(M')} \rangle$

Static susceptibility: In the integrals involving G_{HF} , take the limit $\omega \rightarrow 0, q \rightarrow 0$

$$\begin{aligned} G_{RPA}^{(M)}(1) &= G_{HF}(1) + 4(g_0 - 2h_0)G_{HF}(1)\langle G_{RPA}^{(M)} \rangle \\ &+ 4(g_1 - 2h_0)\frac{4\pi}{3}\sum_{\mu}Y_{1,\mu}^*(1)G_{HF}(1)\langle Y_{1,\mu}G_{RPA}^{(M)} \rangle \\ &+ 16\pi h_0\sum_{M'}\left\{Y_{1,M}^*(1)Y_{1,M'}(1)G_{HF}(1)\langle G_{RPA}^{(M')} \rangle - Y_{1,M}^*(1)G_{HF}(1)\langle Y_{1,M'}G_{RPA}^{(M')} \rangle \\ &- Y_{1,M'}(1)G_{HF}(1)\langle Y_{1,M}^*G_{RPA}^{(M')} \rangle + G_{HF}(1)\langle Y_{1,M}^*Y_{1,M'}G_{RPA}^{(M')} \rangle \right\} \end{aligned}$$

Coupling between the quantities

 $\langle G^{(M)}_{RPA} \rangle \quad , \quad \langle Y_{1,\alpha} G^{(M')}_{RPA} \rangle \quad , \quad S(M) = 4\pi \sum_{M'} \langle Y^*_{1,M} Y_{1,M'} G^{(M')}_{RPA} \rangle$

$$\begin{aligned} G_{RPA}^{(M)}(1) &= G_{HF}(1) + 4(g_0 - 2h_0)G_{HF}(1)\langle G_{RPA}^{(M)} \rangle \\ &+ 4(g_1 - 2h_0)\frac{4\pi}{3}\sum_{\mu}Y_{1,\mu}^*(1)G_{HF}(1)\langle Y_{1,\mu}G_{RPA}^{(M)} \rangle \\ &+ 16\pi h_0\sum_{M'}\left\{Y_{1,M}^*(1)Y_{1,M'}(1)G_{HF}(1)\langle G_{RPA}^{(M')} \rangle - Y_{1,M}^*(1)G_{HF}(1)\langle Y_{1,M'}G_{RPA}^{(M')} \rangle \right. \\ &\left. - Y_{1,M'}(1)G_{HF}(1)\langle Y_{1,M}^*G_{RPA}^{(M')} \rangle + G_{HF}(1)\langle Y_{1,M}^*Y_{1,M'}G_{RPA}^{(M')} \rangle \right\} \end{aligned}$$

Coupling between the quantities

$$\langle G_{RPA}^{(M)} \rangle$$
, $\langle Y_{1,\alpha} G_{RPA}^{(M')} \rangle$, $S(M) = 4\pi \sum_{M'} \langle Y_{1,M}^* Y_{1,M'} G_{RPA}^{(M')} \rangle$

Static susceptibility: $\langle G_{HF} \rangle \implies -\frac{N_0}{4}$ $N_0 = \frac{2k_F m^*}{\hbar^2 \pi^2}$ In the integrals involving
G_{HF}, take the limit
 $\omega \rightarrow 0, q \rightarrow 0$ $\langle Y_{1\alpha}G_{HF} \rangle \implies 0$ 0 $\langle Y_{1\alpha}Y_{1\beta}Y_{1\gamma}G_{HF} \rangle \implies 0$ $\langle Y_{1\alpha}Y_{1\beta}Y_{1\gamma}G_{HF} \rangle \implies 0$ $\langle Y_{1\alpha}Y_{1\beta}Y_{1\gamma}G_{HF} \rangle \implies 0$ $\langle Y_{1\alpha}Y_{1\beta}Y_{1\gamma}G_{HF} \rangle \implies 0$

$$\chi_{RPA}^{(M)} = \chi_{HF} - (G_0 - H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

$$S(M) = \chi_{HF} - (G_0 + H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

$$\chi_{RPA}^{(M)} = \chi_{HF} - (G_0 - H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

$$S(M) = \chi_{HF} - (G_0 + H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

Inverse static susceptibility in units of the HF one

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,I=0)} = 1 + G_0 - 2(H_0)^2$$

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,I=1)} = 1 + G_0' - 2(H_0')^2$$

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,n)} = 1 + G_0^{(n)} - 2(H_0^{(n)})^2$$

$$\chi_{RPA}^{(M)} = \chi_{HF} - (G_0 - H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

$$S(M) = \chi_{HF} - (G_0 + H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

Inverse static susceptibility in units of the HF one

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,I=0)} = 1 + G_0 - 2(H_0)^2$$

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,I=1)} = 1 + G_0' - 2(H_0')^2$$

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,n)} = 1 + G_0^{(n)} - 2(H_0^{(n)})^2$$

A new inequality: $1+G_0-2(H_0)^2 > 0$

$$\chi_{RPA}^{(M)} = \chi_{HF} - (G_0 - H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

$$S(M) = \chi_{HF} - (G_0 + H_0)\chi_{RPA}^{(M)} - H_0S(M)$$

Inverse static susceptibility in units of the HF one

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,I=0)} = 1 + G_0 - 2(H_0)^2$$

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,I=1)} = 1 + G_0' - 2(H_0')^2$$

$$\frac{\chi_{HF}}{\chi_{RPA}^{(M)}}\Big|_{\text{static}}^{(S=1,n)} = 1 + G_0^{(n)} - 2(H_0^{(n)})^2$$

A new inequality: $1+G_0-2(H_0)^2 > 0$

$$\Rightarrow \rho_{cri}(tensor) < \rho_{cri}(no tensor)$$

D. Davesne,^{1,2,*} M. Martini,^{1,2,3,†} K. Bennaceur,^{1,2,‡} and J. Meyer^{1,2,§}

D. Davesne,^{1,2,*} M. Martini,^{1,2,3,†} K. Bennaceur,^{1,2,‡} and J. Meyer^{1,2,§}

$$\frac{\chi_{HF}}{\chi_{RPA}^{(1,0,0)}} = \left[1 + \frac{3}{4}(t_e + 3t_o)\left(\frac{m^*k_F^3}{3\pi^2}\right)\right]^2 - \tilde{W}_1^{(1,0,0)}\chi_0 + \left[W_2^{(1,0)} - \frac{1}{2}(t_e + 3t_o)\right]$$

Channel
$$\begin{cases} \frac{1}{2}q^{2}\chi_{0} \left[1 + \frac{3}{2}(t_{e} + 3t_{o}) \left(\frac{m^{*}k_{F}^{3}}{3\pi^{2}} \right) \right] - 2k_{F}^{2}\chi_{2} + \frac{3}{2}(t_{e} + 3t_{o}) \left(\frac{m^{*}k_{F}^{5}}{3\pi^{2}} \right) (\chi_{0} - \chi_{2}) \right\} \\ = 1 \\ + \left[W_{2}^{(1,0)} - \frac{1}{2}(t_{e} + 3t_{o}) \right]^{2} k_{F}^{4} \left\{ \chi_{2}^{2} - \chi_{0}\chi_{4} + \left(\frac{m^{*}\omega}{k_{F}^{2}} \right)^{2}\chi_{0}^{2} - q^{2} \left(\frac{m^{*}}{6\pi^{2}k_{F}} \right) \chi_{0} \right\} \\ = 0 \\ M = 0 \\ = 0 \qquad (m^{*}\omega)^{2} \left[W_{2}^{(1,0)} + (t_{e} + 3t_{o}) \right] \left[1 + \left(\frac{m^{*}k_{F}^{3}}{3\pi^{2}} \right) X^{(1,0,0)} \right] \end{cases}$$

$$+2\chi_0\left(\frac{m}{q}\right) \frac{1}{1-\left(\frac{m^*k_F^3}{3\pi^2}\right)} \left[W_2^{(1,0)}+(t_e+3t_o)-X^{(1,0,0)}\right],$$

$$\begin{split} \widetilde{W}_{1}^{(1,0,0)} &= W_{1}^{(1,0)} + q^{2}(t_{e} - 3t_{o}) + 3\left(\frac{m^{*}\omega}{q}\right)^{2}(t_{e} + 3t_{o}) - \left(\frac{m^{*}k_{F}^{3}}{3\pi^{2}}\right) \left\{k_{F}^{2} + \frac{q^{2}}{4} - \left(\frac{m^{*}\omega}{q}\right)^{2}\right\} \frac{9}{8}(t_{e} + 3t_{o})^{2}, \\ X^{(1,0,0)} &= \frac{\frac{9}{8}[t_{e} + 3t_{o}]^{2}q^{2}(\beta_{2} - \beta_{3})}{1 + q^{2}[W_{2}^{(1,0)} + \frac{7}{4}(t_{e} + 3t_{o})](\beta_{2} - \beta_{3})}, \end{split}$$

D. Davesne,^{1,2,*} M. Martini,^{1,2,3,†} K. Bennaceur,^{1,2,‡} and J. Meyer^{1,2,§}

$$\frac{\chi_{HF}}{\chi_{RPA}^{(1,0,0)}} = \left[1 + \frac{3}{4}(t_e + 3t_o)\left(\frac{m^*k_F^3}{3\pi^2}\right)\right]^2 - \widetilde{W}_1^{(1,0,0)}\chi_0 + \left[W_2^{(1,0)} - \frac{1}{2}(t_e + 3t_o)\right]$$

Channel
$$\begin{cases} \frac{1}{2}q^{2}\chi_{0}\left[1+\frac{3}{2}(t_{e}+3t_{o})\left(\frac{m^{*}k_{F}^{3}}{3\pi^{2}}\right)\right]-2k_{F}^{2}\chi_{2}+\frac{3}{2}(t_{e}+3t_{o})\left(\frac{m^{*}k_{F}^{5}}{3\pi^{2}}\right)(\chi_{0}-\chi_{2}) \end{cases}$$
$$=1 + \left[W_{2}^{(1,0)}-\frac{1}{2}(t_{e}+3t_{o})\right]^{2}k_{F}^{4}\left\{\chi_{2}^{2}-\chi_{0}\chi_{4}+\left(\frac{m^{*}\omega}{k_{F}^{2}}\right)^{2}\chi_{0}^{2}-q^{2}\left(\frac{m^{*}}{6\pi^{2}k_{F}}\right)\chi_{0}\right\}$$

$$\mathsf{M=0} + 2\chi_0 \left(\frac{m^*\omega}{q}\right)^2 \frac{\left[W_2^{(1,0)} + (t_e + 3t_o)\right] \left[1 + \left(\frac{m^*k_F^3}{3\pi^2}\right) X^{(1,0,0)}\right]}{1 - \left(\frac{m^*k_F^3}{3\pi^2}\right) \left[W_2^{(1,0)} + (t_e + 3t_o) - X^{(1,0,0)}\right]}, \qquad \mathsf{Susceptibility:}$$

$$\begin{split} \widetilde{W}_{1}^{(1,0,0)} &= W_{1}^{(1,0)} + q^{2}(t_{e} - 3t_{o}) + 3\left(\frac{m^{*}\omega}{q}\right)^{2}(t_{e} + 3t_{o}) - \left(\frac{m^{*}k_{F}^{3}}{3\pi^{2}}\right) \left\{k_{F}^{2} + \frac{q^{2}}{4} - \left(\frac{m^{*}\omega}{q}\right)^{2}\right\} \frac{9}{8}(t_{e} + 3t_{o})^{2}, \\ X^{(1,0,0)} &= \frac{\frac{9}{8}[t_{e} + 3t_{o}]^{2}q^{2}(\beta_{2} - \beta_{3})}{1 + q^{2}[W_{2}^{(1,0)} + \frac{7}{4}(t_{e} + 3t_{o})](\beta_{2} - \beta_{3})}, \end{split}$$

,

Nuclear response for the Skyrme effective interaction with zero-range tensor terms

D. Davesne,^{1,2,*} M. Martini,^{1,2,3,†} K. Bennaceur,^{1,2,‡} and J. Meyer^{1,2,§}

$$\frac{\chi_{HF}}{\chi_{RPA}^{(1,0,0)}} = \left[1 + \frac{3}{4}(t_e + 3t_o)\left(\frac{m^*k_F^3}{3\pi^2}\right)\right]^2 - \widetilde{W}_1^{(1,0,0)}\chi_0 + \left[W_2^{(1,0)} - \frac{1}{2}(t_e + 3t_o)\right]$$
Channel $\left\{\frac{1}{2}q^2\chi_0\left[1 + \frac{3}{2}(t_e + 3t_o)\left(\frac{m^*k_F^3}{3\pi^2}\right)\right] - 2k_F^2\chi_2 + \frac{3}{2}(t_e + 3t_o)\left(\frac{m^*k_F^5}{3\pi^2}\right)(\chi_0 - \chi_2)\right\}$
S=1 $+ \left[W_2^{(1,0)} - \frac{1}{2}(t_e + 3t_o)\right]^2 k_F^4 \left\{\chi_2^2 - \chi_0\chi_4 + \frac{1}{4} - q^2\left(\frac{m^*}{6\pi^2k_F}\right)\chi_0\right\}$
M=0 $+ \frac{3332}{W_1^{(1,0,0)}} = W_1^{(1,0)} + q^2(t_e - 3t_o) + \frac{1}{4} - \left(\frac{m^*k_F^3}{3\pi^2}\right) \left\{k_F^2 + \frac{q^2}{4} - \frac{1}{4}\right\} \frac{9}{8}(t_e + 3t_o)^2,$

Г

D. Davesne,^{1,2,*} M. Martini,^{1,2,3,†} K. Bennaceur,^{1,2,‡} and J. Meyer^{1,2,§}

$$\frac{\chi_{HF}}{\chi_{RPA}^{(1,0,0)}} = \left[1 + \frac{3}{4}(t_e + 3t_o)\left(\frac{m^*k_F^3}{3\pi^2}\right)\right]^2 - \widetilde{W}_1^{(1,0,0)}\chi_0 + \left[W_2^{(1,0)} - \frac{1}{2}(t_e + 3t_o)\right]$$
Channel $\left\{\frac{1}{2}\binom{q}{2\chi_0}\right\} + \frac{3}{2}(t_e + 3t_o)\left(\frac{m^*k_F^3}{3\pi^2}\right)\right] - 2\binom{p}{F}\chi_2 + \frac{3}{2}(t_e + 3t_o)\left(\frac{m^*k_F^5}{3\pi^2}\right)\chi_0 - \chi_2$

$$S=1 + \left[W_2^{(1,0)} - \frac{1}{2}(t_e + 3t_o)\right]^2 k_F^4 \left(\chi_2^2 - \chi_0\chi_4\right) + \left[-q^2\left(\frac{m^*}{6\pi^2k_F}\right)\chi_0\right]$$
M=0 + Susceptibility:
 $\omega \rightarrow 0$

$$\widetilde{W}_1^{(1,0,0)} = W_1^{(1,0)} + q^2(t_e - 3t_o) + \left[-\left(\frac{m^*k_F^3}{3\pi^2}\right)\left\{k_F^2 + \frac{q^2}{4} - \left[-\right]\right]^{\frac{9}{8}(t_e + 3t_o)^2},$$
The $\chi_{0,2,4}(\omega=0,q)$
are known functions of $k=q/2k_F$

Dynamical susceptibility

$$\left(\frac{\chi_{HF}}{\chi_{RPA}}\right)^{(I=0,M=\pm 1)} = 1 + G_0 - 2(H_0)^2 + \left(G_0 + G_1 - \frac{9}{4}(H_0)^2\right) \left[-1 + f(k)\right]$$

$$+ W^{(I=0,M=\pm 1)}k^2f(k) + \frac{3}{4}H_0^2f_1(k)$$

$$+ \frac{1}{4}(-G_1 + H_0)\left\{f_2(k) + H_0f_3(k)\right\} + \frac{1}{48}\left[-G_1 + H_0\right]^2f_4(k)$$

$$\left(\frac{\chi_{HF}}{\chi_{RPA}}\right)^{(I=0,M=0)} = 1 + G_0 - 2(H_0)^2 + \left(G_0 + G_1 - 3(H_0)^2\right) \left[-1 + f(k)\right] \\ + W^{(I=0,M=0)}k^2 f(k) \\ + \frac{1}{4}(G_1 + 2H_0)\left\{-f_2(k) + 2H_0f_3(k)\right\} + \frac{1}{48}\left[G_1 + 2H_0\right]^2 f_4(k)$$

$$\begin{split} f(k) &= \frac{1}{2} \left\{ 1 + \frac{1}{2k} (1 - k^2) \ln \frac{k + 1}{k - 1} \right\} \\ f_1(k) &= \left[1 - \frac{2}{3} k^2 - (1 - k^2)^2 f(k) \right] f(k) \\ f_2(k) &= -2 + 2(1 - k^2) f(k) \\ f_3(k) &= -1 + (1 + 3k^2) f(k) \\ f_4(k) &= 3 - 2(1 + \frac{13}{3} k^2) f(k) - (1 - k^2)^2 f^2(k) \end{split}$$

$$k=q/2k_F$$

jueves 31 de mayo de 2012

Dynamical susceptibility

$$\left(\frac{\chi_{HF}}{\chi_{RPA}}\right)^{(I=0,M=\pm 1)} = 1 + G_0 - 2(H_0)^2 + \left(G_0 + G_1 - \frac{9}{4}(H_0)^2\right) \left[-1 + f(k)\right] + W^{(I=0,M=\pm 1)}k^2 f(k) + \frac{3}{4}H_0^2 f_1(k) + \frac{1}{4}(-G_1 + H_0)\left\{f_2(k) + H_0 f_3(k)\right\} + \frac{1}{48}\left[-G_1 + H_0\right]^2 f_4(k)$$

$$\left(\frac{\chi_{HF}}{\chi_{RPA}}\right)^{(I=0,M=0)} = 1 + G_0 - 2(H_0)^2 + \left(G_0 + G_1 - 3(H_0)^2\right) \left[-1 + f(k)\right] \\ + W^{(I=0,M=0)}k^2 f(k) \\ + \frac{1}{4}(G_1 + 2H_0)\left\{-f_2(k) + 2H_0f_3(k)\right\} + \frac{1}{48}\left[G_1 + 2H_0\right]^2 f_4(k)$$

$$\begin{aligned} f(k) &= \frac{1}{2} \left\{ 1 + \frac{1}{2k} (1 - k^2) \ln \frac{k + 1}{k - 1} \right\} \\ f_1(k) &= \left[1 - \frac{2}{3} k^2 - (1 - k^2)^2 f(k) \right] f(k) \\ f_2(k) &= -2 + 2(1 - k^2) f(k) \\ f_3(k) &= -1 + (1 + 3k^2) f(k) \\ f_4(k) &= 3 - 2(1 + \frac{13}{3} k^2) f(k) - (1 - k^2)^2 f^2(k) \\ k = q/2k_F \qquad f(O) = 1 \quad f_i(O) = 0 \end{aligned}$$

jueves 31 de mayo de 2012

Dynamical susceptibility

$$\left(\frac{\chi_{HF}}{\chi_{RPA}}\right)^{(I=0,M=\pm 1)} = 1 + G_0 - 2(H_0)^2 + \left(G_0 + G_1 - \frac{9}{4}(H_0)^2\right) \left[-1 + f(k)\right]$$

$$+ W^{(I=0,M=\pm 1)}k^2f(k) + \frac{3}{4}H_0^2f_1(k)$$

$$+ \frac{1}{4}(-G_1 + H_0)\left\{f_2(k) + H_0f_3(k)\right\} + \frac{1}{48}\left[-G_1 + H_0\right]^2f_4(k)$$

$$\left(\frac{\chi_{HF}}{\chi_{RPA}}\right)^{(I=0,M=0)} = 1 + G_0 - 2(H_0)^2 + \left(G_0 + G_1 - 3(H_0)^2\right) \left[-1 + f(k)\right] + W^{(I=0,M=0)} k^2 f(k) + \frac{1}{4} (G_1 + 2H_0) \left\{-f_2(k) + 2H_0 f_3(k)\right\} + \frac{1}{48} \left[G_1 + 2H_0\right]^2 f_4(k)$$

$$\begin{split} f(k) &= \frac{1}{2} \left\{ 1 + \frac{1}{2k} (1 - k^2) \ln \frac{k + 1}{k - 1} \right\} \\ f_1(k) &= \left[1 - \frac{2}{3} k^2 - (1 - k^2)^2 f(k) \right] f(k) \\ f_2(k) &= -2 + 2(1 - k^2) f(k) \\ f_3(k) &= -1 + (1 + 3k^2) f(k) \\ f_4(k) &= 3 - 2(1 + \frac{13}{3} k^2) f(k) - (1 - k^2)^2 f^2(k) \\ k = q/2k_F \qquad f(O) = 1 \quad f_i(O) = 0 \end{split}$$

Static susceptibility
$$\left(\frac{\chi_{HF}}{\chi_{RPA}^{(1,0,0)}}\right)_{\text{static}} = 1 + G_0 - 2[H_0]^2$$

 $1 + G_0 > 0$

Plus the equivalent with G'₀, H'₀ (spin-isospin) and Gⁿ₀, Hⁿ₀ (neutron S=1)

$$1 + G_0 - 2\left(H_0\right)^2 > 0$$

$$1 + G_0/2 \pm 1/2\sqrt{(G_0)^2 + 8(H_0)^2} > 0$$

$$\begin{array}{ll} 1+G_{0}>0 \quad \mbox{(black)} & \mbox{Plus the equivalent with} \\ G'_{0}, \mbox{H}'_{0} \mbox{(spin-isospin)} \\ \mbox{and } G^{n}_{0}, \mbox{H}^{n}_{0} \mbox{ (neutron S=1)} \end{array}$$

$$1+G_{0}/2\pm 1/2\sqrt{(G_{0})^{2}+8\left(H_{0}\right)^{2}}>0 \quad \mbox{(green)} \pm \end{array}$$

$$\begin{split} 1+G_0 &> 0 \quad \text{(black)} \\ 1+G_0 &- 2\left(H_0\right)^2 &> 0 \quad \text{(red)} \\ 1+G_0/2 &\pm 1/2\sqrt{\left(G_0\right)^2 + 8\left(H_0\right)^2} &> 0 \quad \text{(green)} \pm \end{split}$$

Li-Gang Cao, G. Colò,	H. Saga	wa 🕯	G_1	G_1'	H_0	H_0'	Instability	$ ho_c$	Instability	$ ho_c$
						(with tensor terms)		(without tensor terms)		
SLy5	1.121	-0.139	0.253	1.041	-0.113	-0.435	(21)	0.214	(22)	0.334
SGII	0.006	0.498	0.613	0.433	-0.109	-0.544	(19), (17), (21)	0.230, 0.410, 0.252	(22), (24)	0.442, 0.804
SIII	0.061	0.387	0.527	0.527	-0.103	-0.517	(19), (21)	0.278, 0.246	(24)	0.472
SKXTA	-0.780	0.462	0.207	0.574	0.395	-0.116	(14), (17), (21)	0.130, 0.152, 0.368	(22), (24)	0.194, 0.390
SKXTB	-0.690	0.480	0.231	0.551	-0.018	-0.524	(19), (17), (21)	0.234, 0.210, 0.228	(22), (24)	0.210, 0.402
T11	1.032	-0.113	0.327	1.018	-0.260	-0.204	(21)	0.296	(24)	0.342
T12	1.043	-0.114	0.321	1.017	-0.161	-0.106	(21)	0.328	(24)	0.342
T13	1.070	-0.120	0.297	1.024	-0.059	-0.010	(21)	0.340	(24)	0.340
T14	1.072	-0.119	0.297	1.022	0.038	0.087	(21)	0.330	(24)	0.340
T15	0.421	0.097	0.941	0.807	0.006	0.228	(18), (21)	0.586, 0.360	(24)	0.460
T16	0.404	0.094	0.957	0.810	0.101	0.325	(18), (21)	0.222, 0.304	(24)	0.458
T21	0.771	-0.041	0.582	0.946	-0.214	-0.287	(21)	0.284	(24)	0.374
T22	0.855	-0.066	0.502	0.971	-0.100	-0.194	(21)	0.316	(24)	0.362
T23	0.764	-0.034	0.596	0.938	-0.022	-0.090	(21)	0.366	(24)	0.378
T24	0.746	-0.026	0.616	0.930	0.071	0.009	(21)	0.382	(24)	0.384
T25	0.891	-0.072	0.480	0.974	0.195	0.096	(14), (21)	0.596, 0.348	(24)	0.362
T26	0.915	-0.074	0.463	0.975	0.295	0.192	(14), (21)	0.214, 0.316	(24)	0.362
T31	0.662	-0.018	0.693	0.923	-0.138	-0.379	(21)	0.252	(24)	0.386
T32	0.727	-0.038	0.626	0.943	-0.028	-0.286	(21)	0.284	(24)	0.376
T33	0.628	-0.004	0.728	0.909	0.049	-0.182	(21)	0.342	(24)	0.394
T34	0.465	0.052	0.889	0.853	0.115	-0.073	(21)	0.416	(24)	0.426
T35	0.552	0.025	0.815	0.878	0.225	0.019	(14), (21)	0.624, 0.412	(24)	0.414
T36	0.715	-0.023	0.653	0.926	0.354	0.106	(14), (21)	0.170, 0.366	(24)	0.386
T41	0.137	0.133	1.199	0.775	-0.142	-0.449	(19), (17), (21)	0.572, 0.600, 0.250	(22), (24)	0.712, 0.482
T42	0.107	0.145	1.232	0.762	-0.050	-0.348	(17), (21)	0.654, 0.302	(22), (24)	0.668, 0.494
T43	0.129	0.142	1.216	0.765	0.050	-0.251	(17), (21)	0.688, 0.362	(22), (24)	0.704, 0.392
T44	0.399	0.059	0.958	0.845	0.198	-0.169	(17), (21)	0.872, 0.378	(24)	0.434
T45	0.302	0.095	1.054	0.809	0.277	-0.064	(14), (17), (21)	0.410, 0.554, 0.446	(24)	0.458
T46	0.468	0.042	0.901	0.861	0.402	0.022	(14), (17), (21)	0.152, 0.452, 0.420	(24)	0.424
T51	0.145	0.118	1.196	0.789	-0.043	-0.549	(19), (17), (21)	0.316, 0.710, 0.210	(22), (24)	0.724, 0.472
T52	-0.250	0.253	1.591	0.653	-0.024	-0.425	(19), (17), (21)	0.578, 0.362, 0.286	(22), (24)	0.362, 0.608
T53	0.451	0.028	0.904	0.877	0.209	-0.370	(17), (21)	0.928, 0.264	(24)	0.412
T54	0.101	0.146	1.251	0.759	0.238	-0.249	(17), (21)	0.456, 0.364	(22), (24)	0.670, 0.498
T55	0.036	0.167	1.315	0.738	0.323	-0.148	(14), (17), (21)	0.330, 0.342, 0.450	(22), (24)	0.588, 0.516
T56	0.149	0.138	1.214	0.766	0.438	-0.056	(14), (17), (21)	0.150, 0.296, 0.484	(22), (24)	0.750, 0.494
T61	-0.319	0.267	1.654	0.641	-0.036	-0.619	(19), (17), (21)	0.216, 0.324, 0.206	(22), (24)	0.328, 0.624
T62	-0.096	0.194	1.429	0.714	0.107	-0.536	(19), (17), (21)	0.312, 0.430, 0.224	(22), (24)	0.460, 0.536
T63	-0.325	0.271	1.663	0.636	0.158	-0.421	(19), (17), (21)	0.574, 0.296, 0.294	(22), (24)	0.326, 0.630
T64	0.192	0.106	1.158	0.799	0.354	-0.355	(14), (17), (21)	0.226, 0.376, 0.288	(22), (24)	0.812, 0.464
T65	-0.071	0.200	1.417	0.706	0.402	-0.239	(14), (17), (21)	0.198, 0.260, 0.394	(22), (24)	0.482, 0.548
T66	0.032	0.164	1.325	0.741	0.515	-0.148	(14), (17), (21)	0.116, 0.228, 0.450	(24)	0.336

a. Colò, H	I. Sagawa 🇯	G_1	G'_1	H_0	H'_0	Instability	$ ho_c$	Instability	$ ho_c$
	-					(with to	ensor terms)	(without t	ensor terms)
SLy5						(21)	0.214	(22)	0.334
SGII						(19), (17), (21)	0.230, 0.410, 0.252	(22), (24)	0.442, 0.804
SIII ((G_0) 1					(19), (21)	0.278, 0.246	(24)	0.472
SKXTA	$1 + \frac{3}{2} + \frac{3}{2} + \frac{3}{2}$	$\frac{1}{\sqrt{G_0^2}}$	$+8H_0^2 >$	0.	(17)	(14), (17), (21)	0.130, 0.152, 0.368	(22), (24)	0.194, 0.390
SKXTB		2 V 0	0			(19), (17), (21)	0.234, 0.210, 0.228	(22), (24)	0.210, 0.402
T11	1	10			1	(21)	0.296	(24)	0.342
T12	$1 + \frac{1}{-G_1}$	$-\frac{10}{-}H_0$	> 0		(14)	(21)	0.328	(24)	0.342
T13	3	3 110	/ > 0,		(14)	(21)	0.340	(24)	0.340
T14	1	5				(21)	0.330	(24)	0.340
T15	$1 + \frac{1}{-G_1}$	$\downarrow -H_0$	> 0		(15)	(18), (21)	0.586, 0.360	(24)	0.460
T16	3	3 3 3	- 0,		(12)	(18), (21)	0.222, 0.304	(24)	0.458
T21	1	1				(21)	0.284	(24)	0.374
T22	$1 + -G_1$	$-\frac{1}{H_0}$	> 0.		(16)	(21)	0.316	(24)	0.362
T23	3	3			(10)	(21)	0.366	(24)	0.378
T24	1	7 . 0			(22)	(21)	0.382	(24)	0.384
T25	1+0	$J_0 > 0$,			(22)	(14), (21)	0.596, 0.348	(24)	0.362
T26	(G_1				(14), (21)	0.214, 0.316	(24)	0.362
T31	1+-	$\frac{1}{2} > 0$			(23)	(21)	0.252	(24)	0.386
T32		3				(21)	0.284	(24)	0.376
T33	$G_0 $ 1		-			(21)	0.342	(24)	0.394
T34	$1 + \frac{-6}{-1} \pm \frac{-1}{-1}$	$\frac{1}{\sqrt{G_0''}}$	$+ 8H_0^{\prime 2}$:	> 0	(21)	(21)	0.416	(24)	0.426
T35		2 V 0	0			(14), (21)	0.624, 0.412	(24)	0.414
T36	1 .	10				(14), (21)	0.170, 0.366	(24)	0.386
T41	$1 + -G'_1 - G'_1$	$ H_0'$	> 0,		(18)	(19), (17), (21)	0.572, 0.600, 0.250	(22), (24)	0.712, 0.482
T42	3 1	3 °	-			(17), (21)	0.654, 0.302	(22), (24)	0.668, 0.494
T43	1.	5.				(17), (21)	0.688, 0.362	(22), (24)	0.704, 0.392
T44	$1 + \frac{1}{2}G'_1 + \frac{1}{2}G'_1$	$+ - H'_0$	> 0,		(19)	(17), (21)	0.872, 0.378	(24)	0.434
T45	3 -	3 °				(14), (17), (21)	0.410, 0.554, 0.446	(24)	0.458
T46	1	1	-			(14), (17), (21)	0.152, 0.452, 0.420	(24)	0.424
T51	$1 + \frac{1}{2}G'_1 -$	$-\frac{-}{2}H'_0$	> 0,		(20)	(19), (17), (21)	0.316, 0.710, 0.210	(22), (24)	0.724, 0.472
T52	3 -	3 °				(19), (17), (21)	0.578, 0.362, 0.286	(22), (24)	0.362, 0.608
T53						(17), (21)	0.928, 0.264	(24)	0.412
T54	$1 + G'_0 >$	> 0.		C	24)	(17), (21)	0.456, 0.364	(22), (24)	0.670, 0.498
T55		-,		0		(14), (17), (21)	0.330, 0.342, 0.450	(22), (24)	0.588, 0.516
T56	G'_1				25)	(14), (17), (21)	0.150, 0.296, 0.484	(22), (24)	0.750, 0.494
T61	$1 + \frac{1}{3}$	> 0		(.	25)	(19), (17), (21)	0.216, 0.324, 0.206	(22), (24)	0.328, 0.624
T62	5					(19), (17), (21)	0.312, 0.430, 0.224	(22), (24)	0.460, 0.536
T63						(19), (17), (21)	0.574, 0.296, 0.294	(22), (24)	0.326, 0.630
T64						(14), (17), (21)	0.226, 0.376, 0.288	(22), (24)	0.812, 0.464
T65						(14), (17), (21)	0.198, 0.260, 0.394	(22), (24)	0.482, 0.548
T66						(14), (17), (21)	0.116, 0.228, 0.450	(24)	0.336

jueves 31 de mayo de 2012

Li-Gang Cao, G. Colò, H	I. Sagawa 🌡	G_1	G_1'	H_0	H_0'	Instability	$ ho_c$	Instability	$ ho_c$
						(with te	ensor terms)	(without tensor terms)	
SLy5 SGII						(21) (19), (17), (21)	0.214 0.230, 0.410, 0.252	(22) (22), (24)	0.334 0.442, 0.804
SIII SKXTA	$1 + G_0 -$	-2(H	$(0)^2$	= 0	(17)	(19), (21) (14), (17), (21) (10), (17), (21)	0.278, 0.246 0.130, 0.152, 0.368	(24) (22), (24)	0.472 0.194, 0.390
T11 T12	$1 + \frac{1}{G}$	$\frac{10}{H_0}$	> 0	(14)	(19), (17), (21) (21) (21)	0.234, 0.210, 0.228 0.296 0.328	(22), (24) (24) (24)	0.210, 0.402 0.342 0.342
T13 T14	$1 + \frac{1}{3}01 = 1$	$\frac{3}{5}$	> 0,	(14)	(21) (21)	0.340 0.330	(24) (24)	0.340 0.340
T15 T16	$1 + \frac{1}{3}G_1 + \frac{1}{3}G_1$	$\frac{3}{3}H_0 >$	• 0,	(15)	(18), (21) (18), (21)	0.586, 0.360 0.222, 0.304	(24) (24)	0.460 0.458
T22 T23	$1 + \frac{1}{3}G_1 -$	$\frac{1}{3}H_0 >$	0.	(16)	(21) (21) (21)	0.284 0.316 0.366	(24) (24) (24)	0.362
T24 T25	1+G	$k_0 > 0$,			(22)	(21) (14), (21)	0.382 0.596, 0.348	(24) (24)	0.384 0.362
T26 T31 T32	$1 + \frac{6}{3}$	$\frac{r_1}{3} > 0$			(23)	(14), (21) (21) (21)	0.214, 0.316 0.252 0.284	(24) (24)	0.362 0.386 0.376
T32 T33 T34	$+G'_0 -$	2(H	$(3)^{2}$	= 0	(21)	(21) (21) (21)	0.284 0.342 0.416	(24) (24) (24)	0.394 0.426
T36 T41	$1 + \frac{1}{2}G'_1 -$	$\frac{10}{2}H_0'$	> 0,	(18)	(14), (21) (14), (21) (19), (17), (21)	0.024, 0.412 0.170, 0.366 0.572, 0.600, 0.250	(24) (24) (22), (24)	0.414 0.386 0.712, 0.482
T42 T43	3	3 ° 5 ₁₁	0		10)	(17), (21) (17), (21) (17), (21)	0.654, 0.302 0.688, 0.362	(22), (24) (22), (24)	0.668, 0.494 0.704, 0.392
T45 T46	$1 + \frac{1}{3}O_1 + \frac{1}{3}O_1$	$\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$. 0,	(19)	(17), (21) (14), (17), (21) (14), (17), (21)	0.872, 0.378 0.410, 0.554, 0.446 0.152, 0.452, 0.420	(24) (24) (24)	0.434 0.458 0.424
T51 T52	$1 + \frac{1}{3}G'_1 -$	$\frac{1}{3}H_0' >$	0,	(20)	(19), (17), (21) (19), (17), (21)	0.316, 0.710, 0.210 0.578, 0.362, 0.286	(22), (24) (22), (24)	0.724, 0.472 0.362, 0.608
T53 T54 T55	$1 + G'_0 >$	• 0,		(24)	(17), (21) (17), (21) (14), (17), (21)	0.928, 0.264 0.456, 0.364 0.330, 0.342, 0.450	(24) (22), (24) (22), (24)	0.412 0.670, 0.498 0.588, 0.516
T56 T61	$1 + \frac{G_1'}{3} >$	> 0		(25)	(14), (17), (21) (19), (17), (21)	0.150, 0.296, 0.484 0.216, 0.324, 0.206	(22), (24) (22), (24)	0.750, 0.494 0.328, 0.624
T62 T63	5					(19), (17), (21) (19), (17), (21) (14), (17), (21)	0.312, 0.430, 0.224 0.574, 0.296, 0.294 0.226, 0.376, 0.288	(22), (24) (22), (24) (22), (24)	0.460, 0.536 0.326, 0.630 0.812, 0.464
T65 T66						(14), (17), (21) (14), (17), (21) (14), (17), (21)	0.198, 0.260, 0.394 0.116, 0.228, 0.450	(22), (24) (22), (24) (24)	0.482, 0.548 0.336

Li-Gang Cao, G. Colò, H.	Sagawa 🌡	G_1	G_1'	H_0	H_0'	Instability	$ ho_c$	Instability	$ ho_c$
						(with te	ensor terms)	(without t	ensor terms)
SLy5 SGII						(21)	0.214 0.230, 0.410, 0.252	(22) (22), (24)	0.334
SIII SKXTA 1	$+C_{\circ}$	9(1	J_{α}	_ 0	(17)	(19), (21) (14), (17), (21)	0.278, 0.246	(24) (22) (24)	0.472
SKXTB	$T + G_0 -$	2(1	10)	- 0	(17)	(19), (17), (21)	0.234, 0.210, 0.228	(22), (24) (22), (24)	0.210, 0.402
T12	$1 + \frac{1}{2}G_1 -$	$\frac{10}{2}H_0$	> 0,	(14)	(21)	0.328	(24)	0.342
T13 T14	3 1	3 5				(21)	0.340	(24)	0.340
T15 T16	$1 + \frac{1}{3}G_1 + \frac{1}{3}G_1$	$\frac{1}{3}H_0$	> 0,	(15)	(18), (21) (18), (21)	0.586, 0.360 0.222, 0.304	(24) (24)	0.460 0.458
T21 T22	$1 + \frac{1}{-G_1} - \frac{1}{-G_1}$	$\frac{1}{-H_0}$	> 0.	C	16)	(21) (21)	0.284 0.316	(24) (24)	0.374 0.362
T23 T24	3	3	0.			(21)	0.366 0.382	(24)	0.378 0.384
T25	1+G	$_{0} > 0,$			(22)	(14), (21) (14), (21)	0.596, 0.348	(24)	0.362
T31	$1 + \frac{0}{3}$	$\frac{1}{3} > 0$			(23)	(21)	0.252	(24)	0.386
T33 T24		<u>ο</u> (τ	7/\2	0	(21)	(21) (21)	0.342	(24)	0.376
T35 T	$+G_0 -$	Z(E	(1_0)	= 0	(21)	(14), (21)	0.624, 0.412	(24)	0.420
T36 T41 T42	$1 + \frac{1}{3}G'_1 -$	$\frac{10}{3}H_0'$	> 0,	(1	18)	(14), (21) (19), (17), (21) (17), (21)	0.170, 0.366 0.572, 0.600, 0.250 0.654, 0.302	(24) (22), (24) (22), (24)	0.386 0.712, 0.482 0.668, 0.494
T43 T44	$1 + \frac{1}{-G'_1} +$	$\frac{5}{-H_0'}$	> 0.	C	19)	(17), (21) (17), (21) (17), (21)	0.688, 0.362	(22), (24) (22), (24) (24)	0.704, 0.392 0.434
T45 T46	3 1	3 1	-,			(14), (17), (21) (14), (17), (21)	0.410, 0.554, 0.446	(24)	0.458
T51 T52	$1 + \frac{1}{3}G'_1 -$	$\frac{1}{3}H_0'$	> 0,	(2	20)	(19), (17), (21) (19), (17), (21) (19), (17), (21)	0.316, 0.710, 0.210 0.578, 0.362, 0.286	(22), (24) (22), (24)	0.724, 0.472
T53 T54	$1 \pm G' >$	0		(24)		(17), (21) (17), (21)	0.928, 0.264 0.456, 0.364	(24) (22), (24)	0.412 0.670, 0.498
T55 T56	$G_1 = G_0$	0,		(24)	,	(14), (17), (21) (14), (17), (21)	0.330, 0.342, 0.450 0.150, 0.296, 0.484	(22), (24) (22), (24)	0.588, 0.516
T61 T62	$1 + \frac{-1}{3} >$	> 0		(25))	(19), (17), (21) (19), (17), (21)	0.216, 0.324, 0.206	(22), (24) (22), (24)	0.328, 0.624
T63						(19), (17), (21) (19), (17), (21) (14), (17), (21)	0.574, 0.296, 0.294	(22), (24) (22), (24) (22), (24)	0.326, 0.630
T65 T66	Pcri	≈ 2	-2.	o ρ	0	(14), (17), (21) (14), (17), (21) (14), (17), (21)	0.198, 0.260, 0.394 0.116, 0.228, 0.450	(22), (24) (22), (24) (24)	0.482, 0.548

Higher L \Rightarrow finite-range interactions

Higher L \Rightarrow finite-range interactions

Higher L \Rightarrow finite-range interactions

$$V_{ph}^{(\alpha,M,M')} = 4\delta(M,M') \sum_{L=0}^{2} g_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) + 4 \sum_{L=0}^{2} h_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) S_{12}(\hat{k}_{12})$$

Higher L \Rightarrow finite-range interactions

$$V_{ph}^{(\alpha,M,M')} = 4\delta(M,M') \sum_{L=0}^{2} g_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) + 4 \sum_{L=0}^{2} h_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) S_{12}(\hat{k}_{12})$$

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_{2}$$

Higher $L \Rightarrow$ finite-range interactions

$$\begin{split} W_{ph}^{(\alpha,M,M')} &= 4\delta(M,M') \sum_{L=0}^{2} g_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) + 4 \sum_{L=0}^{2} h_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) S_{12}(\hat{k}_{12}) \\ G_{RPA}^{(M)}(1) &= G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_{2} \\ \frac{\chi_{HF}(0)}{\chi_{RPA}(0)} &= 1 + G_{0} \\ &+ \frac{-2H_{0}^{2} + \frac{8}{3}H_{0}H_{1} - \frac{4}{5}H_{0}H_{2} - \frac{8}{9}H_{1}^{2} + \frac{8}{15}H_{1}H_{2} - \frac{2}{25}H_{2}^{2}}{1 + \frac{1}{5}G_{2} - \frac{7}{15}H_{1} + \frac{2}{5}H_{2}} \end{split}$$

Higher $L \Rightarrow$ finite-range interactions

$$V_{ph}^{(\alpha,M,M')} = 4\delta(M,M') \sum_{L=0}^{2} g_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) + 4 \sum_{L=0}^{2} h_{L}^{(\alpha)} P_{L}(\hat{k}_{1} \cdot \hat{k}_{2}) S_{12}(\hat{k}_{12})$$

$$G_{RPA}^{(M)}(1) = G_{HF}(1) + G_{HF}(1) \langle \sum_{M'} V_{ph}^{(M,M')}(1,2) G_{RPA}^{(M')}(2) \rangle_{2}$$

$$\frac{\chi_{HF}(0)}{\chi_{RPA}(0)} = 1 + G_{0}$$

$$+ \frac{-2H_{0}^{2} + \frac{8}{3}H_{0}H_{1} - \frac{4}{5}H_{0}H_{2} - \frac{8}{9}H_{1}^{2} + \frac{8}{15}H_{1}H_{2} - \frac{2}{25}H_{2}^{2}}{1 + \frac{1}{5}G_{2} - \frac{7}{15}H_{1} + \frac{2}{5}H_{2}}$$

Finite-range interactions

Finite-range interactions

H. Nakada

Hartree-Fock approach to nuclear matter and finite nuclei with M3Ytype nucleon-nucleon interaction Phys. Rev. C 68, 014316 (2003)
Finite-range interactions

H. Nakada

Hartree-Fock approach to nuclear matter and finite nuclei with M3Ytype nucleon-nucleon interaction Phys. Rev. C 68, 014316 (2003)

Preliminary results

Preliminary results

- Instabilities in the (1,0) or (1,1) channels
- Zero-range tensor terms lower the critical density to $\rho_{cri}\approx 2$ 2.5 ρ_0

- Instabilities in the (1,0) or (1,1) channels
- Zero-range tensor terms lower the critical density to $\rho_{cri}\approx 2$ 2.5 ρ_0

relation in the 5D space t_1x_1 , t_2x_2 , t_3 , x_3 , t_e , t_0

- Instabilities in the (1,0) or (1,1) channels
- Zero-range tensor terms lower the critical density to $\rho_{cri}\approx 2$ 2.5 ρ_0

relation line sin the 5D space t_1x_1 , t_2x_2 , t_3 , x_3 , t_e , t_o

Finite range interactions

Landau parameters (L=0, 1, 2) from <u>Nakada's interaction</u> (preliminary results)

- No instabilities in the (1,0) or (1,1) channels with or without tensor terms
- Neutron susceptibility in qualitative agreement with CBF or DMC calculations

- Instabilities in the (1,0) or (1,1) channels
- Zero-range tensor terms lower the critical density to $\rho_{cri}\approx 2$ 2.5 ρ_0

Instabilities in the 5D space t_1x_1 , t_2x_2 , t_3 , x_3 , t_e , t_0

Finite range interactions

Landau parameters (L=0, 1, 2) from <u>Nakada's interaction</u> (preliminary results)

- No instabilities in the (1,0) or (1,1) channels with or without tensor terms
- Neutron susceptibility in qualitative agreement with CBF or DMC calculations
 - Other interactions (GT2)
 - ► Well-defined J
 - Inclusion of L > 2

- Instabilities in the (1,0) or (1,1) channels
- Zero-range tensor terms lower the critical density to $\rho_{cri}\approx 2$ 2.5 ρ_0
 - relation line sin the 5D space t_1x_1 , t_2x_2 , t_3 , x_3 , t_e , t_0
 - Other terms? More tensor terms?

Finite range interactions

Landau parameters (L=0, 1, 2) from

Nakada's interaction (preliminary results)

- No instabilities in the (1,0) or (1,1) channels with or without tensor terms
- Neutron susceptibility in qualitative agreement with CBF or DMC calculations
 - Other interactions (GT2)
 - Well-defined J
 - Inclusion of L > 2