## A Microscopic Approach to Shell Model



## Drip Lines and Magic Numbers: The Evolving Nuclear Landscape

Physics of exotic nuclei - era of coming decades
What are the limits of nuclear existence?
How do magic numbers form and evolve?


## Drip Lines and Magic Numbers: The Evolving Nuclear Landscape

Physics of exotic nuclei - era of coming decades
What are the limits of nuclear existence?
How do magic numbers form and evolve?
$\mathrm{N}=54$ magic number in calcium?


## Drip Lines and Magic Numbers: The Evolving Nuclear Landscape

Physics of exotic nuclei - era of coming decades
What are the limits of nuclear existence?
How do magic numbers form and evolve?
$\mathrm{N}=28$ magic number in calcium

## Drip Lines and Magic Numbers: The Evolving Nuclear Landscape

Physics of exotic nuclei - era of coming decades
What are the limits of nuclear existence?
How do magic numbers form and evolve?
Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010)


## Approaches to Nuclear Structure

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces. If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei. Only after this has been accomplished can one say that one completely understands nuclear structure...

The other approach is that of the experimentalist and consists in obtaining by direct experimentation as many data as possible for individual nuclei. One hopes in this way to find regularities and correlations which give a clue to the structure of the nucleus... The shell model, although proposed by theoreticians, really corresponds to the experimentalist's approach."
-M. Goeppert-Mayer, Nobel Lecture

Purpose of these lectures is to show how shell model can be based on the first approach!

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


Two significant issues:
Interaction
Not well understood
Not obtainable from QCD
Too "hard" to be useful
Multiple scales

Many-body Problem
Not 'exactly' solvable above
A~16 (ab-initio)

Here we focus on shell model

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


Two significant issues:
Interaction
Not well understood
Not obtainable from QCD
Too "hard" to be useful
Multiple scales

Many-body Problem
Not 'exactly' solvable above
A~16 (ab-initio)

Here we focus on shell model

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


Two significant issues:
Interaction
Not well understood
Not obtainable from QCD
Too "hard" to be useful
Multiple scales

Many-body Problem
Not 'exactly' solvable above
A~16 (ab-initio)

Here we focus on shell model

How will we approach this problem:
QCD $\rightarrow$ NN (3N) forces $\rightarrow$ Renormalize $\rightarrow$ Solve many-body problem $\rightarrow$ Predictions

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem:
QCD $\rightarrow$ NN (3N) forces $\rightarrow$ Renormalize $\rightarrow$ Solve many-body problem $\rightarrow$ Predictions

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem: QCD $\rightarrow$ NN (3N) forces $\rightarrow$ Renormalize $\rightarrow$ Solve many-body problem $\rightarrow$ Predictions

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem:
QCD $\rightarrow$ NN (3N) forces $\rightarrow$ Renormalize $\rightarrow$ Solve many-body problem $\rightarrow$ Predictions

## The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions


## Three-Nucleon Forces

Basic ideas - why do we need?
3N from chiral EFT
Implementing in shell model
Relation to monopoles
Predictions/Results
Density-dependent 3N

How will we approach this problem:
QCD $\rightarrow$ NN (3N) forces $\rightarrow$ Renormalize $\rightarrow$ Solve many-body problem $\rightarrow$ Predictions

## Interaction Between Two Nucleons

"In the past quarter century physicists have devoted a huge amount of experimentation and mental labor to this problem - probably more manhours than have been given to any other scientific question in the history of mankind."
-H. Bethe

So let's burn a few more man-hours of mental labor on this...

## Part I: The Nucleon-Nucleon Interaction

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem:
QCD $\rightarrow$ NN (3N) forces $\rightarrow$ Renormalize $\rightarrow$ Solve many-body problem $\rightarrow$ Predictions

## Meson-Exchange Potentials: Yukawa

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Pion discovered 1947


$$
V(\mathbf{r})=\bigodot_{m_{\pi}^{2}}^{f_{\pi}^{2}}\left\{\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}+C_{T}\left(1+\frac{3}{m_{\alpha} r}+\frac{3}{\left(m_{\alpha} r\right)^{2}}\right) S_{12}(\hat{r})\right\} \frac{e^{-m_{\pi} r}}{m_{\pi} r} .
$$

- Attractive, long range, spin dependent, non-central (tensor) part
- Successful in explaining scattering data, deuteron
- Advanced to multi-pion theories in 1950's - failed


## One-Boson Exchange Potentials

- Heavy mesons discovered in 1950s - theories developed based on these
- Intermediate range - attractive central, spin-orbit

$$
\left\{\begin{array}{l}
-\left.\overline{\pi, \eta, \rho, \omega, \delta, \sigma}\right|^{V^{\sigma}=g_{\sigma N N}^{2}} \frac{1}{\mathbf{k}^{2}+m_{\sigma}^{2}}\left(-1+\frac{\mathbf{q}^{2}}{2 M_{N}^{2}}-\frac{\mathbf{k}^{2}}{8 M_{N}^{2}}-\frac{\mathbf{L S}}{2 M_{N}^{2}}\right) \\
\vec{q}_{i} \equiv \vec{p}_{i}^{\prime}-\vec{p}_{i} \quad \vec{k}_{i} \equiv \frac{1}{2}\left(\vec{p}_{i}^{\prime}+\vec{p}_{i}\right)
\end{array}\right.
$$

| Baryons | Mass $(\mathrm{MeV})$ | Mesons | Mass $(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| p, n | 938.926 | $\pi$ | 138.03 |
| $\Lambda$ | 1116.0 | $\eta$ | 548.8 |
| $\Sigma$ | 1197.3 | $\sigma$ | $\approx 550.0$ |
| $\Delta$ | 1232.0 | $\rho$ | 770 |
| $\mathbf{\Sigma}^{*}$ | 1385.0 | $\omega$ | 782.6 |
|  |  | $\delta$ | 983.0 |
|  |  | K | 495.8 |
|  |  | $\mathrm{~K}^{*}$ | 895.0 |

## One-Boson Exchange Potentials

- Heavy mesons discovered in 1950s - theories developed based on these
- Short range; repulsive central force, attractive spin-orbit


$$
V^{\omega}=g_{\omega N N}^{2} \frac{1}{\mathbf{k}^{2}+m_{\omega}^{2}}\left(1-3 \frac{\mathbf{L S}}{2 M_{N}^{2}}\right)
$$

| Baryons | Mass $(\mathrm{MeV})$ | Mesons | Mass $(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| p, n | 938.926 | $\pi$ | 138.03 |
| $\Lambda$ | 1116.0 | $\eta$ | 548.8 |
| $\Sigma$ | 1197.3 | $\sigma$ | $\approx 550.0$ |
| $\Delta$ | 1232.0 | $\rho$ | 770 |
| $\mathbf{\Sigma}^{*}$ | 1385.0 | $\omega$ | 782.6 |
|  |  | $\delta$ | 983.0 |
|  |  | K | 495.8 |
|  |  | $\mathrm{~K}^{*}$ | 895.0 |

## One-Boson Exchange Potentials

- Heavy mesons discovered in 1950s - theories developed based on these
- Short range; tensor force opposite sign of pion exchange


$$
V^{\rho}=g_{\rho N N}^{2} \frac{\mathbf{k}^{2}}{\mathbf{k}^{2}+m_{\rho}^{2}}\left(-2 \sigma_{1} \sigma_{2}+S_{12}(\hat{k})\right) \tau_{1} \tau_{2}
$$

| Baryons | Mass $(\mathrm{MeV})$ | Mesons | Mass $(\mathrm{MeV})$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{p}, \mathrm{n}$ | 938.926 | $\pi$ | 138.03 |
| $\Lambda$ | 1116.0 | $\eta$ | 548.8 |
| $\mathrm{\Sigma}$ | 1197.3 | $\sigma$ | $\approx 550.0$ |
| $\Delta$ | 1232.0 | $\omega$ | 770 |
| $\mathrm{\Sigma}^{*}$ | 1385.0 | $\delta$ | 782.6 |
|  |  | K | 983.0 |
|  |  | $\mathrm{~K}^{*}$ | 495.8 |
|  |  | 895.0 |  |

## Parameterizing the NN Interaction

Starting from any NN-interaction
We first solve scattering Lipmann-Schwinger scattering T-matrix equation:
$T_{I I^{\prime}}^{\alpha}\left(k k^{\prime} K\right)=V_{I I^{\prime}}^{\alpha}\left(k k^{\prime}\right)+\frac{2}{\pi} \sum_{l^{\prime \prime}} \int_{0}^{\infty} d q q^{2} V_{I I^{\prime \prime}}^{\alpha}(k q) \frac{1}{k^{2}-q^{2}+i \epsilon} T_{l^{\prime \prime} \prime^{\prime}}^{\alpha}\left(q k^{\prime} K\right)$.
Where

$$
T_{l l^{\prime}}^{\alpha}\left(k, k^{\prime} ; K\right)=\left\langle k K, l L ; T S T T \mid k^{\prime} K, l^{\prime} L ; J S T\right\rangle
$$

Parameterized in partial waves $\alpha$ - in relative/center of mass frame (K,L)

$$
\tan \delta(p)=-p T(p, p)
$$

Fully-on-shell $T$-matrix directly related to experimental data

## Parameterizing the NN Interaction

Starting from any NN-interaction
We first solve scattering Lipmann-Schwinger scattering T-matrix equation:
$T_{I I^{\prime}}^{\alpha}\left(k k^{\prime} K\right)=V_{I I^{\prime}}^{\alpha}\left(k k^{\prime}\right)+\frac{2}{\pi} \sum_{l^{\prime \prime}} \int_{0}^{\infty} d q q^{2} V_{I I^{\prime \prime}}^{\alpha}(k q) \frac{1}{k^{2}-q^{2}+i \epsilon} T_{l^{\prime \prime} I^{\prime}}^{\alpha}\left(q k^{\prime} K\right)$.
Where

$$
T_{l l^{\prime}}^{\alpha}\left(k, k^{\prime} ; K\right)=\left\langle k K, l L ; \widetilde{S T} T T \mid k^{\prime} K, l^{\prime} L ; J S T\right\rangle
$$

Parameterized in partial waves $\alpha$ - in relative/center of mass frame (K,L)

$$
\tan \delta(p)=-p T(p, p)
$$

Fully-on-shell $T$-matrix directly related to experimental data

Note intermediate momentum allowed to infinity (but cutoff by regulators)
Coupling of low-to-high momentum in $V$

## Constraining NN Scattering Phase Shifts

Phase shift is a function of relative momentum $k$; Figure shows $s$-wave


Scattering length:

$$
k \cot \delta k) \approx-\frac{1}{a} ; \quad \sigma_{\mathrm{tot}} \approx 4 \pi a^{2} \quad \text { for } \quad k \rightarrow 0
$$




## Form of NN Interactions

Textbook nuclear potentials in $\mathbf{r}$-space


## Form of NN Interactions

Textbook nuclear potentials in $\mathbf{r}$-space
Hard core, intermediate-range $2 \pi-$, long-range $1 \pi$ exchange (OPE)


## Form of NN Interactions

Textbook nuclear potentials in $\mathbf{r}$-space

- Hard core, intermediate-range $2 \pi$, long-range $1 \pi$ exchange

Transform to momentum space via Fourier-Bessel Transformation

- Strong high-momentum repulsion, low-momentum attraction

$$
V_{l}\left(k, k^{\prime}\right)=\frac{2}{\pi} \int_{0}^{\infty} r^{2} d r j_{l}(k r) V(r) j_{l}\left(k^{\prime} r\right)
$$



## Form of NN Interactions

Textbook nuclear potentials in $\mathbf{r}$-space

- Hard core, intermediate-range $2 \pi$, long-range $1 \pi$ exchange

Transform to momentum space via Fourier-Bessel Transformation

- Strong high-momentum repulsion, low-momentum attraction

$$
V_{l}\left(k, k^{\prime}\right)=\frac{2}{\pi} \int_{0}^{\infty} r^{2} d r j_{l}(k r) V(r) j_{l}\left(k^{\prime} r\right)
$$



## Form of NN Interactions

Textbook nuclear potentials in $\mathbf{r}$-space

- Hard core, intermediate-range $2 \pi$, long-range $1 \pi$ exchange

Transform to momentum space via Fourier-Bessel Transformation

- Strong high-momentum repulsion, low-momentum attraction

$$
V_{l}\left(k, k^{\prime}\right)=\frac{2}{\pi} \int_{0}^{\infty} r^{2} d r j_{l}(k r) V(r) j_{l}\left(k^{\prime} r\right)
$$



## NN Interaction from QCD

Meson exchange described in QCD
Low-energy region non-perturbative - treat in the context of Lattice QCD
Directly from QCD Lagrangian, solve numerically on discretized space-time


## NN Interaction from QCD

Meson exchange described in QCD
Low-energy region non-perturbative - treat in the context of Lattice QCD
Directly from QCD Lagrangian, solve numerically on discretized space-time


Lattice results give long-range OPE tail, hard core

## NN Interaction from QCD

Meson exchange described in QCD
Low-energy region non-perturbative - treat in the context of Lattice QCD
Directly from QCD Lagrangian, solve numerically on discretized space-time



Lattice results give long-range OPE tail, hard core
Not yet to physical pion mass - work in progress - so we're done, right?

## Unique NN Potential?

What does this tell us in our quest for an NN-potential?
Expected form seems to be confirmed by QCD



## OBE Potentials: Summary/Problems

First generation (1960-1990): Paris, Reid, Bonn-A,B,C $\chi^{2} /$ dof $\approx 2$
High precision potentials (1990s): $\sim 40$ parameters fit to NN data $\chi^{2} /$ dof $\approx 1$
ArgonneV18, Reid93, Nijmegen, CD-Bonn
NN problem "solved" !!

## OBE Potentials: Summary/Problems

First generation (1960-1990): Paris, Reid, Bonn-A,B,C $\chi^{2} /$ dof $\approx 2$ High precision potentials (1990s): $\sim 40$ parameters fit to NN data $\chi^{2} /$ dof $\approx 1$

ArgonneV18, Reid93, Nijmegen, CD-Bonn
NN problem "solved" !!


## OBE Potentials: Summary/Problems

First generation (1960-1990): Paris, Reid, Bonn-A,B,C $\chi^{2} /$ dof $\approx 2$ High precision potentials (1990s): $\sim 40$ parameters fit to NN data $\chi^{2} /$ dof $\approx 1$

ArgonneV18, Reid93, Nijmegen, CD-Bonn
NN problem "solved" !!


Many successes, but...

1) Difficult (impossible) to assign

2) 3 N forces not consistent with NN forces
3) No clear connection to QCD
4) Clear model dependence...

## Meson-Exchange Potentials and Phase Shifts

Examples of phase shift reproduction by NN potentials





## Meson-Exchange Potentials and Phase Shifts

Examples of phase shift reproduction by NN potentials




That's strange....
why do they only agree to 350 MeV ?

Remember, all have: $\chi^{2} /$ dof $\approx 1$

## Meson-Exchange Potentials and Phase Shifts

More model dependence: examples of phase shift reproduction by NN potentials


Agree well up to pion-production threshold $\sim 350 \mathrm{MeV}$
Data sparse - most models don't fit above this point - unconstrained

## From QCD to Nuclear Interactions

How do we determine interactions between nucleons?

$$
H(\Lambda)=T+V_{\mathrm{NN}}(\Lambda)+V_{3 \mathrm{~N}}(\Lambda)+V_{4 \mathrm{~N}}(\Lambda)+\ldots
$$

Degrees of Freedom


Energy (MeV)


8
proton separation
energy in lead
energy in lead

Old view:
Multiple scales complicate life
No meaningful way to connect them

Modern view:
Ratio of scales - small parameters Effective field theory at each scale connected by RG

Choose convenient resolution scale

## Ideas Behind Effective Theories

Resolution scales


High energy probe resolves fine details
Need high-energy degrees of freedom

## Ideas Behind Effective Theories

How do we determine interactions between nucleons?


Low-energy probe doesn't resolve such details
Don't need high-energy degrees of freedom - replace with something simpler Use dof that are more convenient, but preserve low-energy observables

## Ideas Behind Effective Theories

Underlying theory with cutoff $\boldsymbol{\Lambda}_{\infty}$

$$
V=V_{L}+V_{S}
$$

Known long-distance physics (like $1 \pi$-exchange) with some scale $M_{L}$

Short-distance physics
( $\rho, \omega$-exchange) with Some scale $\mathrm{M}_{\mathrm{S}}$


## Ideas Behind Effective Theories

Underlying theory with cutoff $\boldsymbol{\Lambda}_{\infty}$

$$
V=V_{L}+V_{S}
$$

Known long-distance physics (like $1 \pi$-exchange) with some scale $M_{L}$

Short-distance physics
( $\rho, \omega$-exchange) with
Some scale $\mathrm{M}_{\mathrm{S}}$


Say we want a low-energy effective theory describing physics up to some $M_{L}<\Lambda<M_{S}$

## Ideas Behind Effective Theories

Underlying theory with cutoff $\Lambda_{\infty} \quad V=V_{L}+V_{S}$

Known long-distance physics (like $1 \pi$-exchange) with some scale $\mathrm{M}_{\mathrm{L}}$

Short-distance physics
( $\rho, \omega$-exchange) with
Some scale $\mathrm{M}_{\mathrm{S}}$


Say we want a low-energy effective theory describing physics up to some $\mathrm{M}_{\mathrm{L}}<\boldsymbol{\Lambda}<\mathrm{M}_{\mathrm{S}}$

Integrate out states above $\boldsymbol{\Lambda}$ using Renormalization Group (RG)

## Ideas Behind Effective Theories

Underlying theory
with cutoff $\Lambda_{\infty} \quad V=V_{L}+V_{S}$


Known long-distance physics (like $1 \pi$-exchange) with some scale $M_{L}$

Short-distance physics
( $\rho, \omega$-exchange) with
Some scale $\mathrm{M}_{\mathrm{S}}$

Say we want a low-energy effective theory describing physics up to some $\mathrm{M}_{\mathrm{L}}<\boldsymbol{\Lambda}<\mathrm{M}_{\mathrm{S}}$

Integrate out states above $\boldsymbol{\Lambda}$ using Renormalization Group (RG)
General form of effective theory: $V_{\text {eff }}=V_{L}+\delta V_{c . t}(\Lambda)$

$$
\delta V_{c . t .}(\Lambda)=C_{0}(\Lambda) \delta^{3}(\vec{r})+C_{2}(\Lambda) \nabla^{2} \delta^{3}(\vec{r})+\cdots
$$

## Ideas Behind Effective Theories

General form of effective theory: $V_{\text {eff }}=V_{L}+\delta V_{c . t}(\Lambda)$

$$
\delta V_{\text {c.t. }}(\Lambda)=C_{0}(\Lambda) \delta^{3}(\vec{r})+C_{2}(\Lambda) \nabla^{2} \delta^{3}(\vec{r})+\cdots
$$

Encodes effects of high-E dof on low-energy observables

> Universal; depends only on symmetries

TWO choices:
Short distance structure of "true theory" captured in several numbers

- Calculate from underlying theory

When short-range physics is unknown or too complicated

- Extract from low-energy data

How do we apply these ideas to nuclear physics?

## Chiral Effective Field Theory: Philosophy

"At each scale we have different degrees of freedom and different dynamics. Physics at a larger scale (largely) decouples from physics at a smaller scale... thus a theory at a larger scale remembers only finitely many parameters from the theories at smaller scales, and throws the rest of the details away.

More precisely, when we pass from a smaller scale to a larger scale, we average out irrelevant degrees of freedom... The general aim of the RG method is to explain how this decoupling takes place and why exactly information is transmitted from one scale to another through finitely many parameters."

## - David Gross

"The method in its most general form can.. be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."

- Steven Weinberg

5 Steps to constructing the theory

## Separation of Scales in Nuclear Physics

Step I: Identify appropriate separation of scales, degrees of freedom


## Chiral EFT Symmetries

Step II: Identify relevant symmetries of underlying theory QCD

1. $\mathrm{SU}(3)$ color symmetry from QCD
(Nucleons and pions are color singlets)
2. Chiral symmetry: $u$ and d quarks are almost massless

- Left and right-handed (massless) quarks do not mix: $\operatorname{SU}(2)_{L} \times S U(2)_{R}$ symmetry
- Explicit symmetry breaking: u and d quarks have a small mass
- Spontaneous breaking of chiral symmetry (no parity doublets observed in Nature)
- $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$ symmetry spontaneously broken to $\operatorname{SU}(2)_{V}$ - Pions are the Nambu-Goldstone bosons of spontaneously broken symmetry - Low-energy pion Lagrangian completely determined

Construct Lagrangian based on these symmetries

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi \pi}+\mathcal{L}_{N \pi}+\mathcal{L}_{N N}
$$

## Chiral EFT Lagrangian

Step III: Construct Lagrangian based on identified symmetries

Pion-pion Lagrangian: U is $\mathrm{SU}(2)$ matrix parameterized by three pion fields


Leading-order pion-nucleon

$$
\mathcal{L}_{\pi N}^{(0)}=\bar{N}\left(i v \cdot D+\stackrel{\circ}{g}_{A} u \cdot S\right) N
$$

Leading-order nucleon-nucleon (encodes unknown short-range physics)

$$
\mathcal{L}_{N N}^{(0)}=-\frac{1}{2} C_{S}(\bar{N} N)(\bar{N} N)+2 C_{T}(\bar{N} S N) \cdot(\bar{N} S N)
$$

## EFT Power Counting

Step IV: Design an organized scheme to distinguish more from less important processes: Power Counting
Organize theory in powers of $\left(\frac{Q}{\Lambda_{\chi}}\right)$ where $Q \sim m_{\pi}$, typical momentum in nucleus
Expansion only valid for small expansion parameter, i.e., low momentum
Irreducible time-ordered diagram has order $\left(\frac{Q}{\Lambda_{\chi}}\right)^{\nu}$, where


```
N = Number of nucleons
L = ~ N u m b e r ~ o f ~ p i o n ~ l o o p s
V _ { i } = \text { Number of vertices of type i}
d = Number of derivatives or insertions of
n= Number of nucleon field operators

\section*{Chiral EFT: Lowest Order (LO)}

Step V: Calculate Feynmann diagrams to the desired accuracy

\section*{Leading order \((v=0)\)}

One-pion exchange
\[
\begin{aligned}
& V_{N N}^{(0)}=-\frac{g_{A}^{2}}{4 F_{\pi}^{2}} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}} \tau_{1} \cdot \tau_{2} \\
& \vec{q}_{i} \equiv \vec{p}_{i}^{\prime}-\vec{p}_{i} \\
& g_{A}=1.26 \\
& F_{\pi}=92.4 \mathrm{MeV}
\end{aligned}
\]

\section*{Chiral EFT: Lowest Order (LO)}

Step V: Calculate Feynmann diagrams to the desired accuracy

\section*{Leading order \((v=0)\)}


One-pion exchange
NN contact interaction
\[
\begin{aligned}
& V_{N N}^{(0)}=-\frac{g_{A}^{2}}{4 F_{\pi}^{2}} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}} \tau_{1} \cdot \tau_{2}+C_{S}+C_{T} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\
& \vec{q}_{i} \equiv \vec{p}_{i}^{\prime}-\vec{p}_{i} \quad \text { Two low-energy constants (LECs): } \mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\mathrm{T}} \\
& g_{A}=1.26 \quad \\
& \begin{array}{ll}
F_{\pi} & =92.4 \mathrm{MeV}
\end{array}
\end{aligned}
\]

\section*{Chiral EFT}

Step V: Calculate Feynmann diagrams to the desired accuracy
Question:What will \(v=1\) look like?
Answer: No contribution at this order

\section*{Chiral EFT: NLO}

Step V: Calculate Feynmann diagrams to the desired accuracy Next-to-leading order \((v=2)\)


Higher order contact interaction: 7 new LECs, spin-orbit \(+C_{1} \vec{q}^{2}+C_{2} \vec{k}^{2}+\left(C_{3} \vec{q}^{2}+C_{4} \vec{k}^{2}\right) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\)
\(+i C_{5} \frac{1}{2}\left(\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot \vec{q} \times \vec{k}\right) C_{6} \vec{q} \cdot \vec{\sigma}_{1} \vec{q} \cdot \vec{\sigma}_{2}\)
\(+C_{7} \vec{k} \cdot \vec{\sigma}_{1} \vec{k} \cdot \vec{\sigma}_{2}\),

\section*{Chiral EFT: \({ }^{2}\) ²O}

Step V: Calculate Feynmann diagrams to the desired accuracy
Next-to-next-to-leading order \((v=3)\)


3 new LECs from \(\pi \pi\) NN vertex
\[
\begin{aligned}
V_{N N}^{(3)}= & -\frac{3 g_{A}^{2}}{16 \pi F_{\pi}^{4}}\left[2 M_{\pi}^{2}\left(2 c_{1}-c_{3}\right)-c_{3} \vec{q}^{2}\right] \\
& \times\left(2 M_{\pi}^{2}+\vec{q}^{2}\right) A^{\tilde{\Lambda}}(q)-\frac{g_{A}^{2} c_{4}}{32 \pi F_{\pi}^{4}} \tau_{1} \cdot \tau_{2}\left(4 M_{\pi}^{2}\right. \\
& \left.+q^{2}\right) A^{\tilde{\Lambda}}(q)\left(\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}-\vec{q}^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)
\end{aligned}
\]

\section*{Chiral EFT: \({ }^{3}{ }^{3}\) LO}

Step V: Calculate Feynmann diagrams to the desired accuracy Next-to-next-to-next-to-leading order \((v=4)\)


Higher order contact interaction: 15 new LECs

\section*{Regularization of Chiral potentials}

Remember: constructing potential involves solving L-S equation All NN potentials cutoff loop momenta at some value \(>1 \mathrm{GeV}\)
Impose exponential regulator, \(\Lambda\), in Chiral EFT potentials - not in integral
\[
\begin{aligned}
\widehat{T}\left(\vec{p}^{\prime}, \vec{p}\right) & =\widehat{V}\left(\vec{p}^{\prime}, \vec{p}\right)+\int d^{3} p^{\prime \prime} \widehat{V}\left(\vec{p}^{\prime}, \vec{p}^{\prime \prime}\right) \frac{M}{p^{2}-p^{\prime \prime 2}+i \epsilon} \widehat{T}\left(\vec{p}^{\prime \prime}, \vec{p}\right) \\
\widehat{V}\left(\vec{p}^{\prime}, \vec{p}\right) & \longmapsto \widehat{V}\left(\vec{p}^{\prime}, \vec{p}\right) \boldsymbol{e}^{-\left(p^{\prime} / \Lambda\right)^{2 n}} e^{-(p / \Lambda)^{2 n}}
\end{aligned}
\]

LECs will depend on regularization approach and \(\Lambda\)
Infinitely many ways to do this
Infinitely many chiral potentials
Indeed, many on the market - some fit well to phase shifts, others not

\section*{Chiral EFT: Resulting fits to Phase shifts}

Systematic improvement of chiral EFT potentials fit to phase shifts
Cutoff variation - information about missing physics
NLO: dashed band 9 Parameters
\(\mathrm{N}^{2} \mathrm{LO}\) : light band
\(\mathrm{N}^{3} \mathrm{LO}\) : dark band

12 Parameters
27 Parameters

Generally decreasing error and increasing accuracy - not entirely...


\section*{Chiral Effective Field Theory: Nuclear Forces}


\section*{Chiral NN Potentials}

Two chiral potentials with regulators of 500 MeV and 600 MeV
Still low-to-high momentum coupling: poor convergence, non perturbative, etc.


How do these compare to the potential you drew?
Lesson: Infinitely many phase-shift equivalent potentials
\[
E_{n}=\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle=\left(\left\langle\Psi_{n}\right| U^{\dagger}\right) U H U^{\dagger}\left(U\left|\Psi_{n}\right\rangle\right)=\left\langle\widetilde{\Psi}_{n}\right| \tilde{H}\left|\widetilde{\Psi}_{n}\right\rangle
\]

NN interaction not observable Low-to-high momentum makes life difficult for low-energy nuclear theorists

\section*{Part II: RG and Low-Momentum Interactions}

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem: QCD \(\rightarrow\) NN (3N) forces \(\rightarrow\) Renormalize \(\rightarrow\) Solve many-body problem \(\rightarrow\) Predictions

\section*{Renormalization of Meson-Exchange Potentials}


Low-to-high momentum makes life difficult for low-energy nuclear theorists

Can we just make a sharp cut and see if it works?


\section*{Renormalization of Meson-Exchange Potentials}

Can we just make a sharp cut without renormalizing?
Low-energy physics is not correct
Lesson: Must ensure low-energy physics is preserved


Low and high k are coupled by quantum fluctuations (virtual states)
\[
\langle k| V\left|k^{\prime}\right\rangle+\sum_{q=0}^{\Lambda} \frac{\langle k| V|q\rangle\langle q| V\left|k^{\prime}\right\rangle}{\epsilon_{k^{\prime}}-\epsilon_{q}}+\sum_{q=\Lambda}^{\infty} \frac{\langle k| V|q\rangle\langle q| V\left|k^{\prime}\right\rangle}{\epsilon_{k^{\prime}}-\epsilon_{q}}
\]

Can't simply drop high q without changing low k observables.

\section*{Renormalization of Meson-Exchange Potentials}

To do properly: from \(T\)-matrix equation, define low-momentum equation:
\[
T\left(k^{\prime}, k ; k^{2}\right)=V_{\mathrm{NN}}\left(k^{\prime}, k\right)+\frac{2}{\pi} \mathcal{P} \int_{0}^{\Lambda_{\infty}} \frac{V_{\mathrm{NN}}\left(k^{\prime}, p\right) T\left(p, k ; k^{2}\right)}{k^{2}-p^{2}} p^{2} \mathrm{~d} p
\]


Leads to renormalization group equation for low-momentum interaction
\[
\frac{\mathrm{d}}{\mathrm{~d} \Lambda} V_{\text {low } k}^{\Lambda}\left(k^{\prime}, k\right)=\frac{2}{\pi} \frac{V_{\text {low } k}^{\Lambda}\left(k^{\prime}, \Lambda\right) T^{\Lambda}\left(\Lambda, k ; \Lambda^{2}\right)}{1-(k / \Lambda)^{2}}
\]

\section*{Renormalization of Meson-Exchange Potentials}

Run cutoff to lower values - decouples high-momentum modes


Start from some "bare" NN potential at high cutoff


\section*{Renormalization of Meson-Exchange Potentials}


\section*{Renormalization of Chiral EFT Potentials}


These are all our favorite Chiral EFT NN potentials...

These are all our favorite Chiral EFT NN potentials...
at low momentum

Differences remain in off-diagonal matrix elements Sensitive to agreement for phase shifts (not all fit perfectly)

\section*{Renormalization of NN Potentials}


Long-range tail of deuteron wavefunction preserved
Main effect is shift in momentum space - delta function
Removes hard core!

\section*{Renormalization of Nuclear Interactions}

Short-distance behaviour of the deuteron - striking difference between potentials


A) Argonne is correct: Short range repulsion prohibits nucleons from
B) Vlowk is correct: the nucleons really will overlap in space
C) Some superposition of these
D) It doesn't matter

\section*{Renormalization of Nuclear Interactions}
\[
H(\Lambda)=T+V_{\mathrm{NN}}(\Lambda)+V_{3 \mathrm{~N}}(\Lambda)+V_{4 \mathrm{~N}}(\Lambda)+\ldots
\]

Evolve momentum resolution scale of chiral interactions from initial \(\Lambda_{\chi}\) Remove coupling to high momenta, low-energy physics unchanged

\section*{Bogner, Kuo, Schwenk, Furnstahl}


Universal at low-momentum
\(\mathrm{V}_{\text {low } k}(\Lambda)\) : lower cutoffs advantageous for nuclear structure calculations

\section*{Smooth vs. Sharp Cutoffs}
\[
H(\Lambda)=T+V_{\mathrm{NN}}(\Lambda)+V_{3 \mathrm{~N}}(\Lambda)+V_{4 \mathrm{~N}}(\Lambda)+\ldots
\]

Can have sharp as well as smooth cutoffs (codes only do sharp) Remove coupling to high momenta, low-energy physics unchanged

Bogner, Kuo, Schwenk, Furnstahl


Similar but not exact same results - will be differences in calculations

\section*{Benefits of Lower Cutoffs}

Also use cutoff dependence to assess missing physics: return to Tjon line
Varying cutoff moves along line
Never breaks off to experiment
Lesson:Variation in physical observables with cutoff denotes missing physics beyond NN

Tool not a parameter!


\section*{Benefits of Lower Cutoffs}

Removes coupling from low-to-high harmonic oscillator states
Expect to speed convergence in HO basis


\section*{Benefits of Lower Cutoffs}

Exactly what happens in no-core shell model calculations
Probably equally helpful in normal shell model calculations
Come back to this later...


\section*{G-matrix Renormalization}

Standard method for softening interaction in nuclear structure for decades:



Infinite summation of ladder diagrams
Need two model spaces:
1) \(\mathbf{M}\) space in which we will want to calculate (excitations allowed in \(M\) )
2) Large space \(\mathbf{Q}\) in which particle excitations are allowed

To avoid double counting, can't overlap - matrix elements depend on \(\mathbf{M}\)

\section*{G-matrix Renormalization}

Standard method for softening interaction in nuclear structure for decades:

\[
G_{i j k l} \omega=V_{i j k l}+\sum_{m n \in Q} V_{i j m n} \frac{Q}{\omega-\varepsilon_{m}-\varepsilon_{n}} G_{m n k l} \omega
\]

Iterative procedure
Dependence on arbitrary starting energy!

\section*{G-matrix Renormalization}

Standard method for softening interaction in nuclear structure for decades:


What happens as we keep
increasing \(M\) ?

\section*{G-matrix Renormalization}

Results of G-matrix renormalization:


Removes some diagonal high-momentum components
Still large low-to-high coupling in both interactions
No indication of universality

\section*{G-matrix Renormalization}

Results of G-matrix renormalization:


Removes some diagonal high-momentum components
Still large low-to-high coupling in both interactions
No indication of universality

\section*{Summary}

Low-momentum interactions can be constructed from any \(V_{N N}\) via \(R G\)


Low-to-high momentum coupling not desirable in low-energy nuclear physics
Evolve to low-momentum while preserving low-energy physics
Universality attained near cutoff of data
Low-momentum cutoffs remove low-to-high harmonic oscillator couplings Cutoff variation assesses missing physics at the level of interactions: tool not a parameter

\section*{Part III: Many-Body Perturbation Theory}

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem:
QCD \(\rightarrow\) NN (3N) forces \(\rightarrow\) Renormalize \(\rightarrow\) Solve many-body problem \(\rightarrow\) Predictions

\section*{Solving the Many-Body Problem}

Matrix elements now given in momentum space, partial waves
\[
\langle k K, l L ; J S T| V\left|k^{\prime} K, l^{\prime} L ; J S^{\prime} T\right\rangle
\]

To go to finite nuclei begin from Hamiltonian
\[
H|\psi\rangle=(T+V)|\psi\rangle=E|\psi\rangle
\]

Assume many particles in the nucleus generate a mean field \(U\) : \(U\) a one-body potential simple to solve (typically Harmonic Oscillator)
\[
H=H_{0}+H_{1} \quad H_{0}=T+U \quad H_{1}=V-U
\]

So transform from momentum space to Harmonic Oscillator Basis
\[
|n l, N L ; J S T\rangle=\int k^{2} d k K^{2} d K R_{n l}(\sqrt{2} \alpha k) R_{N L}(\sqrt{1 / 2} \alpha K)|k l, K L ; J S T\rangle
\]

One more (ugly) transformation from center-of-mass to lab frame:
\(\langle a b ; J T| V|c d ; J T\rangle\)

\section*{Solving the Nuclear Many-Body Problem}

Matrix elements now given between degenerate HO levels

\begin{tabular}{lll} 
1h,2f,3p & \(\underline{112}\) & \(\langle a b ; J T| V|c d ; J T\rangle\) \\
1g,2d,3s & \(\frac{70}{}\) & \\
1f,2p & \(\underline{40}\) & \\
1d,2s & \(\underline{20}\) & Physics of \(V\) gives a more realistic picture \\
1p & \(\underline{8}\) & \\
1s & 2
\end{tabular}


Non-degeneracy of levels must come from theory
Problem: Can't solve Schrodinger equation in full Hilbert space


Possible with approximations only in light nuclei (ab initio)

\section*{Solving the Nuclear Many-Body Problem}

Nuclei understood as many-body system starting from closed shell, add nucleons

\section*{Recipe}


\section*{Solving the Nuclear Many-Body Problem}

Now have interaction and energies of valence space orbitals from original V This alone does not reproduce experimental data


\section*{Solving the Nuclear Many-Body Problem}

Now have interaction and energies of valence space orbitals from original V This alone does not reproduce experimental data


\section*{Solving the Nuclear Many-Body Problem}

Now have interaction and energies of valence space orbitals from original V This alone does not reproduce experimental data

Effective two-body matrix elements
Single-particle energies (SPEs)


\section*{Many-Body Perturbation Theory}

How do we calculate valence space interactions and SPEs??
Define operator P that projects onto the model space
\[
P=\sum_{i=1}^{D}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad Q=\sum_{i=1+D}^{\infty}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
\]

With relations:
\[
P Q=0 \quad P^{2}=P \quad Q^{2}=Q \quad P+Q=1
\]

Project full Schrodinger equation into model space eqn that's easy to solve:
\[
P H_{e f f} P \psi=E P \psi ; \quad H_{e f f}=H_{0}+V_{e f f}
\]

Need to construct Veff

\section*{Many-Body Perturbation Theory}

To construct the effective interaction, define \(\hat{Q}\)-box \(=\) sum of all possible topologically distinct diagrams which are irreducible and valence linked:


1-body Q-box to \(2^{\text {nd }}\) order


2-body Q-box to \(2^{\text {nd }}\) order

Single-particle energies can be calculated from one-body part
Traditionally taken from experimental one-particle spectrum or empirical values

\section*{Calculation Details}

Convergence in terms of Harmonic Oscillator basis size
NN matrix elements derived from:
- Chiral \(\mathrm{N}^{3} \mathrm{LO}\) (Machleidt, 500 MeV ) using smooth-regulator \(V_{\text {low } k}\)
- \(3^{\text {rd }}\)-order in perturbation theory
- 13 major shells for intermediate state configurations (converged)



\section*{Calculation Details}

Convergence in terms of Harmonic Oscillator basis size
NN matrix elements derived from:
- Chiral \(\mathrm{N}^{3} \mathrm{LO}\) (Machleidt, 500 MeV ) using smooth-regulator \(V_{\text {low } k}\)
- \(3^{\text {rd }}\)-order in perturbation theory
- 13 major shells for intermediate state configurations (converged)


\section*{Monopole Part of Valence-Space Interactions}

Microscopic MBPT - effective interaction in chosen model space
Works near closed shells: deteriorates beyond this
Deficiencies improved adjusting particular two-body matrix elements

Monopoles:
Angular average of interaction
\[
V_{a b}^{T}=\frac{\sum_{J}(2 J+1) V_{a b a b}^{J T}}{\sum_{J}(2 J+1)}
\]

Determines interaction of orbit \(a\) with \(b\) : evolution of orbital energies

\[
\Delta \varepsilon_{a}=V_{a b} n_{b}
\]

Microscopic low-momentum interactions
Phenomenological USD interactions
Clear shifts in low-lying orbitals:
\(-\mathrm{T}=1\) repulsive shift

\section*{Phenomenological vs. Microscopic}


Compare monopoles from:
Microscopic low-momentum interactions

Phenomenological KB3G, GXPF1 interactions
Shifts in low-lying orbitals:
- \(\mathrm{T}=1\) repulsive shift

\section*{Limits of Nuclear Existence: Oxygen Anomaly}

\section*{Where is the nuclear dripline?}

Limits defined as last isotope with positive neutron separation energy
- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to \(Z=8\) (Oxygen)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }^{23} \mathrm{Si}\) & \({ }^{29} \mathrm{Si}\) & \({ }^{30} \mathrm{Si}\) & \({ }^{31} \mathrm{Si}\) & \({ }^{32} \mathrm{Si}\) & \({ }^{33} \mathrm{Si}\) & \({ }^{34} \mathrm{Si}\) & \({ }^{35} \mathrm{Si}\) & \({ }^{36} \mathrm{Si}\) & \({ }^{37} \mathrm{Si}\) & \({ }^{38} \mathrm{Si}\) & \({ }^{39} \mathrm{Si}\) & \({ }^{40} \mathrm{Si}\) & \({ }^{41} \mathrm{Si}\) & \({ }^{42} \mathrm{Si}\) & \({ }^{43} \mathrm{Si}\) & \({ }^{44} \mathrm{Si}\) & 2007 & -0- &  \\
\hline \({ }^{27} \mathrm{Al}\) & \({ }^{28} \mathrm{Al}\) & \({ }^{29} \mathrm{Al}\) & \({ }^{30} \mathrm{Al}\) & \({ }^{31} \mathrm{Al}\) & \({ }^{32} \mathrm{Al}\) & \({ }^{33} \mathrm{Al}\) & \({ }^{34} \mathrm{Al}\) & \({ }^{35} \mathrm{Al}\) & \({ }^{36} \mathrm{Al}\) & \({ }^{37} \mathrm{Al}\) & \({ }^{38} \mathrm{Al}\) & \({ }^{39} \mathrm{Al}\) & \({ }^{40} \mathrm{Al}\) & \({ }^{41} \mathrm{Al}\) & \({ }^{42} \mathrm{Al}\) & \({ }^{43} \mathrm{Al}\) & & & \\
\hline \({ }^{26} \mathrm{Mg}\) & \({ }^{27} \mathrm{Mg}\) & \({ }^{28} \mathrm{Mg}\) & \({ }^{29} \mathrm{Mg}\) & \({ }^{30} \mathrm{Mg}\) & \({ }^{31} \mathrm{Mg}\) & \({ }^{32} \mathrm{Mg}\) & \({ }^{33} \mathrm{Mg}\) & \({ }^{34} \mathrm{Mg}\) & \({ }^{35} \mathrm{Mg}\) & \({ }^{36} \mathrm{Mg}\) & \({ }^{37} \mathrm{Mg}\) & \({ }^{38} \mathrm{Mg}\) & & \({ }^{40} \mathrm{Mg}\) & & & & & \\
\hline \({ }^{57} \mathrm{Na}\) & \({ }^{26} \mathrm{Na}\) & \({ }^{27} \mathrm{Na}\) & \({ }^{23} \mathrm{Na}\) & \({ }^{29} \mathrm{Na}\) & \({ }^{30} \mathrm{Na}\) & \({ }^{31} \mathrm{Na}\) & \({ }^{32} \mathrm{Na}\) & \({ }^{33} \mathrm{Na}\) & \({ }^{34} \mathrm{Na}\) & \({ }^{35} \mathrm{Na}\) & & \[
{ }^{37} \mathrm{Na}
\] & 2002 & & & & & & \\
\hline \({ }^{24} \mathrm{Ne}\) & \({ }^{25} \mathrm{Ne}\) & \({ }^{26} \mathrm{Ne}\) & \({ }^{27} \mathrm{Ne}\) & \({ }^{28} \mathrm{Ne}\) & \({ }^{29} \mathrm{Ne}\) & \({ }^{30} \mathrm{Ne}\) & \({ }^{31} \mathrm{Ne}\) & \({ }^{32} \mathrm{Ne}\) & & \[
{ }^{54} \mathrm{Ne}
\] & \[
\coprod_{2002}
\] & & & & & & & &  \\
\hline \({ }^{23} \mathrm{~F}\) & \({ }^{24} \mathrm{~F}\) & \({ }^{25} \mathrm{~F}\) & \({ }^{26} \mathrm{~F}\) & \({ }^{27} \mathrm{~F}\) & & \({ }^{29} \mathrm{~F}\) & & \[
{ }^{31} \mathrm{~F}
\] & \[
1999
\] & & & & & & & & & &  \\
\hline \({ }^{22} \mathrm{O}\) & \({ }^{23} \mathrm{O}\) & \({ }^{24} \mathrm{O}\) & & & & & & & & & & & & & & & & & \\
\hline \({ }^{21} \mathrm{~N}\) & \({ }^{22} \mathrm{~N}\) & \({ }^{23} \mathrm{~N}\) & & & & & & & & & & & & & & & & & \\
\hline \({ }^{20} \mathrm{C}\) & & \({ }^{22} \mathrm{C}\) & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Limits of Nuclear Existence: Oxygen Anomaly}

\section*{Where is the nuclear dripline?}

Limits defined as last isotope with positive neutron separation energy
- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to \(\mathrm{Z}=8\) (Oxygen)


\section*{Limits of Nuclear Existence: Oxygen Anomaly}

\section*{Where is the nuclear dripline?}

Limits defined as last isotope with positive neutron separation energy
- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to \(\mathrm{Z}=8\) (Oxygen)


Microscopic picture: NN-forces too attractive Incorrect prediction of dripline

\section*{Physics in Oxygen Isotopes}

Calculate evolution of \(s d\)-orbital energies from interactions


Shell Model of Nuclei


Microscopic NNTheories
Phenomenological Models
\(d_{3 / 2}\) orbit bound to \({ }^{28} \mathrm{O} \quad d_{3 / 2}\) orbit unbound

\section*{Physics in Oxygen Isotopes}

Calculate evolution of \(s d\)-orbital energies from interactions


\section*{Comparison to Coupled Cluster}

Many-body method insufficient?
Benchmark against ab-initio Coupled Cluster at NN-only level



SPEs: one-particle attached CC energies in \({ }^{17} \mathrm{O}\) and \({ }^{41} \mathrm{Ca}\)
Small difference in many-body methods
Include 3 N forces to improve agreement with experiment

\section*{The Challenge of Microscopic Nuclear Theory}

To understand the properties of complex nuclei from elementary interactions


\section*{Three-Nucleon Forces}

Basic ideas - why do we need?
3N from chiral EFT
Implementing in shell model
Relation to monopoles
Predictions/Results
Density-dependent 3N

How will we approach this problem:
QCD \(\rightarrow\) NN (3N) forces \(\rightarrow\) Renormalize \(\rightarrow\) Solve many-body problem \(\rightarrow\) Predictions

\section*{Why Three-Body Forces?}

\section*{Tidal Bulges from Moon and Sun}


Earth not point particle
Experiences tidal forces from sun and moon
Lead to 3-body forces in E-M-S system

\section*{Why Three-Body Forces?}

\section*{Tidal Bulges from Moon and Sun}


Earth not point particle
Experiences tidal forces from sun and moon
Lead to 3-body forces in E-M-S system

Nucleons are composite particles
Can be excited to resonances


Leads to non-negligible effects

\section*{Chiral Effective Field Theory: Summary}


Nucleons interact via pion exchanges and contact interactions

Hierarchy: \(V_{\mathrm{NN}}>V_{3 \mathrm{~N}}>\ldots\)
Consistent treatment of NN, 3N, ... electroweak operators

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

\section*{Chiral Effective Field Theory: Nuclear Forces}


Nucleons interact via pion exchanges and contact interactions

Hierarchy: \(V_{\mathrm{NN}}>V_{3 \mathrm{~N}}>\ldots\)
Consistent treatment of NN, 3N, ... electroweak operators

Couplings fit to experiment once

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

\section*{Chiral Effective Field Theory: Nuclear Forces}


Nucleons interact via pion exchanges and contact interactions

Hierarchy: \(V_{\mathrm{NN}}>V_{3 \mathrm{~N}}>\ldots\)
Consistent treatment of NN, 3N, ... electroweak operators

Couplings fit to experiment once

Weinberg, van Kolck, Kaplan, Savage, Wise,
Epelbaum, Kaiser, Meissner,...

\section*{Chiral EFT: \({ }^{2}\) ² LO}

First non-vanishing 3 N contributions
Next-to-next-to-leading order \((\nu=3)\)
\[
\begin{aligned}
& \\
& V_{2 \pi}^{(3)}=\sum_{i \neq j \neq k} \frac{1}{2}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{\left(\vec{\sigma}_{i} \cdot \vec{q}_{i}\right)\left(\vec{\sigma}_{j} \cdot \vec{q}_{j}\right)}{\left(\vec{q}_{i}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{j}^{2}-M_{\pi}^{2}\right)} \begin{array}{l}
g_{A}=1.26
\end{array} F_{i j k}^{\alpha \beta} \tau_{i}^{\alpha} \tau_{j}^{\beta} \\
& F_{i j k}^{\alpha \beta}=\delta^{\alpha \beta}\left(-\frac{4 c_{1} M_{\pi}^{2}}{F_{\pi}^{2}}+\frac{2 c_{3}}{F_{\pi}^{2}} \vec{q}_{i} \cdot \vec{q}_{j}\right)+\sum_{\gamma} \frac{c_{4}}{F_{\pi}^{2}} \varepsilon^{\alpha \beta \gamma} \tau_{k}^{\gamma} \vec{\sigma}_{k} \cdot\left(\vec{q}_{i} \times \vec{q}_{j}\right)
\end{aligned}
\]

\section*{Chiral EFT: \({ }^{2}\) ²}

First non-vanishing 3 N contributions
Next-to-next-to-leading order \((\nu=3)\)
\[
\begin{aligned}
& V_{2 \pi}^{(3)}=\sum_{i \neq j \neq k} \frac{1}{2}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{\left(\vec{\sigma}_{i} \cdot \vec{q}_{i}\right)\left(\vec{\sigma}_{j} \cdot \vec{q}_{j}\right)}{\left(\vec{q}_{i}^{2}+M_{\pi}^{2}\right)\left(\vec{p}_{j}^{2}+M_{\pi}^{2}\right)} \begin{array}{l}
F_{i j k}^{\alpha \beta} \tau_{i}^{\alpha} \tau_{j}^{\beta}
\end{array} \\
& F_{i j k}^{\alpha \beta}=\delta^{\alpha \beta}\left(-\frac{4 C_{1} M_{\pi}^{2}}{F_{\pi}^{2}}+\frac{2 C_{3}}{F_{\pi}^{2}} \vec{q}_{i} \cdot \vec{q}_{j}\right)+\sum_{\gamma} \frac{c_{4}}{F_{\pi}^{2}} \varepsilon^{\alpha \beta \gamma} \tau_{k}^{\gamma} \vec{\sigma}_{k} \cdot\left(\vec{q}_{i} \times \vec{q}_{j}\right) \\
& 3 \mathrm{LECs}-\text { determined from NN fit }
\end{aligned}
\]

\section*{Chiral EFT: \(\mathbf{N}^{2}\) LO}

First non-vanishing 3N contributions
Next-to-next-to-leading order \((v=3)\)

\[
\begin{aligned}
& \vec{q}_{i}=\vec{p}_{i}^{\prime}-\vec{p}_{i} \\
& g_{A}=1.26 \\
& F_{\pi \pi}=92.4 \mathrm{MeV}
\end{aligned}
\]
\[
V_{1 \pi, \mathrm{cont}}^{(3)}=-\sum_{i \neq j \neq k}\left(\frac{g_{A}}{8 F_{\pi}}\right)^{2} \supseteq \frac{\left(\vec{\sigma}_{j} \cdot \vec{q}_{j}\right)}{\left(\vec{q}_{j}^{2}+M_{\pi}^{2}\right)}\left(\tau_{i} \cdot \tau_{j}\right)\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)
\]
\[
V_{\mathrm{cont}}^{(3)}=\frac{1}{2} \sum_{j \neq k} E\left(\tau_{j} \cdot \tau_{k}\right)
\]

Two new unconstrained couplings D,E: what should we fit to?

\section*{Chiral EFT: \(\mathbf{N}^{3}\) LO}

Next-to-next-to-next-to-leading order \((v=4)\)


Good news: no new constants
Bad news: it's not obvious?

\section*{Cutoff Variation with 3N Forces}

Use cutoff variation to assess missing physics in few body systems Radii of triton and alpha particle calculated from \(\mathrm{NN}+3 \mathrm{~N}\) forces


Clearly minimal cutoff variation

\section*{Chiral Three-Body Forces in Light Nuclei}

Importance of chiral 3N forces established in light nuclei \(A \leq 12\)
Converged No-core shell model Navratil et al., 2007


They work! What about medium-mass and exotic nuclei?

\section*{3N Forces for Valence-Shell Theories}

Normal-ordered 3N: contribution to valence neutron interactions

Effective two-body


Effective one-body


Combine with microscopic NN: eliminate empirical adjustments

\section*{3N Forces for Valence-Shell Theories}

Effects of residual 3 N between 3 valence nucleons?
Normal-ordered 3N: microscopic contributions to inputs for CI Hamiltonian Effects of residual 3 N between 3 valence nucleons?


Coupled-Cluster theory with 3 N : benchmark of \({ }^{4} \mathrm{He}\)

0-1- and 2-body of 3NF dominate
Residual 3N can be neglected Work on \({ }^{16} \mathrm{O}\) in progress

Approximated residual 3 N by summing over valence nucleon
- Nucleus-dependent: effect small, not negligible by \({ }^{24} \mathrm{O}\)

\section*{Two-body 3N: Monopoles in sd-shell}


Dominant effect from one- \(\Delta\) - as expected from cutoff variation

3 N forces produce clear repulsive shift in monopoles

First calculations to show missing monopole strength due to neglected 3 N
Future: Improved treatment of high-lying orbits

\section*{Oxygen Anomaly}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & I & - & - & & & & & & & & & & \\
\hline \[
1
\] & S & & & & & \({ }^{34} \mathrm{Al}\) & \({ }^{35} \mathrm{Al}\) & \({ }^{36} \mathrm{Al}\) & \({ }^{37} \mathrm{Al}\) & \({ }^{38} \mathrm{Al}\) & \({ }^{39} \mathrm{Al}\) & \({ }^{40} \mathrm{Al}\) & \({ }^{41} \mathrm{Al}\) & 42 Al & \({ }^{43} \mathrm{Al}\) \\
\hline \[
{ }^{2} \mathbf{U S}
\] & 10 &  & + & & & \({ }^{19} \mathrm{Mg}\) & \({ }^{34} \mathrm{Mg}\) & \({ }^{35} \mathrm{Mg}\) & \({ }^{36} \mathrm{Mg}\) & \({ }^{37} \mathrm{Mg}\) & \({ }^{38} \mathrm{Mg}\) & & \({ }^{40} \mathrm{Mg}\) & & \\
\hline \({ }^{26} \mathrm{Na}\) & \({ }^{27} \mathrm{Na}\) & \({ }^{23} \mathrm{Na}\) & \({ }^{29} \mathrm{Na}\) & \({ }^{30} \mathrm{Na}\) & \({ }^{31} \mathrm{Na}\) & \({ }^{32} \mathrm{Na}\) & \({ }^{33} \mathrm{Na}\) & \({ }^{34} \mathrm{Na}\) & \({ }^{35} \mathrm{Na}\) & & \[
{ }^{37} \mathrm{Na}
\] & 2002 & & & \\
\hline \({ }^{25} \mathrm{Ne}\) & \({ }^{26} \mathrm{Ne}\) & \({ }^{27} \mathrm{Ne}\) & \({ }^{25} \mathrm{Ne}\) & \({ }^{29} \mathrm{Ne}\) & \({ }^{30} \mathrm{Ne}\) & \({ }^{31} \mathrm{Ne}\) & \({ }^{32} \mathrm{Ne}\) & &  & 2002 & & & & & \\
\hline
\end{tabular}

\(z_{z_{N}} z_{\mathrm{N}}{ }^{1970} 3 \mathrm{~N}\) repulsion amplified with N : vital for neutron-rich nuclei \(d_{3 / 2}\) unbound at \({ }^{24} \mathrm{O}\) with 3 N forces


Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010)

\section*{Oxygen Anomaly}


\section*{One-Body 3N: Single Particle Energies}

NN-only microscopic SPEs yield poor results - rely on empirical adjustments

\(s d\)-shell: SPEs much too bound, unreasonable splitting
\begin{tabular}{|c|c|c|c|}
\hline Orbit & "Exp" & USDb & \(\boldsymbol{T}+\boldsymbol{V}_{\boldsymbol{N N}}\) \\
\hline\(d_{5 / 2}\) & -4.14 & -3.93 & -5.43 \\
\hline\(s_{1 / 2}\) & -3.27 & -3.21 & -5.32 \\
\hline\(d_{3 / 2}\) & 0.944 & 2.11 & -0.97 \\
\hline
\end{tabular}

\section*{One-Body 3N: Single Particle Energies}

NN-only microscopic SPEs yield poor results - rely on empirical adjustments

\(s d\)-shell: SPEs much too bound, unreasonable splitting 3N forces: additional repulsion - reasonable values!
\begin{tabular}{|c|c|c|}
\hline Orbit & USDb & \(\boldsymbol{T}+\boldsymbol{V}_{N N}+V_{3 N}\) \\
\hline\(d_{5 / 2}\) & -3.93 & -3.82 \\
\hline\(s_{1 / 2}\) & -3.21 & -2.14 \\
\hline\(d_{3 / 2}\) & 2.11 & 2.01 \\
\hline
\end{tabular}

\section*{One-Body 3N: Single Particle Energies}

Effects of correlations beyond one major oscillator shell:
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{d}_{5 / 2}\) & \multicolumn{2}{|r|}{(50) \(\frac{1 \mathrm{~d}_{5 / 2}}{1 \mathrm{p}_{12}}\)} & \\
\hline  &  &  &  & \\
\hline \[
{ }^{16} \mathrm{O}
\] & & \[
{ }^{16} \mathrm{O}
\] & \[
=\mathrm{op}_{1 / 2}
\] & \\
\hline Orbit & USDb & \(T+V_{N N}+V_{3 N}\) & SDPF-M & \(T+V_{N N}+V_{3 N}\) \\
\hline \(d_{5 / 2}\) & -3.93 & -3.82 & -3.95 & -3.75 \\
\hline \(s_{1 / 2}\) & -3.21 & -2.14 & -3.16 & -2.10 \\
\hline \(d_{3 / 2}\) & 2.11 & 2.01 & 1.65 & 2.13 \\
\hline \(f_{7 / 2}\) & & & 3.10 & 2.96 \\
\hline \(p_{3 / 2}\) & & & 3.10 & 4.82 \\
\hline
\end{tabular}

Fully microscopic framework and extended valence space

\section*{Fully-Microscopic Calculations}

Interaction and self-consistent SPEs from NN+3N
Empirical SPEs for NN-only


NN -only: dripline at \({ }^{28} \mathrm{O}\)
\(\mathrm{NN}+3 \mathrm{~N}\) : dripline at \({ }^{24} \mathrm{O}\)
\(s d\)-shell results underbound; improved in \(s d f_{7 / 2} p_{3 / 2}\)
Continuum: \(\sim 300 \mathrm{keV}\) more binding beyond \({ }^{24} \mathrm{O}\) (from CC)

\section*{Impact on Spectra: \({ }^{23} 0\)}

Neutron-rich oxygen spectra with \(\mathrm{NN}+3 \mathrm{~N}\)
\(5 / 2^{+}, 3 / 2^{+}\)indicate position of \(d_{5 / 2}\) and \(d_{3 / 2}\) orbits


\section*{Impact on Spectra: \({ }^{23} 0\)}

Neutron-rich oxygen spectra with \(\mathrm{NN}+3 \mathrm{~N}\) \(5 / 2^{+}, 3 / 2^{+}\)indicate position of \(d_{5 / 2}\) and \(d_{3 / 2}\) orbits

sd-shell NN-only
Wrong ground state!
\(5 / 2^{+}\)too low
\(3 / 2^{+}\)bound
Microscopic \(\mathrm{NN}+3 \mathrm{~N}\)
Great improvements in extended valence space!

Holt, Schwenk, arXiv:1108.2680

\section*{Impact on Spectra: \({ }^{23} 0\)}

Neutron-rich oxygen spectra with \(\mathrm{NN}+3 \mathrm{~N}\) \(5 / 2^{+}, 3 / 2^{+}\)indicate position of \(d_{5 / 2}\) and \(d_{3 / 2}\) orbits


Coupled Cluster spectrum reasonably close to extended space results
Continuum effectively lowers \(3 / 2^{+}\)- vital for \({ }^{24-28} \mathrm{O}\) Hagen et al., arXiv:1 1202.2839

\section*{In-medium NN interactions}

JWH, N. Kaiser, W. Weise, PRC (2009)

\[
\begin{gathered}
V_{3 N}^{(2 \pi)}=\sum_{i \neq j \neq k} \frac{g_{A}^{2}}{8 f_{\pi}^{4}} \frac{\vec{\sigma}_{i} \cdot \vec{q}_{i} \vec{\sigma}_{j} \cdot \vec{q}_{j}}{\left(\vec{q}_{i}^{2}+m_{\pi}^{2}\right)\left(\vec{q}_{j}^{2}+m_{\pi}^{2}\right)} F_{i j k}^{\alpha \beta} \tau_{i}^{\alpha} \tau_{j}^{\beta} \\
F_{i j k}^{\alpha \beta}=\delta^{\alpha \beta}\left(-4 c_{1} m_{\pi}^{2}+2 c_{3} \vec{q}_{i} \cdot \vec{q}_{j}\right)+c_{4} \epsilon^{\alpha \beta \gamma} \tau_{k}^{\gamma} \vec{\sigma}_{k} \cdot\left(\vec{q}_{i} \times \vec{q}_{j}\right) \\
\mathrm{N}^{3} \mathrm{LO}: c_{1}=-0.81, \quad c_{3}=-3.2, \quad c_{4}=5.4\left[\mathrm{GeV}^{-1}\right] \\
V_{\text {low }-\mathrm{k}}(2.1): c_{1}=-0.76, \quad c_{3}=-4.78, \quad c_{4}=3.96\left[\mathrm{GeV}^{-1}\right]
\end{gathered}
\]

\[
\begin{gathered}
V_{3 N}^{(1 \pi)}=-\sum_{i \neq j \neq k} \frac{g_{A} c_{D}}{8 f_{\pi}^{4} \Lambda_{\chi}} \frac{\vec{\sigma}_{j} \cdot \vec{q}_{j}}{\vec{q}_{j}^{2}+m_{\pi}^{2}} \vec{\sigma}_{i} \cdot \vec{q}_{j} \vec{\tau}_{i} \cdot \vec{\tau}_{j} \\
c_{D}\left(\mathrm{~N}^{3} \mathrm{LO}\right)=-0.2
\end{gathered}
\]

\[
\begin{gathered}
V_{3 N}^{(\mathrm{ct})}=\sum_{i \neq j \neq k} \frac{c_{E}}{2 f_{\pi}^{4} \Lambda_{\chi}} \vec{\tau}_{i} \cdot \vec{\tau}_{j} \\
c_{E}\left(\mathrm{~N}^{3} \mathrm{LO}\right)=-0.205 \\
c_{E}\left(2.1 \mathrm{fm}^{-1}\right)=-0.63
\end{gathered}
\]


\section*{The Challenge of Microscopic Nuclear Theory}

To understand the properties of complex nuclei from elementary interactions


How will we approach this problem:
QCD \(\rightarrow\) NN (3N) forces \(\rightarrow\) Renormalize \(\rightarrow\) Solve many-body problem \(\rightarrow\) Predictions

\section*{Chiral Effective Field Theory: Philosophy}
"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density."
- H. Bethe

How might you respond?```

