
Shell model formalism

Angelo Signoracci

CEA/Saclay

Lecture 1, 23 April 2012



Nuclear structure basics Shell model Application to sd shell

Outline

1 Nuclear structure basics

2 Shell model

3 Application to sd shell

A. Signoracci Shell model formalism



Nuclear structure basics Shell model Application to sd shell

Outline

1 Nuclear structure basics

2 Shell model

3 Application to sd shell

A. Signoracci Shell model formalism



Nuclear structure basics Shell model Application to sd shell

Statement of the problem

Interested in solution to the Schrödinger equation

H|Ψ〉 = E |Ψ〉

H =
∑
l1 l2

tl1 l2c
†
l1
cl2 +

1

(2!)2

∑
l1 l2 l3 l4

v̄l1 l2 l3 l4c
†
l1
c†l2cl4cl3

+
1

(3!)2

∑
l1 l2 l3 l4 l5 l6

w̄l1 l2 l3 l4 l5 l6c
†
l1
c†l2c
†
l3
cl6cl5cl4 + . . .

Standard eigenvalue problem, but two issues arise for nuclei

Mesoscopic system
10s-100s of particles
Too many permutations to solve computationally
System not large enough to treat statistically

Nuclear Hamiltonian
Nucleons are composite particles (quark/gluon degrees of freedom → QCD)
Low-energy nuclear physics is typically insensitive to quark dynamics
Chiral effective field theory (χEFT) provides a low-energy effective approach
Nuclear interaction depends on renormalization, is not analytic
The nuclear Hamiltonian is scale-dependent

Exact solution impossible- attempt reasonable approximations
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Nuclear structure basics Shell model Application to sd shell

Nuclear Forces

Interaction between two point-like nucleons?
Can determine a two-body interaction from nucleon-nucleon (NN) scattering
Can derive a Hamiltonian from χEFT based on QCD order by order
Coupling constants are parameters, can be fit to experimental scattering data

Complications
Nucleus with mass A has, in principle, A−body Hamiltonian
Difficult to implement for structure calculations
Even with exact Hamiltonian, calculations are expensive

Hierarchy in forces (NN > NNN > NNNN . . .)
Suggested empirically
Confirmed by χEFT

Limit to three-body forces in nuclear Hamiltonian

Assume bare microscopic interactions (NN and NNN) are known
Underlying approximation to all further results
Will not evaluate effect of initial interaction

Similarities to atomic problem suggest simpler calculational methods
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Single particle shell structure

Mean field in the nucleus produced by A nucleons composing it
Familiar idea (atoms- low density of electrons and point-like nucleus)
Experimental observations: high E(2+)a, low B(E2),BE . . .

→ “magic” numbers

Indicative of single particle shell closures (e.g., group 18 noble gases )
Collisions within the nucleus are suppressed due to the Pauli principle

E(2+) as a function of proton (y-axis) and neutron (x-axis) number

aFigure courtesy of Alex Brown
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Single particle shell structure

Mean field in the nucleus produced by A nucleons composing it
Familiar idea (atoms- low density of electrons and point-like nucleus)
Experimental observations: high E(2+), low B(E2),BE . . .

→ “magic” numbers

Collisions within the nucleus are suppressed due to the Pauli principle

Nuclear Hamiltonian:

H = T + V

=
∑
l1 l2

tl1 l2c
†
l1
cl2 +

1

(2!)2

∑
l1 l2 l3 l4

v̄l1 l2 l3 l4c
†
l1
c†l2cl4cl3 + . . .

= [T + Vmf ] + [V − Vmf ]

= H0 + H1

Analytic solutions to one-body H0 =
∑
i

εia
†
i ai provide typical single particle bases

A-body (in principle) residual interaction treated approximately
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Harmonic oscillator (HO) single particle bases

Neutron single particle orbits

Determine ~ω empirically

For 132Sn, ~ω ≈ 8 MeV

-50


-40


-30


-20


-10


0


10


20


E
 (

M
e
V

)

 

neutrons

s1

p3
p1

d5
d3
s1

f7

f5
p3
p1
g9

g7d5
d3 s1
h11

h9

f7
f5 p3
p1i13

g9

g7
d5

0

N =  l
max

1

2

3

4

5

6

2

8

20

40

70

112

2

8

20

28

50

82

126

l(2j)

A. Signoracci Shell model formalism



Nuclear structure basics Shell model Application to sd shell

Outline

1 Nuclear structure basics

2 Shell model

3 Application to sd shell

A. Signoracci Shell model formalism



Nuclear structure basics Shell model Application to sd shell

Motivation

Need to simplify the nuclear many-body problem

Harmonic oscillator potential (with spin-orbit) reproduces magic numbers

Results in large energy gaps between bunches of single particle orbits

Fundamental assumptions
1 Interested in low-energy nuclear properties
2 Strongly bound single particle orbits are rarely excited → core
3 Properties outside core can be represented by few orbits

Physical energy scale limited approximately by single particle energy gaps
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Independent particle model

Simplest approximation: easy to solve, limited applicability

Find exact solution to basis H0|φi 〉 = εi |φi 〉
Core of mass Ac with Zc protons and Nc neutrons (Zc ,Nc closed subshells)

Single Slater determinant describes wavefunctions

|ΦAc 〉 ≡ |φ1φ2 . . . φZc 〉 ⊗ |φ1φ2 . . . φNc 〉

Energy of core

Ec =

Zc∑
i=1

εi +

Nc∑
i=1

εi

Nuclei with Ac + 1 are given by |ΦA+1〉 = a†i |Φ
A〉 with i = Zc + 1,Nc + 1

Energy relative to core

E(c+p) − Ec = ε(Zc+1) E(c+n) − Ec = ε(Nc+1)

Slater determinant is tailored to reproduce experimental data
Correlations implicitly included → experiments measure many-body system
Dominant states are reproduced, but fragmentation occurs
Distinct from other Slater determinant methods like EDF methods
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16O in independent particle model
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Single Slater determinant

BE(17O)− BE(16O) = 4.14 MeV

BE(18O)− BE(16O) = 12.19 MeV

Too simple model already!
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Connection to Hartree-Fock (HF)

Schrödinger equation H|Ψ〉 = E |Ψ〉

Independent particle model:

Approximate H by H0 = T + Vmf

Select reasonable Vmf

Solve H0|φi 〉 = εi |φi 〉

E0 =
A∑

i=1

εi for A nucleons

No correlations

Only appropriate for closed shells ± 1

(symmetry-restricted) Hartree-Fock:

Approximate |Ψ〉 by |Φ〉 =
A∏

i=1

a†i |0〉

Variational principle (minimizes energy)

Determine single particle basis {|φ〉}

Limited correlations

Best near closed shells

A. Signoracci Shell model formalism
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Shell model

Independent particle model is not rich enough

Single-reference Hartree-Fock is better but suffers from same limitations

Need to include correlations without solving full many-body problem

Select core with Ac as before (closed subshells)
Treat core as vacuum based on large energy gap in single particle orbits
Fewer nucleons treated explicitly (valence particles Aval = A− Ac )

Limit to “valence orbits” up to another large energy gap

Reduction in model space (and number of particles)
Schrödinger equation can be solved completely
Separation into long-range and short-range correlations
Long-range correlations are completely included

Can other effects be included?
1 Polarization of the core by valence particles
2 Virtual scattering of valence particles into higher-lying orbits
3 Full short-range correlations
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Nuclear structure basics Shell model Application to sd shell

Effective interaction

Incorporate effects from outside of the model space into the Hamiltonian

Still, cannot account for everything (e.g., short-range correlations)

Reduction in degrees of freedom = reduction in possibilities

Production of interactions is extremely important
Multiple lectures will focus on various procedures and mindsets
Tutorial sessions devoted to derivation and implementation
Will proceed currently with a general Hamiltonian
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Incorporate effects from outside of the model space into the Hamiltonian

Still, cannot account for everything

Reduction in degrees of freedom = reduction in possibilities

Production of interactions is extremely important
Multiple lectures will focus on various procedures and mindsets
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Effective interaction

Representation of effective interaction in reduced model space
1 Single particle energies (SPE): εi where i refers to valence orbits
2 Two-body matrix elements (TBME):

〈(ab)JT |Vms |(cd)JT 〉

Model space orbits a, b, c, d
Angular momentum and isospin J and T , respectively
Vms is the effective interaction in the reduced model space
Finite number of TBME for a given model space determined by J and T coupling

Vms distinct from original Hamiltonian

Lowest order (monopole) of multipole expansion of the interaction

V̄ T
ab =

∑
J

(2J + 1)〈(ab)JT |Vms |(ab)JT 〉[1− (−1)J+T δab]∑
J

(2J + 1)[1− (−1)J+T δab]

A. Signoracci Shell model formalism
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Model Spaces

Common model spaces

Oscillator shells

N = 0, 1, 2, 3→ s, p, sd , pf

Beyond pf shell

include j> orbit of next shell

j> refers to j = `max + 1
2

j< refers to j = `max − 1
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Model Spaces

Most common model spaces (courtesy of Alex Brown)

E(2+) as a function of proton (y-axis) and neutron (x-axis) number

A. Signoracci Shell model formalism
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Model Spaces

Inclusion of j> orbit (courtesy of Alex Brown)

E(2+) as a function of proton (y-axis) and neutron (x-axis) number
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Nuclear structure basics Shell model Application to sd shell

Model Spaces

Extension to heavier nuclei with N > Z (courtesy of Alex Brown)

Based on stable magic numbers → island of inversion region?

E(2+) as a function of proton (y-axis) and neutron (x-axis) number

A. Signoracci Shell model formalism
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Summary

Cannot solve full Schrödinger equation beyond lightest nuclei

Search for approximate techniques

Because nuclei display shell structure via “magic” numbers
Break Hamiltonian into mean field and residual interaction
Solve mean field Hamiltonian for single particle basis
Utilize large energy gaps in basis to isolate few valence orbits
Treat core of model space as vacuum
Solve Schrödinger equation exactly in reduced model space

Typically called shell model in nuclear physics

Falls under more general category of configuration interaction (CI) theory
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Opening remarks

Hamiltonian operating only in the reduced model space is required

For now, given empirically by USDB interaction1

SPE and TBME parameterized (66 parameters in all)

Fit to experimental energies in sd shell

Iterative procedure of CI calculations for states accessible in the model space
See Lecture VII for details

Use sd shell as example, same principles apply throughout nuclear chart

1B.A. Brown and W.A. Richter, Phys. Rev. C 74, 034315 (2006)
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16O as core
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sd model space outlined

Separation from p and pf shells

N = 0, 1 oscillator shells filled

|16O 〉 ≡ |0〉
E(16O) = 0
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Simplest system- 17O

 17O USDB

  − 3.93 MeV 5/2+0


1


2


3


4


5


6


E
 (

M
e
v
)

 

Experiment 17O

  − 4.14 MeV 5/2+

 9/2−

One valence neutron

Three orbits to occupy(
12
1

)
= 3 possibilities to add

nucleons

Three possible statesa

aSee Lecture II for counting procedure

Experiment displays richer behavior
1 Intruder states (only positive-parity many-body states from sd orbits)
2 Fragmentation of single particle strength due to correlations

Calculated BEUSDB(17O) = 3.93 MeV, whereas BEexp(17O) = 131.76 MeV

USDB selects 16O as vacuum with E = 0 MeV

BEexp(17O)− BEexp(16O) = 4.14 MeV

A. Signoracci Shell model formalism
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Spectroscopic factors

Basis-independent, but not observable

Spectroscopic probability matrices

S+pq
µ ≡ 〈ΨA

0 |ap|ΨA+1
µ 〉〈ΨA+1

µ |a†q|ΨA
0 〉

and

S−pq
ν ≡ 〈ΨA

0 |a†q|ΨA−1
ν 〉〈ΨA−1

ν |ap|ΨA
0 〉

Spectroscopic factors (SF) found from tracing spectroscopic probability matrices

In reduced model space, recover typical “definitions”

SF+
µ ≡ |〈ΨA+1

µ |a†q|ΨA
0 〉|2

and

SF−ν ≡ |〈ΨA−1
ν |ap|ΨA

0 〉|2

A. Signoracci Shell model formalism
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Spectroscopic factors

For 17O in sd shell, each state carries full spectroscopic strength
Only one valence particle

“Experimental” SF

SF = 0.81 for 5
2

+
ground state of 17O a

SF = 0.67 for 3
2

+
“single particle peak” at 5.09 MeVb

SF = 0.06 for 3
2

+
state at 5.87 MeVc

Problematic for calculations? Is 16O a good enough core?

aJ. Lee, M.B. Tsang, and W.G. Lynch, Phys. Rev. C 75, 064320 (2007)
bM. Yasue et al., Phys. Rev. C 46, 1242 (1992)
cM. Yasue et al., Phys. Rev. C 46, 1242 (1992)
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Next simplest system- 18O

 18O usdb

 0+

 2+

 4+

0


1
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3
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)

 

experiment

 18O (Z=  8) (N= 10)
 0+

 2+

 4+ Two valence neutrons

Three orbits to occupy(
12
2

)
= 66 possibilites to add nucleons

Only 14 possible statesa

aSee Lecture II for counting procedure

Experiment displays richer behavior, including negative-parity intruder states

Calculated BEUSDB(18O) = 11.93 MeV, whereas BEexp(18O) = 139.81 MeV

BEexp(18O)− BEexp(16O) = 12.19 MeV
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More complicated- 22Na

 22Na usdb
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experiment

 22Na (Z= 11) (N= 11)
 3+

 4+

 5+

 6+ Odd-odd nucleus

Three neutrons, three protons(
12
3

)2
=48400 possibilities

3266 possible statesa

aSee Lecture II for counting procedure

USDB interaction is isospin-symmetric (no Coulomb force!)

EUSDB(22Na) = −58.44 MeV

EUSDB(22Na) = −46.71 MeV (Coulomb corrected)

BEexp(22Na)− BEexp(16O) = 46.53 MeV
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Comparison to data

All sd nuclei have such level schemes available2

Overall, root-mean-square (rms) deviation of ≈ 170 keV to low-energy states

Only considering states accessible in the model space

USDB has been used in hundreds of calculations

Only energies thus far, but good agreement for other nuclear properties
To be discussed in more detail later

Slater determinant of N = 0, 1 HO orbits not accurate description of 16O
Seen from Hartree-Fock or realistic calculation (e.g., coupled cluster)
Correlations contribute multiple MeV to ground state
Excited states exist- experimentally E(0+

2 ) = 6.05 MeV

Single particle strength fragmented in 17O3

Still reproduce results in sd shell well!

Long-range correlations cause low-energy behavior in sd shell nuclei

2http://www.nscl.msu.edu/∼brown/resources/resources.html
3T. Duguet and G. Hagen, Phys. Rev. C 85, 034330 (2012)
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Problems remain

Even with correct interaction, can fail to reproduce low-energy states

BEexp(Z ,N)− BEth(Z ,N)
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Wrong degrees of freedom (missing necessary valence orbits)

Invalidates assumption that shell gap excludes pf orbits

Referred to as the island of inversion region
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