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CI Theory Aside: review CI Solution Practical implementation of CI theory

Brief Review

Mesoscopic system- approximate treatment required

Nuclei exhibit “shell structure” through experimental observables

Naive mean field description insufficient for correlated many-body problem

Energy gaps in single particle basis (reproducing magic numbers)

Select limited model space separated by energy gaps

Reproduce low-energy nuclear properties
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Configuration Interaction Theory

General theory, applied in quantum chemistry and solid-state physics as well

Referred to as shell model in nuclear physics

Main principles discussed already
Select a limited model space of valence orbits outside a doubly magic core
Core is treated as vacuum
Procedure limited by size of model space (by mass in nuclear physics)
Determine interaction in reduced model space
Solve Schrödinger equation

Accurate method with limitations
1 Mass (based on size of necessary model space)
2 Excitation energy
3 Interaction
4 Type of states (intruder, cluster, etc.)
5 Effective charges (see Lectures IV-VI)
6 Determination of appropriate model space
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Introduction of notation

H = T + V

= (T + Vmf ) + (V − Vmf )

= H0 + H1

where

V = VNN + VNNN (+ . . .)

In coordinate space commonly choose spherically symmetric mean fields

T = − ~2

2m
∆2

Vmf (r) = Vc(r) + Vso(r)~̀ ·~s

Solution H0|φi 〉 = εi |φi 〉 can be found
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Solution to spherical mean field

In coordinate space,

φn`jm(~r) =
Rnlj(r)

r

[
Y ` ⊗ χ

1
2

]j
m[

Y ` ⊗ χ
1
2

]j
m
≡
∑
m`ms

〈`m`
1

2
ms |jm〉Y`m`(r̂)χ 1

2
ms

Intrinsic spin wavefunctions are orthonormal

〈χ 1
2
ms
|χ 1

2
m′

s
〉 = δmsm′

s

Harmonic oscillator potential Vmf = 1
2
mω2r 2

1 Typically employed in nuclear structure theory
2 Strength (given in energy scale ~ω) determined empirically
3 Properties, especially deficiencies, affect calculations
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Harmonic oscillator basis

Important to consider whether spin-orbit is included explicitly
No spin-orbit

1 Degenerate orbits with same main oscillator quantum number

N = 2n + `

2 Simpler radial wavefunctions1

Rnl (r) =

√
22+`−n(2`+ 2n + 1)!
√
πn!b2`+3[(2`+ 1)!!]2

r`+1e−r2/2b2

×
n∑

k=0

(−2)kn!(2`+ 1)!!

k!(n − k)!(2`+ 2k + 1)!!

r

b

2k

where b =

√
~

mω
=

√
41.4MeV fm2

~ω
(1)

Including spin-orbit
1 Non-degenerate orbits (important for deriving effective interactions)
2 More complicated orbits (not reproduced here)

In the end, 〈Φ|Vms |Φ〉 are quantities of interest

Wavefunction can be written in any basis

Modifies the interpretation of Vms
1Courtesy of Alex Brown
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Conserved quantities

In A-body system, conserved quantity O relates to

[H,O] = 0

Simultaneously conserved quantities
Commute with Hamiltonian
Commute with each other
Produced by a set of Casimir operators

Set provides symmetry quantum numbers labeling A-body states
Angular momentum J and projection M (in space-fixed frame)
Energy E (and therefore mass)

Momentum ~P = 0 in center-of-mass frame
Electric charge Q and baryon charge B

Approximately conserved quantities
Isospin T only approximately conserved by strong interaction
Parity π only approximately conserved by weak interaction
Will treat both as conserved quantities throughout these lectures
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Many-body problem

Schrödinger equation is hard to solve- start with simpler problem
For now, solving system of A independent identical nucleons
Protons and neutrons not distinguished

A-body Schrödinger equation
H0|Φa〉 = Ea|Φa〉

Build from one particle solution H0|φi 〉 = εi |φi 〉

Ea =
A∑

i=1

εai

|Φa〉 =
A∏

i=1

a†ai |0〉

Single particle wavefunctions are orthonormal 〈φi |φj〉 = δij
Label a refers to a particular choice of the A single particle orbits

For lowest energy state, E0 =
A∑

i=1

εi

Basis {|Φa〉} spans the Hilbert space of the A-body problem

Can write |Ψk〉 =
∑
a

cka |Φa〉
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Many-body problem

Perturbation theory focusing on ground state

|Ψ0〉 = |Ψ(0)
0 〉+ |Ψ(1)

0 〉+ . . .

|Ψ(0)
0 〉 = |Φ0〉

|Ψ(1)
0 〉 =

∑
a 6=0

〈Φ0|H1|Φa〉
E

(0)
0 − E

(0)
a

|Φa〉

E = E
(0)
0 + E

(1)
0 + . . .

E
(0)
0 = 〈Φ0|H0|Φ0〉

E
(1)
0 = 〈Φ0|H1|Φ0〉

Configuration interaction theory

|Ψk〉 =
∑
a

cka |Φa〉 →
∑
a

ckaH|Φa〉 =
∑
b

ckbEk |Φb〉

Multiply from left by arbitrary 〈Φb| to get line b of matrix equation∑
a

〈Φb|H|Φa〉cka = Ekc
k
b

Either way, matrix elements of H are ingredients of the calculation
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CI matrix formulation


〈Φ0|Vms |Φ0〉 〈Φ0|Vms |Φ1〉 · · · 〈Φ0|Vms |Φbasis〉
〈Φ1|Vms |Φ0〉 〈Φ1|Vms |Φ1〉 · · · 〈Φ1|Vms |Φbasis〉
〈Φ2|Vms |Φ0〉 〈Φ2|Vms |Φ1〉 · · · 〈Φ2|Vms |Φbasis〉

...
...

. . .
...

〈Φbasis |Vms |Φ0〉 〈Φbasis |Vms |Φ1〉 . . . 〈Φbasis |Vms |Φbasis〉




ck0
ck1
ck2
...

cbasis

 = Ek


ck0
ck1
ck2
...

cbasis


Example (diagonal)

〈Φa|T |Φa〉 =
basis∑
i,j=1

〈Φa|tija†i aj |Φa〉

=
basis∑
i=1

〈Φa|tiia†i ai |Φa〉

=
A∑

i=1

tii

Still impossible to solve without truncation
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Center of mass motion

Interested only in internal structure of nucleus

Rewrite Hamiltonian H = Hcm + Hint (separate out center of mass)

For T = 1
2m

A∑
i=1

p2
i

Introduce ~Q ≡
A∑

i=1

~pi and ~qi = ~pi −
~Q
A

Tcm = 1
2mA

Q2

Tint = 1
2m

A∑
i=1

q2
i

In general: hard to separate potential into similar components Vcm and Vint

Can be done algebraically for harmonic oscillator potential

Introducing ~R ≡ 1
A

A∑
i

~ri

Hcm = 1
2mA

Q2 + 1
2
Amω2R2

|Ψ〉 = |Ψint〉|Ψcm〉,E = Eint + Ecm

In the ground state, 〈Ψ|Hcm|Ψ〉 = 3
2
~ω

Must account for this contribution to determine internal energies
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Spurious States

Solutions to the Schrödinger equation which do not describe internal structure

Especially problematic in large model spaces (multiple oscillator shells)

Excitations of center of mass wavefunction result in spurious states

Ground state of even-even nucleus with Jπ = 0+

Spurious state Jπ = 1− from excited center of mass
Infinite number of states (to high energy)
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Angular momentum coupling

Coupling of angular momentum ~J1 and ~J2 to ~J

Triangle condition leads to Jmin = |J1 − J2| and Jmax = J1 + J2

Wavefunction associated with coupled J written in terms of |J1M1J2M2〉

|J1J2JM〉 =
∑
M1M2

〈J1M1J2M2|JM〉|J1M1J2M2〉

Clebsch-Gordan coefficients 〈J1M1J2M2|JM〉

Can employ Clebsch-Gordan coefficients to couple many-body wavefunctions
Require M1 + M2 = M for non-zero coupling

Can write in terms of 3j symbols

Coupling three angular momenta requires 6j , four requires 9j , etc.
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Many-body wavefunctions

m-scheme

M =
A∑

i=1

mi

Hamiltonian is diagonal in M since M is conserved quantity
Use basis {|Φ〉} with good M value (but not necessarily good J)

Determine J from Ĵ2|Ψ〉 = J(J + 1)|Ψ〉
All values of J with J ≥ M are found in one calculation
Infinite basis can be truncated

J-scheme
Reduce the dimension of the problem by limiting to states with good J
Calculation performed for each J value
More advantageous for lower J values

In both cases, determine T from T̂ 2|Ψ〉 = T (T + 1)|Ψ〉
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Partitions

Complicated many-body wavefunction: sum over simple Slater determinants

Each Slater determinant is one configuration in reduced model space

Configuration corresponds to a partition of valence nucleons into available orbits

Number of partitions determined by number of valence protons and neutrons

Truncations possible by limiting partitions in the calculation
1 Explicitly done through the use of restrictions in ’lpe’ option of ’shell’
2 See Lecture III and Tutorial III for more details
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Simple example

Two neutrons in sd shell (18O)

Six possible partitions:

n`(2j) 0d5 0d3 1s1

2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

Can determine m-scheme dimension D(M) and J-scheme dimension D(J)

Each partition P has its own values DP(M) and DP(J)

DP(J) = DP(M = J)− DP(M = J + 1)

Model space dimensions given by sum over partitions

D(M) =
∑
P

DP(M)

D(J) =
∑
P

DP(J)
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Counting possibilities to determine dimensions

For partition with both neutrons in 0d5/2 orbit, P = (0d5/2)2 ≡ 52

M =
∑
i

mi

Ways to produce M = 0

2m +5 +3 +1 -1 -3 -5

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

Ways to produce M = 1

2m +5 +3 +1 -1 -3 -5

1 0 0 0 1 0
0 1 0 1 0 0
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Counting possibilities to determine dimensions

For partition with both neutrons in 0d5/2 orbit, P = (0d5/2)2 ≡ 52

M D52 (M)

0 3
1 2
2 2
3 1
4 1
-4 1
-3 1
-2 2
-1 2

In general, don’t need to calculate both M and −M since DP(M) = DP(−M)

Check all configurations are accounted for(
6

2

)
= 15 =

∑
M

D52 (M)

A. Signoracci Shell model formalism



CI Theory Aside: review CI Solution Practical implementation of CI theory

Counting possibilities to determine dimensions

For partition with both neutrons in 0d5/2 orbit, P = (0d5/2)2 ≡ 52

M D52 (M)

0 3
1 2
2 2
3 1
4 1
-4 1
-3 1
-2 2
-1 2

D52 (J) = D52 (M = J)− D52 (M = J + 1)

Only nonzero values: D52 (J = 0) = D52 (J = 2) = D52 (J = 4) = 1

Significant reduction in dimension for J-scheme

A. Signoracci Shell model formalism



CI Theory Aside: review CI Solution Practical implementation of CI theory

Counting possibilities to determine dimensions

Determine dimension for all partitions, sum over to find

M D(M)

0 14
1 11
2 9
3 4
4 2
-4 2
-3 4
-2 9
-1 11

J D(J)

0 3
1 2
2 5
3 2
4 2

∑
M

D(M) corresponds to
(

12
2

)
= 66 as expected

Full CI calculation for 18O produces 14 states from
∑
J

D(J)

In agreement with result shown in Lecture I
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Realistic example

48Cr in pf model space (four protons and four neutrons)

31 partitions for each type of nucleon

Can determine Dp(J) and Dn(J) as shown previously

Of course, Dp(J) = Dn(J) in this case

Must include all possibilities ~J = ~Jp + ~Jn

For simplest J = 0 example2:

D(J = 0) =
∑
Ji

Dp(Ji )Dn(Ji )

J 0 1 2 3 4 5 6 7 8 9 10

Dp(J) 28 54 94 91 99 75 59 33 22 7 3
Dn(J) 28 54 94 91 99 75 59 33 22 7 3

D(J = 0) = 41, 355 in total

2Courtesy of Alex Brown
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48Cr (continued)

Performing similar steps while accounting for coupling of ~Jp and ~Jn

D(J = 0) = 41, 355

D(J = 1) = 118, 269

D(J = 2) = 182, 242

...

D(M) =
∑
J≥M

D(J)

D(M = 0) = 1, 963, 461

Dimension of the problem ≈ 2 · 106

Diagonalize H to get eigenvalues E
H is a sparse matrix → algorithms available
Matrix multiplication u = Hv
In m-scheme, u, v have 1,963,461 components for 48Cr
In J-scheme, u, v have 41,355 components for J = 0 states of 48Cr

NUSHELLX solves ten lowest J = 0 states in ≈ 1 minute (standard laptop)
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Approximate matrix dimensions

sd shell: 105

pf shell: 109

jj44 model space (1p3/2, 1p1/2, 0f5/2, 0g9/2) : 1011

Approximate time corresponding to longest calculation
Level scheme for 28Si in about an hour
Level scheme for 56Ni in days
Level scheme for 78Y in weeks

Need parallelization or patience

Also exceed memory requirements as mass and model space increase

Need truncations or other alternatives
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