Shell model formalism

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

Lecture 2, 23 April 2012

(ロ) (部) (注) (注) (三)

4 E b

Outline

2 Aside: review of quantum mechanics/nuclear physics

3 CI treatment of nuclear many-body problem

4 E b

Outline

2 Aside: review of quantum mechanics/nuclear physics

3 CI treatment of nuclear many-body problem

CI Theory	Aside: review	CI Solution	Practical implementation of CI theory
Brief Review			

- Mesoscopic system- approximate treatment required
- Nuclei exhibit "shell structure" through experimental observables
- Naive mean field description insufficient for correlated many-body problem
- Energy gaps in single particle basis (reproducing magic numbers)
- Select limited model space separated by energy gaps
- Reproduce low-energy nuclear properties

Configuration Interaction Theory

- General theory, applied in quantum chemistry and solid-state physics as well
- Referred to as shell model in nuclear physics
- Main principles discussed already
 - Select a limited model space of valence orbits outside a doubly magic core
 - Core is treated as vacuum
 - Procedure limited by size of model space (by mass in nuclear physics)
 - Determine interaction in reduced model space
 - Solve Schrödinger equation
- Accurate method with limitations
 - Mass (based on size of necessary model space)
 - ② Excitation energy
 - Interaction
 - Type of states (intruder, cluster, etc.)
 - In Effective charges (see Lectures IV-VI)
 - **(** Determination of appropriate model space

4 E b

Outline

2 Aside: review of quantum mechanics/nuclear physics

3 CI treatment of nuclear many-body problem

I heor

CI Solution

프 > 프

Introduction of notation

$$H = T + V$$

= $(T + V_{mf}) + (V - V_{mf})$
= $H_0 + H_1$

where

$$V = V_{NN} + V_{NNN} \qquad (+\ldots)$$

• In coordinate space commonly choose spherically symmetric mean fields

$$T=-rac{\hbar^2}{2m}\Delta^2$$
 $V_{mf}(r)=V_c(r)+V_{so}(r)ec{\ell}\cdotec{s}$

• Solution $H_0 |\phi_i\rangle = \epsilon_i |\phi_i\rangle$ can be found

Solution to spherical mean field

• In coordinate space,

$$\phi_{n\ell jm}(\vec{r}) = \frac{R_{nlj}(r)}{r} \Big[Y^{\ell} \otimes \chi^{\frac{1}{2}} \Big]_{m}^{j} \\ \Big[Y^{\ell} \otimes \chi^{\frac{1}{2}} \Big]_{m}^{j} \equiv \sum_{m_{\ell} m_{s}} \langle \ell m_{\ell} \frac{1}{2} m_{s} | jm \rangle Y_{\ell m_{\ell}}(\hat{r}) \chi_{\frac{1}{2} m_{s}}$$

• Intrinsic spin wavefunctions are orthonormal

$$\langle \chi_{\frac{1}{2}\textit{m}_{\textit{s}}} | \chi_{\frac{1}{2}\textit{m}_{\textit{s}}'} \rangle = \delta_{\textit{m}_{\textit{s}}\textit{m}_{\textit{s}}'}$$

- Harmonic oscillator potential $V_{mf} = \frac{1}{2}m\omega^2 r^2$
 - Typically employed in nuclear structure theory
 - 2 Strength (given in energy scale $\hbar\omega$) determined empirically
 - Properties, especially deficiencies, affect calculations

Harmonic oscillator basis

- Important to consider whether spin-orbit is included explicitly
- No spin-orbit
 - Degenerate orbits with same main oscillator quantum number

$$N = 2n + \ell$$

② Simpler radial wavefunctions¹

$$R_{nl}(r) = \sqrt{\frac{2^{2+\ell-n}(2\ell+2n+1)!}{\sqrt{\pi n! b^{2\ell+3}}[(2\ell+1)!!]^2}} r^{\ell+1} e^{-r^2/2b^2}$$
$$\times \sum_{k=0}^n \frac{(-2)^k n!(2\ell+1)!!}{k!(n-k)!(2\ell+2k+1)!!} \frac{r^{2k}}{b}$$
where $b = \sqrt{\frac{\hbar}{m\omega}} = \sqrt{\frac{41.4 \text{MeV fm}^2}{\hbar\omega}}$ (1)

- Including spin-orbit
 - Non-degenerate orbits (important for deriving effective interactions)
 - Ø More complicated orbits (not reproduced here)
- In the end, $\langle \Phi | V_{ms} | \Phi \rangle$ are quantities of interest
- Wavefunction can be written in any basis
- Modifies the interpretation of V_{ms}

 $^1 \mathsf{Courtesy}$ of Alex Brown

< E >

- E - E

Harmonic oscillator basis

- Important to consider whether spin-orbit is included explicitly
- No spin-orbit
 - Degenerate orbits with same main oscillator quantum number

$$N = 2n + \ell$$

② Simpler radial wavefunctions¹

$$R_{nl}(r) = \sqrt{\frac{2^{2+\ell-n}(2\ell+2n+1)!}{\sqrt{\pi}n!b^{2\ell+3}[(2\ell+1)!!]^2}} r^{\ell+1}e^{-r^2/2b^2}$$
$$\times \sum_{k=0}^{n} \frac{(-2)^k n!(2\ell+1)!!}{k!(n-k)!(2\ell+2k+1)!!} \frac{r^{2k}}{b}$$
where $b = \sqrt{\frac{\hbar}{m\omega}} = \sqrt{\frac{41.4\text{MeV fm}^2}{\hbar\omega}}$ (1)

- Including spin-orbit
 - In Non-degenerate orbits (important for deriving effective interactions)
 - Ø More complicated orbits (not reproduced here)
- $\bullet\,$ In the end, $\langle\Phi|\textit{V}_{\it ms}|\Phi\rangle$ are quantities of interest
- Wavefunction can be written in any basis
- Modifies the interpretation of V_{ms}
- $^1 \mathsf{Courtesy}$ of Alex Brown

CI Theory	Aside: review	CI Solution	Practical implementation of CI theory
Conconned			
Conserved of	quantities		

• In A-body system, conserved quantity O relates to

[H, O] = 0

- Simultaneously conserved quantities
 - Commute with Hamiltonian
 - Commute with each other
 - Produced by a set of Casimir operators
- Set provides symmetry quantum numbers labeling A-body states
 - Angular momentum J and projection M (in space-fixed frame)
 - Energy E (and therefore mass)
 - Momentum $\vec{P} = 0$ in center-of-mass frame
 - Electric charge ${\it Q}$ and baryon charge ${\it B}$
- Approximately conserved quantities
 - Isospin T only approximately conserved by strong interaction
 - Parity π only approximately conserved by weak interaction
 - Will treat both as conserved quantities throughout these lectures

CI Theory	Aside: review	CI Solution	Practical implementation of CI theory
Outline			

- D Configuration Interaction (CI) Theory
- 2 Aside: review of quantum mechanics/nuclear physics
- 3 CI treatment of nuclear many-body problem
- Practical implementation of CI theory

-

CI Solution

Many-body problem

- Schrödinger equation is hard to solve- start with simpler problem
 - For now, solving system of A independent identical nucleons
 - Protons and neutrons not distinguished

A-body Schrödinger equation

 $H_0 |\Phi_a\rangle = E_a |\Phi_a\rangle$

$$E_{a} = \sum_{i=1}^{A} \epsilon_{a_{i}}$$

 $|\Phi_{a}
angle = \prod_{i=1}^{A} a_{a_{i}}^{\dagger}|0
angle$

- Single particle wavefunctions are orthonormal $\langle \phi_i | \phi_j \rangle = \delta_{ij}$
- Label a refers to a particular choice of the A single particle orbits
- For lowest energy state, $E_0 = \sum_{i=1}^{n} \epsilon_i$
- Basis $\{|\Phi_a\rangle\}$ spans the Hilbert space of the A-body problem
- Can write $|\Psi_k
 angle = \sum c_a^k |\Phi_a
 angle$

CI Solution

Many-body problem

- Schrödinger equation is hard to solve- start with simpler problem
 - For now, solving system of A independent identical nucleons
 - Protons and neutrons not distinguished

A-body Schrödinger equation

 $H_0 |\Phi_a\rangle = E_a |\Phi_a\rangle$

$$egin{aligned} \mathcal{E}_{a} &= \sum_{i=1}^{A} \epsilon_{a_{i}} \ |\Phi_{a}
angle &= \prod_{i=1}^{A} a_{a_{i}}^{\dagger} |0
angle \end{aligned}$$

- Single particle wavefunctions are orthonormal $\langle \phi_i | \phi_j \rangle = \delta_{ij}$
- Label a refers to a particular choice of the A single particle orbits
- For lowest energy state, $E_0 = \sum \epsilon_i$
- Basis $\{|\Phi_a\rangle\}$ spans the Hilbert space of the A-body problem
- Can write $|\Psi_k
 angle = \sum c_a^k |\Phi_a
 angle$

CI Solution

Many-body problem

- Schrödinger equation is hard to solve- start with simpler problem
 - For now, solving system of A independent identical nucleons
 - Protons and neutrons not distinguished

A-body Schrödinger equation

 $H_0 |\Phi_a\rangle = E_a |\Phi_a\rangle$

$$egin{aligned} \mathcal{E}_{a} &= \sum_{i=1}^{A} \epsilon_{a_{i}} \ ert \Phi_{a} &
angle &= \prod_{i=1}^{A} a_{a_{i}}^{\dagger} ert 0 \end{aligned}$$

- Single particle wavefunctions are orthonormal $\langle \phi_i | \phi_j \rangle = \delta_{ij}$
- Label a refers to a particular choice of the A single particle orbits
- For lowest energy state, $E_0 = \sum_{i=1}^{n} \epsilon_i$
- Basis $\{|\Phi_a\rangle\}$ spans the Hilbert space of the A-body problem

CI Solution

Many-body problem

- Schrödinger equation is hard to solve- start with simpler problem
 - For now, solving system of A independent identical nucleons
 - Protons and neutrons not distinguished

A-body Schrödinger equation

 $H_0 |\Phi_a\rangle = E_a |\Phi_a\rangle$

$$egin{aligned} \mathcal{E}_{a} &= \sum_{i=1}^{A} \epsilon_{a_{i}} \ |\Phi_{a}
angle &= \prod_{i=1}^{A} a_{a_{i}}^{\dagger} |0
angle \end{aligned}$$

- Single particle wavefunctions are orthonormal $\langle \phi_i | \phi_j \rangle = \delta_{ij}$
- Label a refers to a particular choice of the A single particle orbits
- For lowest energy state, $E_0 = \sum_{i=1}^{A} \epsilon_i$
- Basis $\{|\Phi_a\rangle\}$ spans the Hilbert space of the A-body problem
- Can write $|\Psi_k
 angle = \sum_a c_a^k |\Phi_a
 angle$

E >

Many-body problem

Perturbation theory focusing on ground state

•
$$|\Psi_0\rangle = |\Psi_0^{(0)}\rangle + |\Psi_0^{(1)}\rangle + \dots$$

• $|\Psi_0^{(0)}\rangle = |\Phi_0\rangle$
• $|\Psi_0^{(1)}\rangle = \sum_{a\neq 0} \frac{\langle\Phi_0|H_1|\Phi_a\rangle}{E_0^{(0)} - E_a^{(0)}} |\Phi_a\rangle$
• $E = E_0^{(0)} + E_0^{(1)} + \dots$
• $E_0^{(0)} = \langle\Phi_0|H_0|\Phi_0\rangle$
• $E_0^{(1)} = \langle\Phi_0|H_1|\Phi_0\rangle$

Configuration interaction theory

$$|\Psi_k
angle = \sum_a c_a^k |\Phi_a
angle \qquad o \qquad \sum_a c_a^k H |\Phi_a
angle = \sum_b c_b^k E_k |\Phi_b
angle$$

• Multiply from left by arbitrary $\langle \Phi_b |$ to get line *b* of matrix equation

$$\sum_{a} \langle \Phi_b | \mathcal{H} | \Phi_a \rangle c_a^k = E_k c_b^k$$

• Either way, matrix elements of H are ingredients of the calculation

< 3 b

Many-body problem

Perturbation theory focusing on ground state

•
$$|\Psi_0\rangle = |\Psi_0^{(0)}\rangle + |\Psi_0^{(1)}\rangle + \dots$$

• $|\Psi_0^{(0)}\rangle = |\Phi_0\rangle$
• $|\Psi_0^{(1)}\rangle = \sum_{a\neq 0} \frac{\langle\Phi_0|H_1|\Phi_a\rangle}{E_0^{(0)} - E_a^{(0)}} |\Phi_a\rangle$
• $E = E_0^{(0)} + E_0^{(1)} + \dots$
• $E_0^{(0)} = \langle\Phi_0|H_0|\Phi_0\rangle$
• $E_0^{(1)} = \langle\Phi_0|H_1|\Phi_0\rangle$

Configuration interaction theory

$$|\Psi_k
angle = \sum_a c_a^k |\Phi_a
angle \qquad o \qquad \sum_a c_a^k H |\Phi_a
angle = \sum_b c_b^k E_k |\Phi_b
angle$$

• Multiply from left by arbitrary $\langle \Phi_b |$ to get line *b* of matrix equation

$$\sum_{a} \langle \Phi_{b} | H | \Phi_{a} \rangle c_{a}^{k} = E_{k} c_{b}^{k}$$

• Either way, matrix elements of H are ingredients of the calculation

< ∃ >

E

CI matrix formulation

$$\begin{pmatrix} \langle \Phi_{0} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{0} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{0} | V_{ms} | \Phi_{basis} \rangle \\ \langle \Phi_{1} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{1} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{1} | V_{ms} | \Phi_{basis} \rangle \\ \langle \Phi_{2} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{2} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{2} | V_{ms} | \Phi_{basis} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \Phi_{basis} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{basis} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{basis} | V_{ms} | \Phi_{basis} \rangle \end{pmatrix} \begin{pmatrix} c_{0}^{k} \\ c_{1}^{k} \\ c_{2}^{k} \\ \vdots \\ c_{basis} \end{pmatrix} = E_{k} \begin{pmatrix} c_{0}^{k} \\ c_{1}^{k} \\ c_{2}^{k} \\ \vdots \\ c_{basis} \end{pmatrix}$$

• Example (diagonal)

$$egin{aligned} \Phi_{a}|T|\Phi_{a}
angle &=\sum_{i,j=1}^{basis}\langle\Phi_{a}|t_{ij}a_{i}^{\dagger}a_{j}|\Phi_{a}
angle \ &=\sum_{i=1}^{basis}\langle\Phi_{a}|t_{ii}a_{i}^{\dagger}a_{i}|\Phi_{a}
angle \ &=\sum_{i=1}^{A}t_{ii} \end{aligned}$$

• Still impossible to solve without truncation

< ∃ >

E

CI matrix formulation

$$\begin{pmatrix} \langle \Phi_{0} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{0} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{0} | V_{ms} | \Phi_{basis} \rangle \\ \langle \Phi_{1} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{1} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{1} | V_{ms} | \Phi_{basis} \rangle \\ \langle \Phi_{2} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{2} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{2} | V_{ms} | \Phi_{basis} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \Phi_{basis} | V_{ms} | \Phi_{0} \rangle & \langle \Phi_{basis} | V_{ms} | \Phi_{1} \rangle & \cdots & \langle \Phi_{basis} | V_{ms} | \Phi_{basis} \rangle \end{pmatrix} \begin{pmatrix} c_{0}^{k} \\ c_{1}^{k} \\ c_{2}^{k} \\ \vdots \\ c_{basis} \end{pmatrix} = E_{k} \begin{pmatrix} c_{0}^{k} \\ c_{1}^{k} \\ c_{2}^{k} \\ \vdots \\ c_{basis} \end{pmatrix}$$

• Example (diagonal)

$$egin{aligned} \Phi_{a}|T|\Phi_{a}
angle &=\sum_{i,j=1}^{basis} \langle \Phi_{a}|t_{ij}a_{i}^{\dagger}a_{j}|\Phi_{a}
angle \ &=\sum_{i=1}^{basis} \langle \Phi_{a}|t_{ii}a_{i}^{\dagger}a_{i}|\Phi_{a}
angle \ &=\sum_{i=1}^{A} t_{ii} \end{aligned}$$

• Still impossible to solve without truncation

Center of mass motion

- Interested only in internal structure of nucleus
- Rewrite Hamiltonian $H = H_{cm} + H_{int}$ (separate out center of mass)

• For
$$T = \frac{1}{2m} \sum_{i=1}^{A} p_i^2$$

• Introduce $\vec{Q} \equiv \sum_{i=1}^{A} \vec{p}_i$ and $\vec{q}_i = \vec{p}_i - \frac{\vec{Q}}{A}$
• $T_{cm} = \frac{1}{2mA} Q^2$
• $T_{int} = \frac{1}{2m} \sum_{i=1}^{A} q_i^2$

- In general: hard to separate potential into similar components V_{cm} and V_{int}
- Can be done algebraically for harmonic oscillator potential
- Introducing $\vec{R} \equiv \frac{1}{A} \sum_{i}^{A} \vec{r}_{i}$ • $H_{cm} = \frac{1}{2mA} Q^{2} + \frac{1}{2} Am\omega^{2} R^{2}$ • $|\Psi\rangle = |\Psi_{int}\rangle |\Psi_{cm}\rangle, E = E_{int} + E_{cm}$
 - In the ground state, $\langle \Psi | H_{cm} | \Psi \rangle = \frac{3}{2} \hbar \omega$
- Must account for this contribution to determine internal energies.

Image: A matrix

Spurious States

- Solutions to the Schrödinger equation which do not describe internal structure
- Especially problematic in large model spaces (multiple oscillator shells)
- Excitations of center of mass wavefunction result in spurious states
- Ground state of even-even nucleus with $J^{\pi}=0^+$
 - Spurious state $J^{\pi}=1^{-}$ from excited center of mass
 - Infinite number of states (to high energy)

(4月) (4日) (4日)

Angular momentum coupling

- Coupling of angular momentum \vec{J}_1 and \vec{J}_2 to \vec{J}
 - Triangle condition leads to $J_{min} = |J_1 J_2|$ and $J_{max} = J_1 + J_2$
 - Wavefunction associated with coupled J written in terms of $|J_1M_1J_2M_2
 angle$

$$|J_1J_2JM\rangle = \sum_{M_1M_2} \langle J_1M_1J_2M_2|JM\rangle |J_1M_1J_2M_2\rangle$$

- Clebsch-Gordan coefficients $\langle J_1 M_1 J_2 M_2 | JM \rangle$
- Can employ Clebsch-Gordan coefficients to couple many-body wavefunctions Require $M_1 + M_2 = M$ for non-zero coupling
- Can write in terms of 3*j* symbols
- Coupling three angular momenta requires 6*j*, four requires 9*j*, etc.

Many-body wavefunctions

• *m*-scheme

$$M=\sum_{i=1}^A m_i$$

- Hamiltonian is diagonal in M since M is conserved quantity
- Use basis $\{|\Phi\rangle\}$ with good *M* value (but not necessarily good *J*)
- Determine J from $\hat{J}^2 |\Psi
 angle = J(J+1) |\Psi
 angle$
- All values of J with $J \ge M$ are found in one calculation
- Infinite basis can be truncated

• J-scheme

- Reduce the dimension of the problem by limiting to states with good J
- Calculation performed for each J value
- More advantageous for lower J values
- In both cases, determine T from $\hat{T}^2 |\Psi\rangle = T(T+1) |\Psi\rangle$

	h	~			
Т	n	е	0	r	

∃ >

Outline

2 Aside: review of quantum mechanics/nuclear physics

3 CI treatment of nuclear many-body problem

CI Theory	Aside: review	CI Solution	Practical implementation of CI theory
Partitions			

- Complicated many-body wavefunction: sum over simple Slater determinants
- Each Slater determinant is one configuration in reduced model space
- Configuration corresponds to a partition of valence nucleons into available orbits
- Number of partitions determined by number of valence protons and neutrons
- Truncations possible by limiting partitions in the calculation
 - Explicitly done through the use of restrictions in 'lpe' option of 'shell'
 - See Lecture III and Tutorial III for more details

Simple example

- Two neutrons in *sd* shell (¹⁸O)
- Six possible partitions:

nℓ(2j)	0 <i>d</i> 5	0d3	1 <i>s</i> 1
	2	0	0
	1	1	0
	1	0	1
	0	2	0
	0	1	1
	0	0	2

- Can determine *m*-scheme dimension D(M) and *J*-scheme dimension $\mathcal{D}(J)$
- Each partition P has its own values $D^{P}(M)$ and $\mathcal{D}^{P}(J)$

$$\mathcal{D}^{\mathcal{P}}(J) = \mathcal{D}^{\mathcal{P}}(M = J) - \mathcal{D}^{\mathcal{P}}(M = J + 1)$$

Model space dimensions given by sum over partitions

$$D(M) = \sum_{P} D^{P}(M)$$
$$D(J) = \sum_{P} D^{P}(J)$$

Aside: review

CI Solution

(* E) * E)

Э

Counting possibilities to determine dimensions

 $\bullet\,$ For partition with both neutrons in $0{\it d}_{5/2}$ orbit, ${\it P}=(0{\it d}_{5/2})^2\equiv 5_2$

$$M = \sum_{i} m_{i}$$

• Ways to produce M = 0

2 <i>m</i>	+5	+3	+1	-1	-3	-5
	1	0	0	0	0	1
	0	1	0	0	1	0
	0	0	1	1	0	0

• Ways to produce M = 1

2 <i>m</i>	+5	+3	+1	-1	-3	-5
	1	0	0	0	1	0
	0	1	0	1	0	0

Aside: review

CI Solution

- 4 ⊒ →

3

Counting possibilities to determine dimensions

 $\bullet\,$ For partition with both neutrons in $0{\it d}_{5/2}$ orbit, ${\it P}=(0{\it d}_{5/2})^2\equiv 5_2$

М	$D^{5_2}(M)$
0	3
1	2 2
2	2
3 4	1
4	1
-4	1
-3	1
-2	2 2
-1	2

- In general, don't need to calculate both M and -M since $D^{P}(M) = D^{P}(-M)$
- Check all configurations are accounted for

$$\binom{6}{2} = 15 = \sum_{M} D^{5_2}(M)$$

Aside: review

CI Solution

Counting possibilities to determine dimensions

 $\bullet\,$ For partition with both neutrons in $0{\it d}_{5/2}$ orbit, ${\it P}=(0{\it d}_{5/2})^2\equiv 5_2$

М	$D^{5_2}(M)$
0	3
1	2
2	2
3 4	1
4	1
-4	1
-3	1
-2	2 2
-1	2

- $\mathcal{D}^{5_2}(J) = D^{5_2}(M = J) D^{5_2}(M = J + 1)$
- Only nonzero values: $\mathcal{D}^{5_2}(J=0) = \mathcal{D}^{5_2}(J=2) = \mathcal{D}^{5_2}(J=4) = 1$
- Significant reduction in dimension for J-scheme

Aside: review

CI Solution

Counting possibilities to determine dimensions

• Determine dimension for all partitions, sum over to find

М	D(M)
0	14
1	11
2	9
3	4
4	2
-4	2
-3	4
-2	9
-1	11

- $\sum_{M} D(M)$ corresponds to $\binom{12}{2} = 66$ as expected
- $\bullet\,$ Full CI calculation for ^{18}O produces 14 states from $\sum_{I}\mathcal{D}(J)$
- In agreement with result shown in Lecture I

	The	
	I he	٥r١

CI Solution

Realistic example

- ⁴⁸Cr in *pf* model space (four protons and four neutrons)
- 31 partitions for each type of nucleon
- Can determine $\mathcal{D}_p(J)$ and $\mathcal{D}_n(J)$ as shown previously
- Of course, $\mathcal{D}_p(J) = \mathcal{D}_n(J)$ in this case
- Must include all possibilities $\vec{J} = \vec{J}_p + \vec{J}_n$
- For simplest J = 0 example²:

$$\mathcal{D}(J=0) = \sum_{J_i} \mathcal{D}_{\rho}(J_i) \mathcal{D}_n(J_i)$$

J	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{D}_p(J)$	28	54	94	91	99	75	59	33	22	7	3
$ \begin{array}{c} \mathcal{D}_p(J) \\ \mathcal{D}_n(J) \end{array} $	28	54	94	91	99	75	59	33	22	7	3

• D(J = 0) = 41,355 in total

²Courtesy of Alex Brown

CI Theory	Aside: review	CI Solution	Practical implementation of CI theory
⁴⁸ Cr (continued)			

• Performing similar steps while accounting for coupling of \vec{J}_p and \vec{J}_n

$$\mathcal{D}(J = 0) = 41,355$$

 $\mathcal{D}(J = 1) = 118,269$
 $\mathcal{D}(J = 2) = 182,242$

•
$$D(M) = \sum_{J \ge M} \mathcal{D}(J)$$

- D(M = 0) = 1,963,461
- \bullet Dimension of the problem $\approx 2\cdot 10^6$
 - Diagonalize H to get eigenvalues E
 - H is a sparse matrix \rightarrow algorithms available
 - Matrix multiplication u = Hv
 - In *m*-scheme, u, v have 1,963,461 components for ⁴⁸Cr
 - In J-scheme, u, v have 41,355 components for J = 0 states of ⁴⁸Cr
- NUSHELLX solves ten lowest J = 0 states in ≈ 1 minute (standard laptop)

- *sd* shell: 10⁵
- *pf* shell: 10⁹
- *jj*44 model space $(1p_{3/2}, 1p_{1/2}, 0f_{5/2}, 0g_{9/2})$: 10^{11}

• Approximate time corresponding to longest calculation

- Level scheme for ²⁸Si in about an hour
- Level scheme for ⁵⁶Ni in days
- Level scheme for ⁷⁸Y in weeks
- Need parallelization or patience
- Also exceed memory requirements as mass and model space increase
- Need truncations or other alternatives

- *sd* shell: 10⁵
- *pf* shell: 10⁹
- *jj*44 model space $(1p_{3/2}, 1p_{1/2}, 0f_{5/2}, 0g_{9/2})$: 10^{11}
- Approximate time corresponding to longest calculation
 - Level scheme for ²⁸Si in about an hour
 - Level scheme for ⁵⁶Ni in days
 - Level scheme for ⁷⁸Y in weeks
- Need parallelization or patience
- Also exceed memory requirements as mass and model space increase
- Need truncations or other alternatives

- *sd* shell: 10⁵
- *pf* shell: 10⁹
- *jj*44 model space $(1p_{3/2}, 1p_{1/2}, 0f_{5/2}, 0g_{9/2})$: 10^{11}
- Approximate time corresponding to longest calculation
 - Level scheme for ²⁸Si in about an hour
 - Level scheme for ⁵⁶Ni in days
 - Level scheme for ⁷⁸Y in weeks
- Need parallelization or patience
- Also exceed memory requirements as mass and model space increase
- Need truncations or other alternatives

- *sd* shell: 10⁵
- *pf* shell: 10⁹
- *jj*44 model space $(1p_{3/2}, 1p_{1/2}, 0f_{5/2}, 0g_{9/2})$: 10^{11}
- Approximate time corresponding to longest calculation
 - Level scheme for ²⁸Si in about an hour
 - Level scheme for ⁵⁶Ni in days
 - Level scheme for ⁷⁸Y in weeks
- Need parallelization or patience
- Also exceed memory requirements as mass and model space increase
- Need truncations or other alternatives