Introduction to NUSHELLX and transitions

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

Lecture 4, 24 April 2012

◆□▶ ◆舂▶ ★逹▶ ★逹▶ ─ 逹 ─

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Outline				

- 3 Electromagnetic transitions
- 4 Spectroscopic factors
- 5 Two-nucleon transfer/ other reaction model inputs

글 > 글

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Outline				

1 Introduction

2 β decay

3 Electromagnetic transitions

④ Spectroscopic factors

5 Two-nucleon transfer/ other reaction model inputs

≣ ▶

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Review				

- Level schemes covered in Lecture III
 - Calculate energies and wavefunctions with 'lpe' option of 'shell'
 - NUSHELLX provides output in *.lpe,*.lpt, and *.eps files
- From the wavefunction, can determine many properties of interest
 - β decay
 - 2 Electromagnetic transitions
 - Spectroscopic information
 - **(**) . . .
- Only need to know the appropriate operator
 - Like the Hamiltonian, need effective operators in the reduced model space
 - Requires consistent technique for all operators
 - See Lecture VI for more information
- Typically, phenomenology guides operators in shell model
 - For example, computation of electromagnetic transitions

Effective charges in the sd shell

$$e_p = 1.5e$$

 $e_n = 0.5e$

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Review				

- Level schemes covered in Lecture III
 - Calculate energies and wavefunctions with 'lpe' option of 'shell'
 - NUSHELLX provides output in *.lpe,*.lpt, and *.eps files
- From the wavefunction, can determine many properties of interest
 - β decay
 - 2 Electromagnetic transitions
 - Spectroscopic information
 - **(**) . . .

Only need to know the appropriate operator

- · Like the Hamiltonian, need effective operators in the reduced model space
- Requires consistent technique for all operators
- See Lecture VI for more information
- Typically, phenomenology guides operators in shell model
 - For example, computation of electromagnetic transitions

Effective charges in the sd shell

$$e_p = 1.5e$$

 $e_n = 0.5e$

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Review				

- Level schemes covered in Lecture III
 - Calculate energies and wavefunctions with 'lpe' option of 'shell'
 - NUSHELLX provides output in *.lpe,*.lpt, and *.eps files
- From the wavefunction, can determine many properties of interest
 - β decay
 - 2 Electromagnetic transitions
 - Spectroscopic information
 - **(**) . . .
- Only need to know the appropriate operator
 - Like the Hamiltonian, need effective operators in the reduced model space
 - Requires consistent technique for all operators
 - See Lecture VI for more information
- Typically, phenomenology guides operators in shell model
 - For example, computation of electromagnetic transitions

Effective charges in the sd shell

$$e_p = 1.5e$$

 $e_n = 0.5e$

Introduction					
	m	ror	IIIC	tin	

 β decay

One-body transition densities

- One-body transition densities (OBTD)
 - Provide the information to calculate matrix elements of one-body operators
 - Ompact, convenient form
 - **(1)** Different in *J*-scheme and *m*-scheme (only present *J*-scheme here)
 - O Different in isospin and proton-neutron formalism (see Lecture 3 for definitions)
 - Only present simpler proton-neutron equations in lecture
- $\bullet\,$ Given a one-body tensor operator of rank λ

$$O^{\lambda} = \sum_{ij} \langle i | O^{\lambda} | j \rangle a_i^{\dagger} a_j$$

in a reduced model space with unique values of ℓ,j

One-body transition densities between many-body states

$$\begin{aligned} \mathsf{OBTD}(i,j,k,k',\lambda) &= \sum_{k'' \in A-1} (-1)^{J_k + J_{k''} + \lambda - j_j} \begin{cases} J_{k'} & J_k & \lambda \\ j_i & j_j & J_{k''} \end{cases} \\ & \times \langle \Psi_k || a_i^{\dagger} || \Psi_{k''} \rangle \langle \Psi_{k'} || a_j^{\dagger} || \Psi_{k''} \rangle \end{aligned}$$

- Product of 6j coefficients and reduced matrix elements
- Related to coefficients of fractional parentage (CFP) (full derivation not included)

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

One-body transition densities

- Write reduced matrix element between many-body states as a product of
 - OBTD
 - Reduced matrix elements between single particle states

$$\langle \Psi_k | \mathcal{O}^{\lambda} | \Psi_{k'}
angle = \sum_{ij} \mathsf{OBTD}(i, j, k, k', \lambda) \langle i || \mathcal{O}^{\lambda} || j
angle$$

- Formalism looks complex, but greatly simplifies the many-body problem
- NUSHELLX calculates all OBTD between selected initial and final states
 - With 'den' option of 'shell'
 - In appropriate formalism (only proton-neutron shown here)
- Reduced single particle matrix elements
 - Calculated by 'dens' executable
 - Automatically run by NUSHELLX in many cases (B(E2), B(GT), etc.)

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

One-body transition densities

- Write reduced matrix element between many-body states as a product of
 - OBTD
 - Reduced matrix elements between single particle states

$$\langle \Psi_k | O^{\lambda} | \Psi_{k'}
angle = \sum_{ij} \mathsf{OBTD}(i, j, k, k', \lambda) \langle i || O^{\lambda} || j
angle$$

- Formalism looks complex, but greatly simplifies the many-body problem
- NUSHELLX calculates all OBTD between selected initial and final states
 - With 'den' option of 'shell'
 - In appropriate formalism (only proton-neutron shown here)
- Reduced single particle matrix elements
 - Calculated by 'dens' executable
 - Automatically run by NUSHELLX in many cases (B(E2), B(GT), etc.)

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

One-body transition densities

- Write reduced matrix element between many-body states as a product of
 - OBTD
 - Reduced matrix elements between single particle states

$$\langle \Psi_k | \mathcal{O}^{\lambda} | \Psi_{k'}
angle = \sum_{ij} \mathsf{OBTD}(i, j, k, k', \lambda) \langle i || \mathcal{O}^{\lambda} || j
angle$$

- Formalism looks complex, but greatly simplifies the many-body problem
- NUSHELLX calculates all OBTD between selected initial and final states
 - With 'den' option of 'shell'
 - In appropriate formalism (only proton-neutron shown here)
- Reduced single particle matrix elements
 - Calculated by 'dens' executable
 - Automatically run by NUSHELLX in many cases (B(E2), B(GT), etc.)

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Outline				

Introduction

(2) β decay

3 Electromagnetic transitions

④ Spectroscopic factors

5 Two-nucleon transfer/ other reaction model inputs

≣ ▶

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Introduction				

- Primary method of decay for ground states of nuclei accessible with CI theory
 - β^{\pm} decay converts a nucleus with (Z, A) to (Z \mp 1, A)
 - β^+ decay can also proceed by electron capture (EC)
- Mediated by weak interaction in the form of W bosons
- Will only deal with so-called "allowed" decays
 - In the second second
 - Not an actual selection rule- just dominant mode (by orders of magnitude)
 - Two types: Fermi and Gamow-Teller decay
- Q-value for β^{\pm} decay (ignoring electron binding energies)

$$BE(A, Z_f) - BE(A, Z_i) \mp \delta_{nH} - m_e c^2 x$$

where

 $\delta_{nH} = 0.782 MeV$ mass difference between neutron and Hydrogen atom

- x = 2 for β^+
- x = 0 for electron capture and β^-

Fermi and Gamow-Teller decay

$$O(F_{\pm}) = \sum_{a=1}^{A} t_{a\pm} \qquad \qquad O(GT_{\pm}) = \sum_{a=1}^{A} \sigma_a t_{a\pm}$$

a index refers to all nucleons in the many-body system

- Fermi decay

 - **Q** $\Delta T = 0$ (recall from Lecture II: isospin treated as good quantum number)

$$B_{k,k'}(F_{\pm}) = |\langle \Psi_k | O(F_{\pm}) | \Psi_{k'} \rangle|^2$$

= $[T_k(T_k + 1) - T_{zk}(T_{zk} \pm 1)] \delta_{J_k J_{k'}} \delta_{M_k M_{k'}} \delta_{T_k T_{k'}}$

Only connects isobaric analogue states!

- Gamow-Teller decay
 - $\begin{array}{l} \bullet \quad \Delta J = 0, 1 \\ \bullet \quad \Delta T = 0, 1 \text{ (isospin is good quantum number)} \end{array}$

$$B_{k,k'}(GT_{\pm}) = \frac{|\langle \Psi_k || O(GT_{\pm}) || \Psi_{k'} \rangle|^2}{2J_{k'} + 1} \equiv \frac{[M_{k,k'}(GT_{\pm})]^2}{2J_{k'} + 1}$$
$$= \sum_{ij} \langle i || \sigma t_{\pm} || j \rangle \mathsf{OBTD}(i,j,k,k',1)$$

Half-life $t_{1/2}$ typically quoted in terms of ft values given by

$$ft_{1/2}^{k,k'} = \frac{C}{B_{k,k'}(F_{\pm}) + (g_A/g_V)^2 B_{k,k'}(GT_{\pm})}$$
where

- f = phase space factor depending on Q-value
- C = constant with the value 6170(4)
- $g_A = axial$ vector coupling constant
- $g_V =$ vector coupling constant
- In QCD, $g_A = -g_V$
- In nuclear physics, typically use value fit to neutron decay $|g_A/g_V| = 1.261(8)$

∢ 글 ▶ - 글

Comparison of experimental M(GT) in sd shell to empirical interactions¹

- On left:
 - "bare" coupling constants
 - From neutron decay

• On right:

- Least squares fit
- As in QCD, $|g_A/g_V| pprox 1$

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Outline				

Introduction

2 β decay

④ Spectroscopic factors

5 Two-nucleon transfer/ other reaction model inputs

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Introduction				

- Most common method of decay for low-lying excited states of nuclei
- Decay occurs within two states of same nucleus
- \bullet Mediated by electromagnetic interaction in the form of γ rays
- $\bullet\,$ Sum of electric and magnetic multipole operators of tensor rank λ

$$O = \sum_{\lambda\mu} \left[O(E\lambda)_{\mu} + O(M\lambda)_{\mu} \right]$$
$$O(E\lambda)_{\mu} = r^{\lambda} Y_{\mu}^{\lambda}(\hat{r}) e_{t_{z}}$$
$$O(M\lambda)_{\mu} = \sqrt{\lambda(2\lambda+1)} r^{\lambda-1} \mu_{N} \left[\frac{2g_{t_{z}}^{\ell}}{\lambda+1} [Y^{\lambda-1} \otimes \vec{\ell}]_{\mu}^{\lambda} + g_{t_{z}}^{s} [Y^{\lambda-1} \otimes \vec{s}] \right]$$

• Free nucleon values:

$$e_p = 1$$
 $g_p^{\ell} = 1$ $g_p^{s} = 5.586$
 $e_n = 0$ $g_n^{\ell} = 0$ $g_p^{n} = -3.826$

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Reduced tra	nsitions			

• As described above

$$\langle \Psi_k | O^{\lambda} | \Psi_{k'}
angle = \sum_{ij} \mathsf{OBTD}(i, j, k, k', \lambda) \langle i || O^{\lambda} || j
angle$$

 \bullet Like the example for β decay, reduced matrix elements easy to find

 $\langle i || O(E\lambda) || j \rangle$ $\langle i || O(M\lambda) || j \rangle$

- Calculated by 'dens' executable
- With the necessary selection rules, refer to reduced transition probability B

$$B(X\lambda;k'
ightarrow k) = rac{|\langle J_k||O(X\lambda)||J_{k'}
angle|^2}{2J_{k'}+1}$$

where

$$X = E$$
 or M

글 > 글

Introduction β decay Electromagnetic transitions Spe

Reduced transitions

$${\mathcal B}(X\lambda;k' o k)=rac{|\langle\Psi_k||{\mathcal O}(X\lambda)||\Psi_{k'}
angle|^2}{2J_{k'}+1}\equivrac{[M_{k,k'}(X\lambda)]^2}{2J_{k'}+1}$$

- Reduced matrix element is symmetric between initial and final state
- Reduced transition probability depends on direction

$$B(X\lambda; \mathbf{k} \to \mathbf{k}') = \frac{2J_{\mathbf{k}'} + 1}{2J_{\mathbf{k}} + 1} B(X\lambda; \mathbf{k}' \to \mathbf{k})$$

- Most common for shell model
 - B(E2) (also provides quadrupole moment)
 - B(M1) (also provides magnetic moment)
- Experimentally, B(E2) transitions are usually published
 - For Coulomb excitation: $B(E2;\uparrow) \equiv B(E2;0^+_1 \rightarrow 2^+_1)$
 - For γ decay: $B(E2;\downarrow)\equiv B(E2;2^+_1
 ightarrow 0^+_1)$

Comparison of experimental M(E2) in sd shell to empirical interactions²

• Phenomenological effective charges for the sd shell $(e_p \approx 1.5e, e_n \approx 0.5e)$

Comparison of experimental M(M1) in sd shell to empirical interactions³

- On left:
 - Free nucleon g-factors

• On right:

- Least squares fit
- $g_{\rho}^{\ell} = 1.16, g_{n}^{\ell} = -0.09$ $g_{\rho}^{s} = 5.15, g_{n}^{s} = -3.55$ Less affected than charge

³Courtesy of Alex Brown; from W.A. Richter et al., Phys. Rev. C 78, 064302 (2008)

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Outline				

Introduction

2 β decay

3 Electromagnetic transitions

O Spectroscopic factors

5 Two-nucleon transfer/ other reaction model inputs

< ∃ >

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Spectroscopi	c factors			

- Common notation- not employed by NUSHELLX
- Briefly mentioned in Lecture 1 before developing formalism
- Basis-independent, but not observable
- Spectroscopic probability matrices

$$\mathcal{S}_{k}^{+ij}\equiv\langle\Psi_{0}^{\mathcal{A}}|a_{i}|\Psi_{k}^{\mathcal{A}+1}
angle\langle\Psi_{k}^{\mathcal{A}+1}|a_{j}^{\dagger}|\Psi_{0}^{\mathcal{A}}
angle$$

and

$$S_{k'}^{-ij}\equiv \langle \Psi_0^A|a_j^\dagger|\Psi_{k'}^{A-1}
angle\langle \Psi_{k'}^{A-1}|a_i|\Psi_0^A
angle$$

- Spectroscopic factors found from tracing spectroscopic probability matrices
- In reduced model space, recover typical "definitions"

$$SF_k^+\equiv |\langle \Psi_k^{A+1}|a_i^\dagger|\Psi_0^A
angle|^2$$

and

$$SF_{k'}^{-}\equiv |\langle \Psi_{k'}^{A-1}|a_{j}|\Psi_{0}^{A}
angle |^{2}$$

Effective single particle energies (ESPE)

- Common notation- not employed by NUSHELLX
- Basis-independent, but not observable
- Requires summation over particle and hole states as described by Baranger⁴
- Solution to eigenvalue problem $h^{cent}\psi_i^{cent}=e_i^{cent}\psi_i^{cent}$, where

$$h_{ij}^{cent} \equiv \sum_{k \in \mathcal{H}_{A+1}} S_k^{+ij} (E_k^{A+1} - E_0) + \sum_{k \in \mathcal{H}_{A-1}} S_k^{-ij} (E_0 - E_k^{A-1})$$

• In reduced model space, recover

$$e_i^{cent} = \epsilon = \sum_{k \in \mathcal{H}_{A+1}} SF_k^+ (E_k^{A+1} - E_0) + \sum_{k \in \mathcal{H}_{A-1}} SF_k^- (E_0 - E_k^{A-1})$$

• Are ESPE observable? Can they be defined in absolute terms?⁵

⁴M. Baranger, Nucl. Phys. A **149**, 225 (1970)

Notation in NUSHELLX

• Written explicitly with dependence on isospin

$$C^{2}S_{k}^{+} = |\langle TT_{z}|T'T_{z}'tt_{z}\rangle|^{2} \frac{|\langle \Psi_{k}^{A+1}|||a_{i}^{\dagger}|||\Psi_{k'}^{A}\rangle|^{2}}{(2J+1)(2T+1)}$$

$$C^2 S_k^- = |\langle TT_z | T'T'_z tt_z \rangle|^2 \frac{|\langle \Psi_k^A |||a_i^{\dagger}|||\Psi_{k'}^{A-1} \rangle|^2}{(2J+1)(2T+1)}$$

• Sum of spectroscopic strength for an orbit *i*

$$(2j_i+1) = \sum_{k \in \mathcal{H}_{A+1}} rac{2J_k+1}{2J_0+1} C^2 S_k^+ + \sum_{k \in \mathcal{H}_{A-1}} C^2 S_k^-$$

• ESPE in reduced model space

$$(2j_i+1)e_i^{cent} = (2j_i+1)\epsilon = \sum_{k \in \mathcal{H}_{A+1}} \frac{2J_k+1}{2J_0+1}C^2S_k^+E_k^+ + \sum_{k \in \mathcal{H}_{A-1}}C^2S_k^-E_k^-$$

• Consistent treatment is required

Comparison of experimental C^2S in sd shell to empirical interactions⁶

• Good agreement between all interactions and with experiment < \equiv > <

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Exotic behav	vior			

- Enhanced stability near the neutron dripline for oxygen isotopes
- New "shell closures" at N = 14 and N = 16
- Evaluate typical truncation procedures in isotopic chain
- Must understand effect of experimental limitations
- Truncate Baranger sum rule in reduced model space

$$\epsilon^{\text{trunc}} \equiv \frac{\sum\limits_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum\limits_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- In terms of spectroscopic strength SF^{\pm}
- In terms of excitation energy E_k^{\pm}

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Exotic behav	ior			

- Enhanced stability near the neutron dripline for oxygen isotopes
- New "shell closures" at N = 14 and N = 16
- Evaluate typical truncation procedures in isotopic chain
- Must understand effect of experimental limitations
- Truncate Baranger sum rule in reduced model space

$$\epsilon^{\text{trunc}} \equiv \frac{\sum\limits_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum\limits_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- In terms of spectroscopic strength SF^{\pm}
- In terms of excitation energy E_k^{\pm}

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Exotic behav	vior			

- Enhanced stability near the neutron dripline for oxygen isotopes
- New "shell closures" at N = 14 and N = 16
- Evaluate typical truncation procedures in isotopic chain
- Must understand effect of experimental limitations
- Truncate Baranger sum rule in reduced model space

$$\epsilon^{\text{trunc}} \equiv \frac{\sum\limits_{k}^{\text{trunc}} (SF_k^+ E_k^+ + SF_k^- E_k^-)}{\sum\limits_{k}^{\text{trunc}} (SF_k^+ + SF_k^-)}$$

- $\bullet\,$ In terms of spectroscopic strength ${\it SF}^{\pm}$
- In terms of excitation energy $\vec{E_k^{\pm}}$

 β decay

Electromagnetic transitions

Spectroscopic factors

Reaction model inputs

Evolution of single particle shell structure

Isotope	$E_{2_1^+}(th.)$	$E_{2_{1}^{+}}(exp.)$	$SF_0^{-/+}$	$\Delta e_{\rm F}^{ m ESPE}$	Characterization
²⁰ O	1.87	1.67	0.58/0.34	0.00	Open-shell
²² 0	2.92	3.20	0.82/0.76	2.63	Closed-subshell
²⁴ 0	4.78	4.72	0.89/0.92	4.74	Good closed-shell

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

Truncation in spectroscopic strength

• A. Signoracci, T. Duguet, unpublished

 \bullet Open-shell \rightarrow both addition and removal channels required

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

Truncation in spectroscopic strength

• A. Signoracci, T. Duguet, unpublished

- $\bullet~\mbox{Closed-subshell}$ \rightarrow 500 keV effect from lowest state of secondary channel
- Spin-orbit splitting affected by over 1 MeV by exclusion of secondary channel

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

Truncation in spectroscopic strength

• A. Signoracci, T. Duguet, unpublished

- $\bullet~\text{Good}$ closed-shell \rightarrow 500 keV effect from secondary channel
- \bullet Need to include all SF ≥ 0.01 for desired precision

Error based on truncation

S_{trunc}

- In all experiments, truncation in excitation energy and SF is necessary
- Effect on $0d_{3/2}$ ESPE is 600 keV for $E_{\rm trunc} \leq 3$ or $SF_{\rm trunc} \geq 0.04$

∃ ⊳

Error based on truncation

S_{trunc}

• Fermi gap can vary by 1 MeV for reasonable experimental conditions

Introduction	eta decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs
Outline				

Introduction

2 β decay

3 Electromagnetic transitions

④ Spectroscopic factors

5 Two-nucleon transfer/ other reaction model inputs

< ∃ >

э

Introduction	β decay	Electromagnetic transitions	Spectroscopic factors	Reaction model inputs

Two-nucleon transfer

- Especially important decay mode near driplines
- Cannot reduce nuclear structure component to a simple number
- Requires the use of two-body transition operators (TBTD)
 - Formalism not presented here
 - Too complicated and less commonly utilized by practitioners
- No examples in tutorial sessions
 - Similar to procedure for one-nucleon transfer (spectroscopic factor)
 - Output in * tha file displays two-nucleon transfer amplitudes
- Typically used as input in reaction code calculation
 - Interference effects are important
 - Must be consistent in phase convention for wavefunctions

Reaction model calculations

Common quantities utilized in reaction calculations

- Spectroscopic factors (calculated with 'den' option of 'shell')
- Two-nucleon amplitudes (calculated with 'den' option of 'shell')
- Single particle energies
 - Determine effective single particle energies by Baranger formula
 - Determine Skyrme, HO, or Woods-Saxon mean field SPE with 'dens' executable
- Single particle wavefunctions (calculated with 'dens' executable)
- Windows version includes executable for coupled-channels reaction code FRESCO
- Many, many more possibilities
 - Learn by trial and error
 - Ask for more information relevant to your research