Introduction to NUSHELLX

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

Lecture 3, 24 April 2012

◆□▶ ◆圖▶ ★필▶ ★필▶ - 필

- ∢ ≣ ▶

< - 10 ▶

э

NUSHELLX shell model code

Inputs for calculation

- 4 ∃ →

< 🗇 🕨

э

NUSHELLX shell model code

2 Inputs for calculation

3 Practical Implementation

Brief Review

• Full CI calculations are exact solutions in reduced model space

- Diagonalization of matrix is required
- Dimension depends on angular momentum coupling
- Computational limits typically around $A \sim$ 70, but depends on model space
- Select model space to account for low-energy degrees of freedom
- Interaction required
 - Accounts for dynamics associated with excluded orbits

Shell model codes by Bill Rae

- Bill Rae wrote NuShell and NuShellX codes in previous decade
- NuShell
 - Replaces old shell model code OXBASH
 - JT-projected M-scheme
 - Stores complete matrix, which limits the size of calculations
- NuShellX
 - Calculates Hamiltonian "on the fly"
 - Utilizes NuShell modules for protons and neutrons
 - J-scheme built on coupling between protons and neutrons
- Not identical codes- some advantages for each
- Neither is user friendly

- E - E

NUSHELLX@MSU - Alex Brown

- NuShellX refers to the shell model package written by Bill Rae
- Alex Brown has written a "wrapper" code to simplify input
 - Provides more consistency with I/O of OXBASH
 - NuShellX with the wrapper is called NUSHELLX@MSU
 - Generally will refer to it simply as NUSHELLX
 - Most common NuShellX options available from the "shell" interface
- See manuals in help folder for more information
- Any resulting publications should cite appropriate code and effective interaction
- For examples, see NUSHELLX manual

Treatment of center of mass motion

- Recall that spurious states from center of mass motion must be eliminated
- Only internal structure is desired
- In harmonic oscillator basis

$$H_{cm}=\frac{1}{2mA}Q^2+\frac{1}{2}Am\omega^2R^2$$

- In ground state, $E_{cm}=rac{3}{2}\hbar\omega$
- NUSHELLX adds a fictitious Hamiltonian

$$H_{cm}' = \beta \left\{ \frac{1}{2mA} Q^2 + \frac{1}{2} Am\omega^2 R^2 - \frac{3}{2} \hbar \omega \right\}$$

- Large β by construction
 - Excitations of center of mass occur at high energy
 - I Higher energy than intrinsic excitations of interest
- Center of mass always in ground state
- Fictitious Hamiltonian does not add energy

Technicalities

Conventions

- · Wavefunction is undetermined up to a phase
- Defined as real and positive at the origin
- Does not affect observables
- If used in reaction calculations, definition of phase must be consistent
- Oiagonalization
 - Most time-consuming step in CI calculation is diagonalization
 - OpenMP utilized efficiently, extension to MPI developed
 - Standard linear algebra techniques (e.g. LAPACK) exhaust computing resources
 - Lanczos procedure
 - Iterative technique to convert a sparse matrix into tridiagonal form
 - Tridiagonal matrix can be diagonalized quickly to obtain eigenvalues
 - Approximate technique that can produce spurious states
 - Most typically, spurious states appear for large model spaces

Technicalities

Conventions

- · Wavefunction is undetermined up to a phase
- Defined as real and positive at the origin
- Does not affect observables
- If used in reaction calculations, definition of phase must be consistent

Oiagonalization

- Most time-consuming step in CI calculation is diagonalization
- OpenMP utilized efficiently, extension to MPI developed
- Standard linear algebra techniques (e.g. LAPACK) exhaust computing resources
- Lanczos procedure
 - · Iterative technique to convert a sparse matrix into tridiagonal form
 - Tridiagonal matrix can be diagonalized quickly to obtain eigenvalues
 - Approximate technique that can produce spurious states
 - · Most typically, spurious states appear for large model spaces

- ∢ ≣ ▶

- ∢ 🗇 🕨

э

NUSHELLX shell model code

Inputs for calculation

3 Practical Implementation

Directory structure

• sps folder

- Contains predefined (standard) model space and interaction files
- Listed in label.dat file
 - Available model spaces listed at top of file
 - Each model space is then listed below with available interactions
 - S NUSHELLX naming scheme provided for each combination
 - Provides references for majority of interactions
 - Some mistakes present in label.dat (not for most common files)

• rsh folder

- Suggested location to run calculations (create yourself)
- Output of calculations all written to working directory
 - Old files in the directory can be written over by new calculations
 - Safest to create new subdirectory for each calculation

Most common output files

- I responses to shell prompts *.ans (can modify to run new calculation)
- Wavefunction information *.lpe
- Ievel scheme *.lpt
- In plot comparing experimental data to calculations *.eps
- (i) γ decay scheme *.deo
- spectroscopic factors *.lsf
- Executable 'cleanup' eliminates large binary files used internally by NUSHELLX
 - All important output files remain afterwards
 - Only run 'cleanup' after all calculations in the directory are complete

Model Space

• Two formats: isospin formalism (t) and proton-neutron formalism (pn) Input for sd.sp file

Description	File variables	Explanation for sd case
comment line	! sd.sp	
format	t	isospin formalism
$A_c Z_c$	16 8	core is ¹⁶ O
number of orbits n_o	3	$0d_{5/2}, 0d_{3/2}, 1s_{1/2}$
k,n(k);	13	for t format, $k=1 n(1)=n_o$
index, $n', \ell, 2j$	1123	index starts with 1, $n' = n + 1, 0d_{3/2}$
index, $n', \ell, 2j$	2125	0 <i>d</i> _{5/2}
index, $n', \ell, 2j$	3201	$1s_{1/2}$

- Most NUSHELLX files can start with (any number of) lines commented out by '!'
- Isospin formalism
 - Protons and neutrons identical by construction
 - Occupation of orbit is 2(2j + 1)
- Results in reduced number of TBME relative to proton-neutron formalism and the second secon

Model Space

- Two formats: isospin formalism (t) and proton-neutron formalism (pn)
- Proton-neutron formalism

Description	values in file	Explanation for <i>ppn</i> case
comment line	! ppn.sp	
format	pn	proton-neutron formalism
$A_c Z_c$	4 2	core is ⁴ He
number of orbits n_o	4	$\pi 0 p_{3/2}, \pi 0 p_{1/2}, \nu 0 p_{3/2}, \nu 0 p_{1/2}$
k,n(k);	222	for pn format, k=2 n(1)=n _p n(2)=n _n
index, $n', \ell, 2j$	1113	index starts with 1, $n' = n + 1,0p_{3/2}$
index, $n', \ell, 2j$	2111	$0p_{1/2}$
index, $n', \ell, 2j$	3113	0 <i>p</i> _{3/2}
index, $n', \ell, 2j$	4111	0 <i>p</i> _{1/2}

Input for ppn.sp file

• Most NUSHELLX files can start with (any number of) lines commented out by '!'

▲圖▶ ▲理▶ ▲理▶

3

Image: A matrix

Effective interaction

- List of single particle energies and two-body matrix elements
- Must use indices consistent with *.sp file
- Example in isospin formalism: USD interaction

$\begin{vmatrix} 1 & 1 & 1 & 1 & 0 & 1 & -2.1845 \\ 1 & 1 & 1 & 1 & 1 & 0 & -1.4151 \\ 1 & 1 & 1 & 1 & 2 & 1 & 0.0665 \end{vmatrix}$	0354
1 1 1 1 1 0 -1.4151	
1 1 1 1 3 0 -2.8842	
2 1 1 1 1 0 0.5647	
2 1 1 1 2 1 -0.6149	
2 1 1 1 3 0 2.0337	
2 1 2 1 1 0 -6.5058	

글 에 시 글 어

Effective interaction

- List of single particle energies and two-body matrix elements
- Must use indices consistent with *.sp file
- For proton-neutron interactions:
 - Can produce from isospin interactions (see NUSHELLX manual)
 - Must use unnormalized matrix elements
 - Normalized TBME typically obtained from microscopic interactions
 - 'ham' executable automatically converts to unnormalized TBME

 $\langle (ab)J|V_{ms}|(cd)J
angle_{unnorm}=2^{[1-rac{1}{2}(\delta_{ab}+\delta_{cd})]}\langle (ab)J|V_{ms}|(cd)J
angle_{norm}$

NUSHELLX shell model code

2 Inputs for calculation

< 17 →

▶ < ∃ >

E

Command line

- 'shell' executable
 - Initialize NUSHELLX@MSU wrapper code with executable 'shell'
 - Calculate level schemes with option 'lpe'
 - Energies
 - Wavefunctions
 - Calculate transitions with option 'den'
 - One-body transition densities (OBTD)
 - One-nucleon transfer (spectroscopic factors)
 - Two-nucleon transfer
 - Respond to prompts
 - Most questions are self-explanatory
 - Refer to manual and problem sessions for examples
 - Terminate 'shell' with option 'st'
 - Run batch file as instructed by output of shell
- 'toi' executable
 - Access experimental data from table of isotopes
 - Binding energies, excitation energies, thresholds, etc.
- 'dens' executable
 - Capable of calculating more than we have time to discuss
 - One example: B(E2) from OBTD
 - Somewhat detailed instructions in help option
- 'ham' executable
 - Creates interactions (more information in final slide of Lecture VII)

Practical Implementation

B b d B b

Level schemes

Refer to NUSHELLX manual help.pdf for more detailed description Explicit examples given at beginning of Tutorial I

- Necessary inputs for 'lpe' option of 'shell'
 - Model space
 - Effective interaction
 - Nucleus of interest (charge and mass)
 - States of interest $(J^{\pi} \text{ values})$
- Optional input to truncate model space to speed up diagonalization
 - Answer yes (y) to prompt 'any restrictions (y/n)'
 - Ochoose subshell (s) restrictions
 - Select minimum and maximum number of particles in each model space orbit

Not consistent with derivation of effective interaction!

• Produce level schemes for comparison to experimental data Examples: A = 26 nuclei with USDB interaction

- Only positive-parity experimental states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

A. Signoracci Introduction to NUSHELLX

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

A. Signoracci Introduction to NUSHELLX

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

A. Signoracci Introduction to NUSHELLX

Practical Implementation

- E - E

Transitions

Refer to NUSHELLX manual help.pdf for more detailed description Explicit examples given at beginning of Tutorial I

• Necessary inputs for 'den' option of 'shell'

- Initial and final state wavefunctions must first be calculated with 'lpe' option
 - Lighter mass must always be initial state
 - Only cleanup directory after performing all calculations
 - Nomenclature for wavefunctions can be found in help manual
 - Can also find wavefunction by searching for *.lpe/*.lph files
- Number of eigenfunctions for each value of J^{π}
 - Prompt 'max number for given J'
 - Reply with number up to amount calculated by 'lpe' (or -1 for all)
- J-values (parity taken from name of wavefunction)
- Optional input to truncate angular momentum coupling to shorten calculation
 - Prompt 'restrict coupling for operator'
 - Only use for calculations of transition densities (option 't' of 'den')

Comparison to experiment for various transitions undertaken in Lecture IV