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Ĥ, D̂(t)

i

5

Boundary conditions

Action-like quantity
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Â(t1) = Â1
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Schrödinger equation
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Deep-inelastic collisions

40Ca+40Ca at Ecm=128 MeV
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Deep-inelastic collisions

40Ca+40Ca at Ecm=128 MeV
L=70ħ
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Balian-Vénéroni variational principle
R. Balian and M. Vénéroni, PRL 1981; PLB 1984

=> needs backward TDHF evolution to get ρX(t0,ε) 
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Numerical application of the BV prescription
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Broomfield and Stevenson, JPG 2008
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C.S., PRL (2011)

Deep-inelastic collisions

obtained. Strong variations of the BV fluctuations are
observed in the orbiting region, but there is no clear
relationship with the amount of orbiting quantified by n
in Fig. 1(a). The BV fluctuations are much more important
than the TDHF predictions for damped events. However, at
large L (quasielastic reactions), the BVand TDHF fluctua-
tions are similar.

The evolution of !ZZ with "c:m: is plotted in Fig. 2 for
damped events, and compared with experimental data [24].
TDHF fluctuations show no angular correlation and
strongly underestimate data. BV fluctuations increase
with "c:m: at small angles and form a plateau at large
angles, in qualitative agreement with data. Quantitatively,
the experimental plateau is underestimated. This might be
attributed to fusion-fission events leading to large fluctua-
tions and not included in the calculations. Indeed, the
compound-nucleus fission cross section, estimated to be
!280 mb [24], is not negligible compared to the cross-
section for damped binary events of !570 mb from the
present calculations. Note that this fission cross section
seems reasonable as it corresponds to a fusion-evaporation
cross section of !860 mb (obtained from the difference
between the fusion and fusion-fission cross sections),
which is compatible with data [26]. Because of the iso-
tropic distribution of fission fragments, fusion-fission
would mostly affect large angles in Fig. 2 and may account
for the difference between BV predictions and data. As the

fragments cool down by nucleon emission, their fluctua-
tions might also increase [7]. Although the number of
TDHF iterations is too small to allow a full decay of the
fragments by nucleon emission, we can estimate their
excitation energy E" ’ ðTKELÞ=2 and angular momenta
Jf ’ ðL% LoutÞ=2 [see Fig. 1(b)], assuming equal sharing,
where Lout is the angular momentum between the frag-
ments in the outgoing channel. Calculations using the code
PACE4 [27] with a level density parameter A=7:5 MeV%1

show that the decay of fragments produced in DIC has only
a small effect on !ZZ (see also [16]). However, the average
of the fragment charge distribution after decay goes from
!Z ’ 19 for L ’ 80 down to 18 in the orbiting region while
experimental data give !Z ’ 17 at large angle [24]. This
might also be a signature of fusion-fission events. Indeed,
symmetric fission leads to E" ’ 38:2 MeV according to the
Viola systematics [28], and, then, to more emission of light
particles than in DIC where E" ’ 31 MeV in average in the
orbiting region [see Fig. 1(b)]. Beyond mean-field corre-
lations may also affect these fluctuations.
Fragment mass distributions in 40Caþ 40Ca have been

measured at lower energies, Ec:m: ¼ 98:5 and 115.5 MeV,
where fusion-fission can be neglected [25]. In this experi-
ment, the fragments are associated to almost fully damped
collisions with a sin%1"c:m: dependence of their cross sec-
tion. In the present work, such collisions occur in the
orbiting region for which !AA ’ 9:7 in average. This is in
good agreement with the data which give !AA ’ 11.
In addition to fluctuations, the BV correlations!NZ have

been computed [triangles in Fig. 1(b)]. These finite values
of !NZ are at variance with the TDHF correlations which
are strictly zero because the single-particle states are as-
sumed to have pure isospin. In fact, the probability PðN; ZÞ
to have a fragment with Z and N, in TDHF calculations, is
the product of the probabilities PðZÞPðNÞ to have Z and N,
independently [23]. For instance, in the symmetric colli-
sions studied here, the TDHF probability to have the N ¼
Z 32S nucleus is the same as for the neutron rich 40S. The
latter should, however, be hindered by the symmetry en-
ergy which induces a fast charge equilibration in the frag-
ments [29]. Such effect is included in the BV approach
which give !NZ ’ !ZZ in damped collisions, while, in
quasielastic reactions, correlations are negligible
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FIG. 2 (color online). Comparison between BV (solid line) and
TDHF (dashed line) predictions of !ZZ for damped events (see
text) as a function of "c:m: with data (circles) from [24].
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FIG. 1 (color online). (a) Scattering angle as a function of
angular momentum L in units of @ for 40Caþ 40Ca at Ec:m: ¼
128 MeV. n is the number of times the x (collision axis) or y axis
has been crossed by the fragment. The solid line is to guide the
eye. The dashed line corresponds to Rutherford trajectories. The
inset gives examples of trajectories for n ¼ 1 and 3. (b) TDHF
(dashed line) and BV (circles) fluctuations of Z, BV correlations
between N and Z (triangles), and intrinsic angular momentum Jf
of the outgoing fragments (dot-dashed line). The TKEL (solid
line) is given in units of 10 MeV. The vertical dotted lines show
the range of L leading to orbiting or capture trajectories.
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nature. Fig. 1(a) shows the scattering angle θc.m. as a
function of the angular momentum L. For L ≥ 90, the
trajectories are close to Rutherford scattering (dashed
line) and correspond to quasi-elastic reactions with small
total kinetic energy loss (TKEL) as shown by the solid
line in Fig. 1(b). At lower L, deviations from the Ruther-
ford formula occur because of nuclear attraction, lead-
ing to rotation of the di-nuclear system formed by the
two fragments in contact. For instance, L ≤ 72 de-
fines (arbitrarily) the orbiting region where the fragments
have crossed their incoming trajectory, i.e., with n ≥ 4
crossings of the x (collision axis) or y−axis [see inset in
Fig. 1(a)]. Following [24], damped events are defined by
a TKEL≥ 30 MeV, corresponding to L < 82 in Fig. 1.
We see that a wide range of scattering angles may oc-
cur for these damped events, which is a known feature
of DIC. For L ≤ 66, capture occurs. It corresponds to
a fusion cross section of ∼ 1140 mb with the sharp cut-
off formula [13], in good agreement with a fit on fusion-
evaporation measurements at lower energies [26].

Fig. 1(b) shows BV and TDHF predictions of σZZ

(only charge fluctuations are shown for clarity). The
TDHF fluctuations [Eq. (2)] have been determined from
the probability distributions of A, Z and N in the frag-
ments at time t1 [23]. BV predictions from Eq. (3) at
L = 71 are not shown as no numerical convergence with
ε could be obtained. Strong variations of the BV fluc-
tuations are observed in the orbiting region, but there is
no clear relationship with the amount of orbiting quan-
tified by n in Fig. 1(a). The BV fluctuations are much
more important than the TDHF predictions for damped
events. However, at large L (quasi-elastic reactions), the
BV and TDHF fluctuations are similar.

The evolution of σZZ with θc.m. is plotted in Fig. 2
for damped events, and compared with experimental
data [24]. TDHF fluctuations show no angular corre-
lation and strongly underestimate data. BV fluctuations
increase with θc.m. at small angles and form a plateau at
large angles, in qualitative agreement with data. Quan-
titatively, the experimental plateau is underestimated.
This might be attributed to fusion-fission events leading
to large fluctuations and not included in the calculations.
Indeed, the compound-nucleus fission cross-section, esti-
mated to be ∼ 280 mb [24], is not negligible compared to
the cross-section for damped binary events of ∼ 570 mb
from the present calculations. Note that this fission cross-
section seems reasonable as it corresponds to a fusion-
evaporation cross-section of ∼ 860 mb (obtained from
the difference between the fusion and fusion-fission cross
sections), which is compatible with data [26]. Due to the
isotropic distribution of fission fragments, fusion-fission
would mostly affect large angles in Fig. 2 and may ac-
count for the difference between BV predictions and data.
As the fragments cool down by nucleon emission, their
fluctuations might also increase [7]. Although the num-
ber of TDHF iterations is too small to allow a full decay
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FIG. 2: Comparison between BV (solid line) and TDHF
(dashed line) predictions of σZZ for damped events (see text)
as a function of θc.m. with data (circles) from [24].

of the fragments by nucleon emission, we can estimate
their excitation energy E∗ % TKEL/2 and angular mo-
menta Jf % (L − Lout)/2 [see Fig. 1(b)], assuming equal
sharing, where Lout is the angular momentum between
the fragments in the outgoing channel. Calculations us-
ing the code PACE4 [27] with a level density parameter
A/7.5 MeV−1 show that the decay of fragments produced
in DIC has only a small effect on σZZ (see also [16]).
However, the average of the fragment charge distribution
after decay goes from Z̄ % 19 for L % 80 down to 18 in
the orbiting region while experimental data give Z̄ % 17
at large angle [24]. This might also be a signature of
fusion-fission events. Indeed, symmetric fission leads to
E∗ % 38.2 MeV according to the Viola systematics [28],
and, then, to more emission of light particles than in DIC
where E∗ % 31 MeV in average in the orbiting region [see
Fig. 1(b)]. Beyond mean-field correlations may also affect
these fluctuations.

Fragment mass distributions in 40Ca+40Ca have been
measured at lower energies, Ec.m. = 98.5 and 115.5 MeV,
where fusion-fission can be neglected [25]. In this ex-
periment, the fragments are associated to almost fully
damped collisions with a sin−1 θc.m. dependence of their
cross-section. In the present work, such collisions occur in
the orbiting region for which σAA % 9.7 in average. This
is in fair agreement with the data which give σAA % 11.

In addition to fluctuations, the BV correlations σNZ

have been computed [triangles in Fig. 1(b)]. These finite
values of σNZ are at variance with the TDHF correlations
which are strictly zero because the single particle states
are assumed to have pure isospin. In fact, the probability
P (N, Z) to have a fragment with Z and N , in TDHF cal-
culations, is the product of the probabilities P (Z)P (N)
to have Z and N , independently [23]. For instance, in the
symmetric collisions studied here, the TDHF probability
to have the N = Z 32S nucleus is the same as for the neu-
tron rich 40S. The latter should, however, be hindered by
the symmetry energy which induces a fast charge equili-
bration in the fragments [29]. Such effect is included in
the BV approach which give σNZ % σZZ in damped col-
lisions, while, in quasi-elastic reactions, correlations are
negligible compared to fluctuations [see Fig. 1(b)]. Note

data from Roynette et al., 
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nature. Fig. 1(a) shows the scattering angle θc.m. as a
function of the angular momentum L. For L ≥ 90, the
trajectories are close to Rutherford scattering (dashed
line) and correspond to quasi-elastic reactions with small
total kinetic energy loss (TKEL) as shown by the solid
line in Fig. 1(b). At lower L, deviations from the Ruther-
ford formula occur because of nuclear attraction, lead-
ing to rotation of the di-nuclear system formed by the
two fragments in contact. For instance, L ≤ 72 de-
fines (arbitrarily) the orbiting region where the fragments
have crossed their incoming trajectory, i.e., with n ≥ 4
crossings of the x (collision axis) or y−axis [see inset in
Fig. 1(a)]. Following [24], damped events are defined by
a TKEL≥ 30 MeV, corresponding to L < 82 in Fig. 1.
We see that a wide range of scattering angles may oc-
cur for these damped events, which is a known feature
of DIC. For L ≤ 66, capture occurs. It corresponds to
a fusion cross section of ∼ 1140 mb with the sharp cut-
off formula [13], in good agreement with a fit on fusion-
evaporation measurements at lower energies [26].

Fig. 1(b) shows BV and TDHF predictions of σZZ

(only charge fluctuations are shown for clarity). The
TDHF fluctuations [Eq. (2)] have been determined from
the probability distributions of A, Z and N in the frag-
ments at time t1 [23]. BV predictions from Eq. (3) at
L = 71 are not shown as no numerical convergence with
ε could be obtained. Strong variations of the BV fluc-
tuations are observed in the orbiting region, but there is
no clear relationship with the amount of orbiting quan-
tified by n in Fig. 1(a). The BV fluctuations are much
more important than the TDHF predictions for damped
events. However, at large L (quasi-elastic reactions), the
BV and TDHF fluctuations are similar.

The evolution of σZZ with θc.m. is plotted in Fig. 2
for damped events, and compared with experimental
data [24]. TDHF fluctuations show no angular corre-
lation and strongly underestimate data. BV fluctuations
increase with θc.m. at small angles and form a plateau at
large angles, in qualitative agreement with data. Quan-
titatively, the experimental plateau is underestimated.
This might be attributed to fusion-fission events leading
to large fluctuations and not included in the calculations.
Indeed, the compound-nucleus fission cross-section, esti-
mated to be ∼ 280 mb [24], is not negligible compared to
the cross-section for damped binary events of ∼ 570 mb
from the present calculations. Note that this fission cross-
section seems reasonable as it corresponds to a fusion-
evaporation cross-section of ∼ 860 mb (obtained from
the difference between the fusion and fusion-fission cross
sections), which is compatible with data [26]. Due to the
isotropic distribution of fission fragments, fusion-fission
would mostly affect large angles in Fig. 2 and may ac-
count for the difference between BV predictions and data.
As the fragments cool down by nucleon emission, their
fluctuations might also increase [7]. Although the num-
ber of TDHF iterations is too small to allow a full decay

0 30 60 90

θ
c.m.

 (deg.)

0

2

4

σ
Z

Z

BV
TDHF
Exp.

FIG. 2: Comparison between BV (solid line) and TDHF
(dashed line) predictions of σZZ for damped events (see text)
as a function of θc.m. with data (circles) from [24].

of the fragments by nucleon emission, we can estimate
their excitation energy E∗ % TKEL/2 and angular mo-
menta Jf % (L − Lout)/2 [see Fig. 1(b)], assuming equal
sharing, where Lout is the angular momentum between
the fragments in the outgoing channel. Calculations us-
ing the code PACE4 [27] with a level density parameter
A/7.5 MeV−1 show that the decay of fragments produced
in DIC has only a small effect on σZZ (see also [16]).
However, the average of the fragment charge distribution
after decay goes from Z̄ % 19 for L % 80 down to 18 in
the orbiting region while experimental data give Z̄ % 17
at large angle [24]. This might also be a signature of
fusion-fission events. Indeed, symmetric fission leads to
E∗ % 38.2 MeV according to the Viola systematics [28],
and, then, to more emission of light particles than in DIC
where E∗ % 31 MeV in average in the orbiting region [see
Fig. 1(b)]. Beyond mean-field correlations may also affect
these fluctuations.

Fragment mass distributions in 40Ca+40Ca have been
measured at lower energies, Ec.m. = 98.5 and 115.5 MeV,
where fusion-fission can be neglected [25]. In this ex-
periment, the fragments are associated to almost fully
damped collisions with a sin−1 θc.m. dependence of their
cross-section. In the present work, such collisions occur in
the orbiting region for which σAA % 9.7 in average. This
is in fair agreement with the data which give σAA % 11.

In addition to fluctuations, the BV correlations σNZ

have been computed [triangles in Fig. 1(b)]. These finite
values of σNZ are at variance with the TDHF correlations
which are strictly zero because the single particle states
are assumed to have pure isospin. In fact, the probability
P (N, Z) to have a fragment with Z and N , in TDHF cal-
culations, is the product of the probabilities P (Z)P (N)
to have Z and N , independently [23]. For instance, in the
symmetric collisions studied here, the TDHF probability
to have the N = Z 32S nucleus is the same as for the neu-
tron rich 40S. The latter should, however, be hindered by
the symmetry energy which induces a fast charge equili-
bration in the fragments [29]. Such effect is included in
the BV approach which give σNZ % σZZ in damped col-
lisions, while, in quasi-elastic reactions, correlations are
negligible compared to fluctuations [see Fig. 1(b)]. Note
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Balian-Vénéroni variational principle 

• Average of one-body observables: TDHF

• Their fluctuations and correlations: BV prescription
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