Particle number fluctuations and correlations with the Balian-Vénéroni variational principle

> Cédric Simenel CEA/Saclay, IRFU/SPhN (France)

Balian-Vénéroni variational principle

Boundary conditions

Expectation value of A_1 at t_1 knowing the state D_0 at t_0 $\hat{A}(t_1) = \hat{A}_1$

 $\hat{D}(t_0) = \hat{D}_0$

Balian-Vénéroni variational principle Boundary conditions $\hat{D}(t_0) = \hat{D}_0$ $\hat{A}(t_1) = \hat{A}_1$ Action-like quantity $J = \operatorname{Tr}\left[\hat{A}(t_1)\hat{D}(t_1)\right] - \int_{t_0}^{t_1} dt \operatorname{Tr}\left[\hat{A}(t)\left(\frac{d\hat{D}(t)}{dt} + i\left[\hat{H}(t),\hat{D}(t)\right]\right)\right]$ $\delta_A J = 0 \quad \Rightarrow \quad i \frac{d\hat{D}(t)}{dt} = \left[\hat{H}, \hat{D}(t)\right]$ Schrödinger equation

Balian-Vénéroni variational principle Time-dependent Hartree-Fock (TDHF) equation $i\hbar\frac{d}{dt}\rho = [h[\rho], \rho]$ $\rho_{\alpha\beta} = \operatorname{Tr}\left[\hat{D}\hat{a}^{\dagger}_{\beta}\hat{a}_{\alpha}\right]$ 1-body density matrix $h[\rho]_{\alpha\beta} = \frac{\delta \langle \hat{H} \rangle}{\delta \rho_{\beta\gamma}} = \frac{\delta E[\rho]}{\delta \rho_{\beta\gamma}}$ HF single-particle Hamiltonian with energy density functional (EDF) E[p]

$^{40}Ca+^{40}Ca$ at $E_{cm}=128$ MeV

C.S., PRL 2011

Balian-Vénéroni variational principle Variational spaces

Independent particles 1-body observables

 $\hat{D}(t) = |\phi(t)\rangle\langle\phi(t)|$ $\delta_A \hat{A}(t) \equiv \hat{a}^{\dagger} \hat{a}$

=> TDHF

Balian-Vénéroni variational principle Variational spaces

Independent particles $\hat{D}(t) = |\phi(t)\rangle\langle\phi(t)|$ exp(1-body observables) $\hat{A}(t) = \exp(-\varepsilon \hat{a}^{\dagger} \hat{a})$

Balian-Vénéroni variational principle

R. Balian and M.Vénéroni, PRL 1981; PLB 1984

Observable $\hat{Q} = \exp(-\epsilon \hat{X})$ with X = one-body operator

small $\epsilon =>$ fluctuations $\sigma_X = \sqrt{\langle \hat{X}^2 \rangle - \langle \hat{X} \rangle^2}$ indeed $\ln \langle \exp(-\epsilon \hat{X}) \rangle \simeq -\epsilon \langle \hat{X} \rangle + \frac{\epsilon^2}{2} \sigma_X^2$

Variational principle $\delta S_{BV} = 0$ + independent particles => BV prescription $\sigma_X^2(t_1) = \lim_{\epsilon \to 0} \frac{\operatorname{tr}\{[\rho(t_0) - \rho_X(t_0, \epsilon)]^2\}}{2\epsilon^2}$

with
$$\rho_X(t_1,\epsilon) = e^{i\epsilon X} \rho(t_1) e^{-i\epsilon X}$$

=> needs backward TDHF evolution to get $\rho_X(t_0, \epsilon)$

Numerical application of the BV prescription

time

standard forward TDHF

 t_0

Troudet and Vautherin, PRC 1985 Bonche and Flocard, NPA 1985 Marston and Koonin, PRL 1985 Broomfield and Stevenson, JPG 2008 C.S., PRL 2011

t

Numerical application of the BV prescription

time

standard forward TDHF fluctuations of N at t₁

 $\rho_N(t_1,\epsilon) = e^{i\epsilon N} \rho(t_1) e^{-i\epsilon N}$

Troudet and Vautherin, PRC 1985 Bonche and Flocard, NPA 1985 Marston and Koonin, PRL 1985 Broomfield and Stevenson, JPG 2008 C.S., PRL 2011

tı

Numerical application of the BV prescription

time

standard forward TDHF fluctuations of N at t_1

$$\rho_N(t_1,\epsilon) = e^{i\epsilon N} \rho(t_1) e^{-i\epsilon N}$$

backward TDHF evolutions

 $\sigma_N^2(t_1) = \lim_{\epsilon \to 0} \frac{\operatorname{tr}\{[\rho(t_0) - \rho_N(t_0, \epsilon)]^2\}}{2\epsilon^2}$

Troudet and Vautherin, PRC 1985 Bonche and Flocard, NPA 1985 Marston and Koonin, PRL 1985 Broomfield and Stevenson, JPG 2008 C.S., PRL 2011

= TD-RPA =small ampl. SMF

Ayik, PLB 2008

t₀

 $^{40}Ca + ^{40}Ca$ at $E_{cm} = 128 \text{ MeV}$

 $^{40}Ca+^{40}Ca$ at $E_{cm}=128$ MeV

C.S., PRL (2011)

 $^{40}Ca+^{40}Ca$ at $E_{cm}=128$ MeV

C.S., PRL (2011)

L=70ħ

Charge fluctuations 40Ca+⁴⁰Ca at E_{cm}=128 MeV

 σ_{ZZ} 0 0 0 0 0 0 Exp. 0 0 2 0 ۹0^۲ data from Roynette et al., 30 60 90 $\theta_{c.m}$ (deg.) PLB 1977

C.S., PRL 2011

Charge fluctuations

 $^{40}Ca+^{40}Ca$ at $E_{cm}=128$ MeV

L=70ħ

data from Roynette et al.,

C.S., PRL 2011

Correlations

 $\sigma_{NZ}^2 = \langle NZ \rangle \langle NZ \rangle \langle Z \rangle$

 $^{40}Ca + ^{40}Ca$ at $E_{cm} = 128 \text{ MeV}$

C.S., PRL (2011)

 80 Kr+ 90 Zr (N/Z= 1.22 and 1.25) E/A = 8.5 MeV L = 192 ħ

 $\sigma_{ZZ} = 5.3$ $\sigma_{NN} = 7.1$ $\sigma_{NZ} = 5.7$ 92 Kr+ 90 Zr (N/Z= 1.56 and 1.25) E/A = 8.5 MeV L = 223 ħ

 $\sigma_{ZZ} = 4.7$ $\sigma_{NN} = 8.4$ $\sigma_{NZ} = 8.5 (+50\%)$

Balian-Vénéroni variational principle

- Average of one-body observables: TDHF
- Their fluctuations and correlations: BV prescription

