How transparent is nuclear matter ?

(from an experimental point of view)

<u>Olivier LOPEZ</u>, Grégory LEHAUT and Dominique DURAND

> LPC Caen, France (INDRA Collaboration)

Workshop on Fluctuations and temporal evolution in HIC, May 9-10, 2012, ESPNT Saclay

Outlines

- Mc Event s r « central » events
- Isospin equilibra •
- Isospin dependence of su •
- in prostr Isotropy ratio (energy) and expen. `terminations of • λ_{NN} and σ_{NN} **es**,
- Other probes... •

Motivations

- At low energy (E<<E_{Fermi}), provide a link to viscosity and macroscopic (nuclear) degrees of freedom : 1-body dissipation by the mean-field, nucleus-nucleus potential
- At high energy (E>>E_{Fermi}), provide a link to microscopic (nucleonic) d.o.f and in-medium NN cross section : 2-body dissipation by hard (elastic) NN collisions, NN interaction
- At intermediate energy (E≈E_{Fermi}), exhibit the crossover between these 2 phenomena

Motivations (II)

- In a « pure » nuclear physics context :
 - Variety of **reaction mechanisms** in nuclear reactions : fusion, deep inelastic, incomplete fusion
 - Variety of **deexcitation processes** : evaporation, fission, multifragmentation
 - **Transport properties** of nuclear matter : equilibrations (E, N/Z)
- In the astrophysical context :
 - supernovae collapse and formation of neutron stars (EOS)

Measuring the stopping : strategy

- Do event selection by using a minimum-bias observable, the total multiplicity for light charged particle (0<Z<3) : v_{tot}
- Avoid trivial correlations with the isotropy variables (R_E, E_{trans}, θ_{flow} , velocities, ...)
- Very **basic (simple) criterion** : applicable to all systems
- Caution : selection of the most central events is not guaranteed (not an impact parameter selector...)

Isotropy ratio

 V_{tot}

- Saturation of R_E at high multiplicity
- Define the **maximal average** *R_E* value
- -Large fluctuations in R_E are partially due to statistics

-« Normalized » correlation to the same number of entries by bin of

Event selection : most violent collisions selected by v_{tot}

 $-v_{tot}$ cut-off is defined by the observed saturation in $R_E \times v_{tot}$ correlation

-Applied to all INDRA symmetric systems

Corresponds roughly to 50-100 mb
(detected) hence to b/b_{max} ≈ 0.1

- *R_E* values are taken by reporting the mean and FWHM values of the selected distribution

INDRA dataset

System	Incident energy (A.MeV)	A _{tot}	(N/Z _{)tot}	Dataset
Ar+KCl	32 - 74	72	1.00	4
Ni+Ni	32 - 90	116	1.11	7
Xe+Sn	12 (8) - 100	248	1.39	15
Xe+Sn (isospin)	32 - 45	220 - 250	1.27 - 1.50	4
Au+Au	40-100	394	1.49	5
U+U	24,36	476	1.59	2

- 5 systems spanning a large total mass and isospin domain
- Cover the **whole Fermi energy domain** from *12A* to *100A* MeV
- Offer the **most extensive, comprehensive and exclusive** database for nuclear reactions in the Fermi energy domain

Isospin diffusion and equilibration ?

- memory of entrance channel is lost
- same isospin everywhere

- memory of the entrance channel is partially conserved
- dependence of the isospin along the beam axis

Isospin ratio

Imbalance ratio

$$\tilde{R}_{p/t} = \frac{2R_{p/t} - R_{p/t}^{NN} - R_{p/t}^{PP}}{R_{p/t}^{NN} - R_{p/t}^{PP}}$$

where $R_{p/t}$ is the normalized yield of different particles in isospin with

the same atomic number Z.

$$\tilde{R}_{proton/triton} = \begin{cases} +1 & \text{if} \quad R_{p/t} = R_{p/t}^{NN} \\ -1 & \text{if} \quad R_{p/t} = R_{p/t}^{PP} \end{cases}$$

F. Rami, PRL 84, 1120 (2000)V. Baran, PRC 72, 064620 (2005)

- $\blacktriangleright \ ^{124}Xe + ^{112}Sn \quad \Rightarrow PP$
- $\blacktriangleright \ ^{124}Xe + ^{124}Sn \quad \Rightarrow PN$
- $\blacktriangleright \ ^{136}Xe + ^{112}Sn \quad \Rightarrow NP$

$$\blacktriangleright {}^{136}Xe + {}^{124}Sn \implies NN$$

Xe+Sn @ 32 MeV/A

Xe+Sn @ 32 MeV/A

- $\blacktriangleright \ ^{136}Xe + ^{112}Sn \quad \Rightarrow NP$
- $\blacktriangleright \ ^{136}Xe + ^{124}Sn \quad \Rightarrow NN$

Xe+Sn at 45 MeV/A central collisions

Isospin dependence for stopping ?

From IQMD calculations...

Isospin Quantum Molecular Dynamics

In-medium nucleon-nucleon cross-section :

$$\sigma_{NN}^{med} = \left(1 + \alpha \frac{\rho}{\rho_0}\right) \sigma_{NN}^{free}$$

Interaction potential :

$$U = U^{Sky} + U^{Yuk} + U^{coul} + U^{Pauli} + U^{MDI}$$

 $+U^{sym}$

E (MeV/u)

Observation on momentum isotropy R:

- No effect of U^{sym}
- the isospin of entrance channel has no effect
- dependence of the nucleon-nucleon cross-section
- J.-Y. Liu, et al., PRL 86 975 (2001)

From experimental Data...

Isospin effect

- ► $^{129}Xe + ^{119}Sn \Rightarrow$ nat
- $\blacktriangleright {}^{124}Xe + {}^{112}Sn \quad \Rightarrow PP$
- $\blacktriangleright {}^{124}Xe + {}^{124}Sn \quad \Rightarrow PN$
- $\blacktriangleright \ ^{136}Xe + ^{112}Sn \quad \Rightarrow NP$
- $\blacktriangleright \ ^{136}Xe + ^{124}Sn \quad \Rightarrow NN$
- Error bars are here systematics

No clear dependence is observed in this incident energy range but isospin excursion $\Delta(N/Z)$ is only ~ 15%

Energy dissipation and thermalization ?

- memory of entrance channel is lost
- no preferential axis

- memory of the entrance channel is partially conserved
- preferential direction along the beam axis

Situation in 2010 : G. Lehaut et al., PRL 104, 232701 (2010)

Systematics

- Below 30-35A MeV, Mean-Field picture and 1-dissipation : viscosity - Above 35A MeV, elastic NN collisions and 2-dissipation : λ_{NN} and σ_{NN}

Situation in 2012 : one system added (U/Gd+U) + extension to low E_{inc}

Nuclear Stopping systematics (INDRA data)

Entrance channel estimate for R_E

Fermi spheres with radius p_{Fermi} , separated by the relative momentum $p_{rel} = \mu V_{rel}$

For an **infinite number** of particles sampled in these 2 distributions,

we obtain :

$$R_{E} = \frac{1}{1+5\left[\frac{\alpha p_{rel}}{p_{Fermi}}\right]^{2}}$$

where α between 0 and 1 measures the dissipation In pratice, N>10-15 is enough to get $\langle R_E \rangle$

Fermi Spheres Hypothesis with relaxation factor α

Clusterization effects ? see Zhang et al., Phys. Rev. C 84, 034612 (2011)

Percentage of stopping/transparency

Nuclear stopping distance to non-relaxed Fermi spheres

Widths / fluctuations* ...

Isotropy Ratio FWHM

* Very sensitive to the event selection (impact parameter range)

Scaling with the system size A_{tot}

Normalized Isotropy Ratio

Olivier LOPEZ, LPC Caen

Partitions and kinematics

Ni + Ni@52A.MeV

INDRA : selection $Z_{tot}^{FW} \in [0.8; 1.2]$ ELIE filtered : selection $Z_{tot}^{FW} \in [0.8; 1.2]$

An excellent agreement between ELIE and the INDRA data is found

Comparison on stopping: Ni + Ni@52A.MeV, central collisions $\nu > 26$

sensitivity to λ is found for E^{cen}_{iso}, especially for λ < (R_{proj} + R_{targ})
data is closer to λ = 15 fm (> R_{proj} + R_{targ}), suggesting no complete thermalization since the number of collisions per participant is less than 1.

Experimental NN cross-section estimate from λ_{NN}

Comparison with a transport model

* Courtesy of Ph. Eudes and Z. Basrak

New probes ...

Ratio of velocity variances : *vartl*

$vartl = \frac{variance(y_{\perp})}{variance(y_{\parallel})}$

Vartl systematics from FOPI/INDRA data

[And06] A. Andronic, J. Lukasik, W. Reisdorf, W. Trautmann. Systematics of stopping and flow in Au+Au collisions, Eur. Phys. J. A 30, 31-46 (2006).

Vartl and production yield

Stringent test for transport model...

But here R_{iso} is determined after *t=200 fm/c, no fragment formation* ...

Conclusions

- -Transparency of nuclear matter is reported around Fermi Energy and above by looking at isospin and energy ratios
- 2 distinct mechanisms for dissipation (Mean-Field/NN collisions) with a sharp transition around 30A MeV
- no isospin dependence for the stopping : isovector channels for NN collision (nn/pp, np) ?
- at low energy : (bulk) viscosity can be accessed by studying stopping
- At high energy : λ_{NN} and σ_{NN} can be experimentally estimated : λ_{NN} is rather large ($\lambda_{NN} \approx 10-15 \text{ fm}$) and $\sigma_{NN}^{in-medium}$ close to σ_{NN}^{free}

Provide a stringent benchmark for any kind of transport model -Request for comparison with microscopic transport models