Monopole oscillations in light nuclei with a molecular dynamics approach

K.H.O. Hasnaoui¹, T. Furuta², F. Gulminelli³, C. Leclercq³ and A. Ono⁴

¹Department of Physics, Florida State University, Tallahassee FL 32306-4350, USA

²RIKEN Nishina Center, Wako-shi 351-0198, Japan

³LPC (IN2P3-CNRS/Ensicaen et Université), F-14050 Caen cédex, France

⁴Department of Physics, Tohoku University, Sendai 980-8578, Japan

PRC82, 034307 (2010)

Introduction

• The AMD/FMD models : general frameworks AMD = Antisymmetrized Molecular Dynamics FMD = Fermionic Molecular Dynamics

Monopole vibrations studied with molecular dynamics

Summary and perspectives

Introduction

• The AMD/FMD models : general frameworks AMD = Antisymmetrized Molecular Dynamics FMD = Fermionic Molecular Dynamics

• Monopole vibrations studied with molecular dynamics

• Summary and perspectives

Aim of our work with AMD/FMD models

Heavy ion reactions

Example of nuclear reaction : Xe + Sn at 50 MeV/A, 0 \leq b \leq 4fm

• Hot nuclei (Thermodynamics, phase transitions)

Caloric curve with FMD, K.H.O. Hasnaoui et al

Caloric curve with AMD, T. Furuta et al

• Proto-neutron star crust (Thermodynamics, phase transitions, pasta structures)

Example with QMD G. Watanabe et al, PRL94 031101 (2005)

 \Longrightarrow More realistic calculation with quantum features by AMD/FMD approches

• Aim of this presentation : Can AMD/FMD reproduce the monopole vibrations?

Why is it interesting to study the monopole vibrations?

 ISGMR ⇐⇒ Nuclear incompressibility J. P. Blaizot, Phys. Rep. 64, 171 (1980)

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

$$\mathcal{K}_{\mathcal{A}} = \mathcal{K}_{\infty} + \mathcal{K}_{\mathcal{Surf}} \mathcal{A}^{-1/3} + \delta^2 \mathcal{K}_{ au} + \mathcal{K}_{\mathcal{Coul}} rac{Z^2}{\mathcal{A}^{4/3}}$$

ISGMR

where
$$\delta = (N - Z)/A$$

Why is it interesting to study the monopole vibrations?

 ISGMR ⇐⇒ Nuclear incompressibility J. P. Blaizot, Phys. Rep. 64, 171 (1980)

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

$$K_{A} = K_{\infty} + K_{Surf} A^{-1/3} + \delta^{2} K_{\tau} + K_{Coul} \frac{Z^{2}}{A^{4/3}}$$

ISGMR where
$$\delta = (N - Z)/A$$

• Incompressibility of symetric nuclear matter : $K_{\infty} = 9\rho_0 \frac{\partial^2}{\partial \rho^2} \left(\frac{E}{A}\right)_{\rho=\rho_0}$

 $K_{\infty} = 240 \pm 10$ MeV J. Li, G. Colò and J. Meng, Phys. Rev. C **78**, 064304 (2008)

Why is it interesting to study the monopole vibrations?

 ISGMR ⇐⇒ Nuclear incompressibility J. P. Blaizot, Phys. Rep. 64, 171 (1980)

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

$$\mathcal{K}_{\mathcal{A}} = \mathcal{K}_{\infty} + \mathcal{K}_{\mathcal{Surf}} \mathcal{A}^{-1/3} + \delta^2 \mathcal{K}_{ au} + \mathcal{K}_{\mathcal{Coul}} rac{Z^2}{\mathcal{A}^{4/3}}$$

ISGMR where
$$\delta = (N - Z)/A$$

• Incompressibility of symetric nuclear matter : $K_{\infty} = 9\rho_0 \frac{\partial^2}{\partial \rho^2} \left(\frac{E}{A}\right)_{\rho=\rho_0}$

 $K_{\infty} = 240 \pm 10$ MeV J. Li, G. Colò and J. Meng, Phys. Rev. C **78**, 064304 (2008)

• Incompressibility of infinite neutron-rich matter : $K_{\infty}(\delta) = K_{\infty} + \delta^2 K_{\tau}$

Theoritical works : G. Colò et al, Phys. Rev. C **70**, 024307 (2004) H. Sagawa et al, Phys. Rev. C **76**, 034327 (2007) J. Pickarewick and M. Centelles, Phys. Rev. C **79**, 054311 (2009)

 $K_{ au} = -550 \pm 100 {
m MeV}$

T. Li, U. Garg et al, Phys. Rev. C 81, 034309 (2010) □ > < □ > < ≡ > < ≡

Monopole oscillations in light nuclei with a molecular dynamics approach

Examples of experimental results

• Small amplitude collective vibration for heavy and mid-heavy nuclei

Examples of experimental results

Small amplitude collective vibration for heavy and mid-heavy nuclei

Collective vibration for light nuclei

 $\begin{array}{l} \mbox{Fragmented strength} \\ \implies \mbox{Global weaking of collectivity} \\ \mbox{Cluster degree of freedom } \end{array}$

• Larger amplitude collective motion

Larger amplitude collective motion

- Dynamical models which can describe both small and large amplitude :
 - TDHF (Time Dependent Hartree Fock)
 - BUU (Boltzmann Vlasov Uhlenbeck)
 - Molecular Dynamics \implies Fragmentation and clusterization of nuclei \odot

Introduction

• The AMD/FMD models : general frameworks AMD = Antisymmetrized Molecular Dynamics FMD = Fermionic Molecular Dynamics

• Monopole vibrations studied with molecular dynamics

• Summary and perspectives

- AMD/FMD are molecular dynamics model for Fermion systems :
 - TDCM S. Drożdż, J. Okolowicz, and M. Ploszajczak PLB109 145 (1982)
 - TDCM B. Caurier, B. Grammaticos, and T. Sami PLB109 150 (1982)
 - FMD H. Feldmeier NPA 515 (1990)
 - AMD A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi PRL 68 2898 (1991)

- AMD/FMD are molecular dynamics model for Fermion systems :
 - TDCM S. Drożdż, J. Okolowicz, and M. Ploszajczak PLB109 145 (1982)
 - TDCM B. Caurier, B. Grammaticos, and T. Sami PLB109 150 (1982)
 - FMD H. Feldmeier NPA 515 (1990)
 - AMD A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi PRL 68 2898 (1991)
- Antisymmetrisation is exactly taken into account

- AMD/FMD are molecular dynamics model for Fermion systems :
 - TDCM S. Drożdż, J. Okolowicz, and M. Ploszajczak PLB109 145 (1982)
 - TDCM B. Caurier, B. Grammaticos, and T. Sami PLB109 150 (1982)
 - FMD H. Feldmeier NPA 515 (1990)
 - AMD A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi PRL 68 2898 (1991)
- Antisymmetrisation is exactly taken into account
- AMD/FMD use Gaussian wave packets : localized particles

- AMD/FMD are molecular dynamics model for Fermion systems :
 - TDCM S. Drożdż, J. Okolowicz, and M. Ploszajczak PLB109 145 (1982)
 - TDCM B. Caurier, B. Grammaticos, and T. Sami PLB109 150 (1982)
 - FMD H. Feldmeier NPA 515 (1990)
 - AMD A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi PRL 68 2898 (1991)
- Antisymmetrisation is exactly taken into account
- AMD/FMD use Gaussian wave packets : localized particles
- AMD/FMD can use the same nuclear interaction used in structure studies. Example : Gogny and Skyrme interactions

- AMD/FMD are molecular dynamics model for Fermion systems :
 - TDCM S. Drożdż, J. Okolowicz, and M. Ploszajczak PLB109 145 (1982)
 - TDCM B. Caurier, B. Grammaticos, and T. Sami PLB109 150 (1982)
 - FMD H. Feldmeier NPA 515 (1990)
 - AMD A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi PRL 68 2898 (1991)
- Antisymmetrisation is exactly taken into account
- AMD/FMD use Gaussian wave packets : localized particles
- AMD/FMD can use the same nuclear interaction used in structure studies. Example : Gogny and Skyrme interactions
- AMD/FMD give the exact Hamilton equations for classical particles

 \Longrightarrow All the correlations and fluctuations are taken into account at the classical level

• The wave function is a single Slater determinant :

 $|Q(t)
angle=rac{\hat{\mathcal{A}}}{\mathcal{A}!}\prod_{k}^{\mathcal{A}}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$

-

• The wave function is a single Slater determinant :

$$|Q(t)
angle=rac{\hat{A}}{A!}\prod_{k}^{A}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$$

• The single particle states are Gaussians :

$$\langle ec{r} | q_k(t)
angle = \exp\left(-rac{\left(ec{r} - ec{b_k(t)}
ight)^2}{2a_k(t)}
ight) |\chi_k(t), \phi_k(t)
angle | m_t(k)
angle$$

• The wave function is a single Slater determinant :

$$|Q(t)
angle=rac{\hat{\mathcal{A}}}{\mathcal{A}!}\prod_{k}^{\mathcal{A}}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$$

• The single particle states are Gaussians :

$$\langle ec{r} | q_k(t)
angle = \exp\left(-rac{\left(ec{r} - ec{b_k(t)}
ight)^2}{2s_k(t)}
ight) |\chi_k(t), \phi_k(t)
angle | m_t(k)
angle$$

• Variational parameters are linked to the classical coordinates

$$\langle \hat{\vec{r}} \rangle = \vec{r}_k(t) = \operatorname{Re}\left(\vec{b}_k(t)\right) + \frac{\operatorname{Im}(a_k(t))}{\operatorname{Re}(a_k(t))}\operatorname{Im}\left(\vec{b}_k(t)\right)$$

 $\langle \hat{\vec{p}} \rangle = \vec{p}_k(t) = \frac{\operatorname{Im}\left(\vec{b}_k(t)\right)}{\operatorname{Re}(a_k(t))}$

• The wave function is a single Slater determinant :

$$|Q(t)
angle=rac{\hat{\mathcal{A}}}{\mathcal{A}!}\prod_{k}^{\mathcal{A}}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$$

• The single particle states are Gaussians :

$$\langle ec{r}|q_k(t)
angle = \exp\left(-rac{\left(ec{r}-ec{b_k(t)}
ight)^2}{2a_k(t)}
ight)|\chi_k(t),\phi_k(t)
angle|m_t(k)
angle$$

• Variational parameters are linked to the classical coordinates

$$\langle \hat{\vec{r}} \rangle = \vec{r}_k(t) = \operatorname{Re}\left(\vec{b}_k(t)\right) + \frac{\operatorname{Im}(a_k(t))}{\operatorname{Re}(a_k(t))}\operatorname{Im}\left(\vec{b}_k(t)\right)$$

 $\langle \hat{\vec{p}} \rangle = \vec{p}_k(t) = \frac{\operatorname{Im}(\vec{b}_k(t))}{\operatorname{Re}(a_k(t))}$

• The width parameters can be also linked to the incertitudes :

$$\Delta r_k^2(t) = rac{|a_k(t)|^2}{2{
m Re}(a_k(t))}$$
 and $\Delta p_k^2(t) = rac{\hbar^2}{2{
m Re}(a_k(t))}$

• The wave function is a single Slater determinant :

$$|Q(t)
angle=rac{\hat{\mathcal{A}}}{\mathcal{A}!}\prod_{k}^{\mathcal{A}}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$$

• The single particle states are Gaussians :

$$\langle ec{r}|q_k(t)
angle = \exp\left(-rac{\left(ec{r}-ec{b_k(t)}
ight)^2}{2a_k(t)}
ight)|\chi_k(t),\phi_k(t)
angle|m_t(k)
angle$$

• Variational parameters are linked to the classical coordinates

$$\langle \hat{\vec{r}} \rangle = \vec{r}_k(t) = \operatorname{Re}\left(\vec{b}_k(t)\right) + \frac{\operatorname{Im}(a_k(t))}{\operatorname{Re}(a_k(t))}\operatorname{Im}\left(\vec{b}_k(t)\right)$$

 $\langle \hat{\vec{p}} \rangle = \vec{p}_k(t) = \frac{\operatorname{Im}(\vec{b}_k(t))}{\operatorname{Re}(a_k(t))}$

• The width parameters can be also linked to the incertitudes : $\Delta r_k^2(t) = \frac{|a_k(t)|^2}{2\text{Re}(a_k(t))} \text{ and } \Delta p_k^2(t) = \frac{\hbar^2}{2\text{Re}(a_k(t))}$

•
$$q_{\mu}(t)$$
 is given by a time dependent variational principle :
 $\delta \int_{t_1}^{t_2} dt \langle Q(t) | i\hbar \frac{d}{dt} - \hat{H} | Q(t) \rangle = 0$

• The wave function is a single Slater determinant :

$$|Q(t)
angle=rac{\hat{\mathcal{A}}}{\mathcal{A}!}\prod_{k}^{\mathcal{A}}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$$

• The single particle states are Gaussians :

$$\langle ec{r}|q_k(t)
angle = \exp\left(-rac{\left(ec{r}-ec{b_k(t)}
ight)^2}{2a_k(t)}
ight)|\chi_k(t),\phi_k(t)
angle|m_t(k)
angle$$

• Variational parameters are linked to the classical coordinates

$$\langle \hat{\vec{r}} \rangle = \vec{r}_k(t) = \operatorname{Re}\left(\vec{b}_k(t)\right) + \frac{\operatorname{Im}(a_k(t))}{\operatorname{Re}(a_k(t))}\operatorname{Im}\left(\vec{b}_k(t)\right)$$

 $\langle \hat{\vec{p}} \rangle = \vec{p}_k(t) = \frac{\operatorname{Im}(\vec{b}_k(t))}{\operatorname{Re}(a_k(t))}$

• The width parameters can be also linked to the incertitudes : $\Delta r_k^2(t) = \frac{|a_k(t)|^2}{2\text{Re}(a_k(t))} \text{ and } \Delta p_k^2(t) = \frac{\hbar^2}{2\text{Re}(a_k(t))}$

• $q_{\mu}(t)$ is given by a time dependent variational principle : $\delta \int_{t_1}^{t_2} dt \langle Q(t) | i\hbar \frac{d}{dt} - \hat{H} | Q(t) \rangle = 0$

• Equations of motion : $\dot{\pmb{q}}_{\mu} = -\sum_{
u} \mathcal{A}_{\mu
u}^{-1} rac{\partial\mathcal{H}}{\partial q_{
u}}$

• The wave function is a single Slater determinant :

$$|Q(t)
angle=rac{\hat{\mathcal{A}}}{\mathcal{A}!}\prod_{k}^{\mathcal{A}}|q_{k}(t)
angle ext{ with } q_{k}(t)=[q_{\mu}(t)|\mu=1,2,\ldots]$$

• The single particle states are Gaussians :

$$\langle ec{r}|q_k(t)
angle = \exp\left(-rac{\left(ec{r}-ec{b_k(t)}
ight)^2}{2a_k(t)}
ight)|\chi_k(t),\phi_k(t)
angle|m_t(k)
angle$$

• Variational parameters are linked to the classical coordinates

$$\langle \hat{\vec{r}} \rangle = \vec{r}_k(t) = \operatorname{Re}\left(\vec{b}_k(t)\right) + \frac{\operatorname{Im}(a_k(t))}{\operatorname{Re}(a_k(t))}\operatorname{Im}\left(\vec{b}_k(t)\right)$$

 $\langle \hat{\vec{p}} \rangle = \vec{p}_k(t) = \frac{\operatorname{Im}(\vec{b}_k(t))}{\operatorname{Re}(a_k(t))}$

• The width parameters can be also linked to the incertitudes : $\Delta r_k^2(t) = \frac{|a_k(t)|^2}{2\text{Re}(a_k(t))} \text{ and } \Delta p_k^2(t) = \frac{\hbar^2}{2\text{Re}(a_k(t))}$

• $q_{\mu}(t)$ is given by a time dependent variational principle : $\delta \int_{t_1}^{t_2} dt \langle Q(t) | i\hbar \frac{d}{dt} - \hat{H} | Q(t) \rangle = 0$

- Equations of motion : $\dot{q}_{\mu} = -\sum_{\nu} \mathcal{A}_{\mu\nu}^{-1} rac{\partial \mathcal{H}}{\partial q_{\nu}}$

AMD/FMD are equivalent but :

$$\langle ec{r} | q_k(t)
angle = \exp\left(-
u \left(ec{r} - ec{b_k}(t)
ight)^2
ight) |\chi_k, \phi_k
angle | m_t(k)
angle$$

 $\nu = \frac{1}{2a_k}$ real and fixed

Differences between AMD and FMD :

 $\bullet\,$ The width ν are dynamical variables for FMD and fixed for AMD

AMD/FMD are equivalent but :

$$\langle ec{r}| q_k(t)
angle = \exp\left(-
u \left(ec{r} - ec{b_k}(t)
ight)^2
ight) |\chi_k, \phi_k
angle |m_t(k)
angle$$

 $\nu = \frac{1}{2a_k}$ real and fixed

Differences between AMD and FMD :

- The width ν are dynamical variables for FMD and fixed for AMD
- Stochastic equation of motion for the wave packet centroids Z in AMD case :

$$\frac{d}{dt}\vec{Z}_{i} = \left\{\vec{Z}_{i}, H\right\}_{PB} + \Delta\vec{Z}_{i}(t) + (\text{NN collisions})$$

AMD/FMD are equivalent but :

$$\langle ec{r} | q_k(t)
angle = \exp\left(-
u \left(ec{r} - ec{b_k}(t)
ight)^2
ight) |\chi_k, \phi_k
angle | m_t(k)
angle$$

 $\nu = \frac{1}{2a_k}$ real and fixed

Differences between AMD and FMD :

- The width ν are dynamical variables for FMD and fixed for AMD
- Stochastic equation of motion for the wave packet centroids Z in AMD case :

$$\frac{d}{dt}\vec{Z}_{i} = \left\{\vec{Z}_{i}, H\right\}_{PB} + \Delta\vec{Z}_{i}(t) + (\text{NN collisions})$$

• Treatment of the center of mass motion

$$\dot{q}_{\mu} = -\sum_{
u} \mathcal{A}_{\mu
u}^{-1} rac{\partial \mathcal{H}}{\partial q_{
u}} \Longleftrightarrow i\hbar rac{d}{dt} |\psi_m(t)
angle = \hat{h}[\hat{
ho}(t)] |\psi_m(t)
angle$$

$$\dot{q}_{\mu} = -\sum_{
u} \mathcal{A}_{\mu
u}^{-1} rac{\partial \mathcal{H}}{\partial q_{
u}} \Longleftrightarrow i\hbar rac{d}{dt} |\psi_m(t)
angle = \hat{h}[\hat{
ho}(t)] |\psi_m(t)
angle$$

• AMD/FMD are an approximation of TDHF :

$$\dot{q}_{\mu} = -\sum_{
u} \mathcal{A}_{\mu
u}^{-1} \frac{\partial \mathcal{H}}{\partial q_{
u}} \iff i\hbar \frac{d}{dt} |\psi_m(t)\rangle = \hat{h}[\hat{
ho}(t)] |\psi_m(t)\rangle$$

- AMD/FMD are an approximation of TDHF :

$$\dot{q}_{\mu} = -\sum_{
u} \mathcal{A}_{\mu
u}^{-1} rac{\partial \mathcal{H}}{\partial q_{
u}} \Longleftrightarrow i\hbar rac{d}{dt} |\psi_m(t)
angle = \hat{h}[\hat{
ho}(t)] |\psi_m(t)
angle$$

- AMD/FMD are an approximation of TDHF :
 - \odot The single particle states are Gaussians \implies The Hilbert space is restricted

 $\ensuremath{\textcircled{\odot}}$ But Gaussian wave functions localize the particles \implies Propagation of correlations and fluctuations at classical level

• In the original version of AMD/FMD, \mathcal{H} is a two-body observable

 \implies Computer time evolves as $t_{\mathsf{Two-Body}} \propto \mathsf{A}^4$

• In the original version of AMD/FMD, \mathcal{H} is a two-body observable

 \implies Computer time evolves as $t_{\mathsf{Two-Body}} \propto A^4$

• But AMD/FMD are equivalent to TDHF \longrightarrow Each observables can be reduced as a local density functional :

$$\mathcal{H} = E_{HF}[f(\hat{
ho}(t))]$$
 and $\frac{\partial \mathcal{H}}{\partial q_{\mu}} = \operatorname{Tr}\left(\hat{h}[\hat{
ho}]\frac{\partial \hat{
ho}}{\partial q_{\mu}}\right)$

 $\hat{h}[\hat{
ho}]$: Mean field operator

• In the original version of AMD/FMD, \mathcal{H} is a two-body observable

 \implies Computer time evolves as $t_{\mathsf{Two-Body}} \propto A^4$

• But AMD/FMD are equivalent to TDHF \longrightarrow Each observables can be reduced as a local density functional :

$$\mathcal{H} = \mathcal{E}_{HF}[f(\hat{\rho}(t))]$$
 and $\frac{\partial \mathcal{H}}{\partial q_{\mu}} = \operatorname{Tr}\left(\hat{h}[\hat{\rho}]\frac{\partial \hat{\rho}}{\partial q_{\mu}}\right)$

/

 $\hat{h}[\hat{
ho}]$: Mean field operator

 \implies Most update effective fonctionals can be used (Skyrme interactions)

• In the original version of AMD/FMD, \mathcal{H} is a two-body observable

 \implies Computer time evolves as $t_{\mathsf{Two-Body}} \propto \mathsf{A}^4$

• But AMD/FMD are equivalent to TDHF \longrightarrow Each observables can be reduced as a local density functional :

$$\mathcal{H} = \mathcal{E}_{HF}[f(\hat{\rho}(t))]$$
 and $\frac{\partial \mathcal{H}}{\partial q_{\mu}} = \operatorname{Tr}\left(\hat{h}[\hat{\rho}]\frac{\partial \hat{\rho}}{\partial q_{\mu}}\right)$

 $\hat{h}[\hat{
ho}]$: Mean field operator

 \implies Most update effective fonctionals can be used (Skyrme interactions)

 \Longrightarrow Computer time evolves as $t_{Skyrme} \propto A^2 V$

• In the original version of AMD/FMD, \mathcal{H} is a two-body observable

 \implies Computer time evolves as $t_{\mathsf{Two-Body}} \propto A^4$

• But AMD/FMD are equivalent to TDHF \longrightarrow Each observables can be reduced as a local density functional :

$$\mathcal{H} = \mathcal{E}_{HF}[f(\hat{
ho}(t))]$$
 and $\frac{\partial \mathcal{H}}{\partial q_{\mu}} = \operatorname{Tr}\left(\hat{h}[\hat{
ho}]\frac{\partial \hat{
ho}}{\partial q_{\mu}}\right)$

/

 $\hat{h}[\hat{
ho}]$: Mean field operator

 \implies Most update effective fonctionals can be used (Skyrme interactions)

 \Longrightarrow Computer time evolves as $t_{Skyrme} \propto A^2 V$

- Codes used :
 - Gogny and Skyrme AMD
 - Skyrme FMD

E_{GS} (MeV)	D1-AMD (ν)	SLy4-AMD (ν)	FMD	HF [1]	Exp [2]
⁴ He	-28.9 (0.21)	-26 (0.189)	-26.2	-26.7	-28.3
⁶ Li	-28.6 (0.189)	-29.5 (0.179)	-30.2	-32.5	-32
¹² C	-74.9 (0.161)	-76.5 (0.155)	-77.4	-90.6	-92.2
¹⁶ O	-125.3 (0.162)	-127.46 (0.156)	-127.9	-128.5	-127.6
⁴⁰ Ca	-334.2 (0.13)	-338.5 (0.128)	-338.9	-344.2	-342.1

• The ground states are obtained with the optimal width for the AMD cases

• The Hilbert space is restricted $\implies E_{g.s.}(HF) \le E_{g.s.}(FMD) \le E_{g.s.}(AMD)$

• Without spin-orbit interaction $E_{g.s.}(HF) = -74.8 MeV$ for ¹²C

[1] B. Avez and C. Simenel, Private communication[2] G. Audi and A.H. Wapstra, NPA 594 409-480 (1995)

Introduction

• The AMD/FMD models : general frameworks AMD = Antisymmetrized Molecular Dynamics FMD = Fermionic Molecular Dynamics

• Monopole vibrations studied with molecular dynamics

• Summary and perspectives

	Gogny D1	SLy4	SIII
$ ho_0 ({\rm fm}^{-3})$	0.166	0.16	0.145
a_v (MeV)	-16.31	-15.969	-15.851
K_{∞} (MeV)	228	229.9	355.4
a _l (MeV)	30.7	32	28.16
m*/m	0.67	0.7	0.76

- They have the same properties for the infinite symetric nuclear matter
- But the module of incompressibility K_∞ is larger for SIII
- Our motivation is to test the sensitivity of the equation of state on the monopole vibration

$$\begin{array}{l} \text{Initial state :} \\ - |\Psi(t=0)\rangle = \hat{U}_{0}(k)|\Psi_{GS}\rangle \quad \hat{U}_{0}(k) = e^{ik\tilde{r}^{2}} \\ \text{RPA limit } (k \to 0) \Longrightarrow \Im (\text{FT}[r](\omega)) \propto S(\omega) \\ S(\omega) = \sum_{n} |\langle 0|\hat{r}^{2}|n\rangle|^{2}\delta(\hbar\omega - E_{n}) \\ - \text{FMD } \vec{b}_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}\vec{b}_{i} ; a_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}a_{i} \\ - \text{AMD } \vec{b}_{i}(t=0) = \vec{b}_{i}^{0} + k\vec{u}_{ir} \end{array}$$

$$\begin{array}{l} \text{Initial state :} \\ - |\Psi(t=0)\rangle = \hat{U}_{0}(k)|\Psi_{GS}\rangle \quad \hat{U}_{0}(k) = e^{ik\hat{r}^{2}} \\ \text{RPA limit } (k \to 0) \Longrightarrow \Im (\text{FT}[r](\omega)) \propto S(\omega) \\ S(\omega) = \sum_{n} |\langle 0|\hat{r}^{2}|n\rangle|^{2}\delta(\hbar\omega - E_{n}) \\ - \text{FMD } \vec{b}_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}\vec{b}_{i} ; \quad a_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}a_{i} \\ - \text{AMD } \vec{b}_{i}(t=0) = \vec{b}_{i}^{0} + k\vec{u}_{ir} \end{array}$$

From $\langle r^2 \rangle^{1/2}$ Vs t, the frequency $\hbar \omega$ can be extracted as function of :

$$\begin{array}{l} \text{Initial state :} \\ - |\Psi(t=0)\rangle = \hat{U}_{0}(k)|\Psi_{GS}\rangle \quad \hat{U}_{0}(k) = e^{ik\hat{r}^{2}} \\ \text{RPA limit } (k \to 0) \Longrightarrow \Im (\text{FT}[r](\omega)) \propto S(\omega) \\ S(\omega) = \sum_{n} |\langle 0|\hat{r}^{2}|n\rangle|^{2}\delta (\hbar\omega - E_{n}) \\ - \text{FMD } \vec{b}_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}\vec{b}_{i} ; \quad a_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}a_{i} \\ - \text{AMD } \vec{b}_{i}(t=0) = \vec{b}_{i}^{0} + k\vec{u}_{ir} \end{array}$$

From $\langle r^2
angle^{1/2}$ Vs t, the frequency $\hbar \omega$ can be extracted as function of :

• The nuclei (N,Z) and the interaction (Gogny, SLy4, and SIII?)

$$\begin{array}{l} \text{Initial state :} \\ - |\Psi(t=0)\rangle = \hat{U}_{0}(k)|\Psi_{GS}\rangle \quad \hat{U}_{0}(k) = e^{ik\hat{r}^{2}} \\ \text{RPA limit } (k \to 0) \Longrightarrow \Im (\text{FT}[r](\omega)) \propto S(\omega) \\ S(\omega) = \sum_{n} |\langle 0|\hat{r}^{2}|n\rangle|^{2}\delta(\hbar\omega - E_{n}) \\ - \text{FMD } \vec{b}_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}\vec{b}_{i} ; \quad a_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}a_{i} \\ - \text{AMD } \vec{b}_{i}(t=0) = \vec{b}_{i}^{0} + k\vec{u}_{ir} \end{array}$$

From $\langle r^2
angle^{1/2}$ Vs t, the frequency $\hbar \omega$ can be extracted as function of :

- The nuclei (N,Z) and the interaction (Gogny, SLy4, and SIII?)
- The excitation energy E*

$$\begin{array}{l} \text{Initial state :} \\ - |\Psi(t=0)\rangle = \hat{U}_{0}(k)|\Psi_{GS}\rangle \quad \hat{U}_{0}(k) = e^{ik\hat{r}^{2}} \\ \text{RPA limit } (k \to 0) \Longrightarrow \Im (\text{FT}[r](\omega)) \propto S(\omega) \\ S(\omega) = \sum_{n} |\langle 0|\hat{r}^{2}|n\rangle|^{2}\delta(\hbar\omega - E_{n}) \\ - \text{FMD } \vec{b}_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}\vec{b}_{i} ; \quad a_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}a_{i} \\ - \text{AMD } \vec{b}_{i}(t=0) = \vec{b}_{i}^{0} + k\vec{u}_{ir} \end{array}$$

From $\langle r^2
angle^{1/2}$ Vs t, the frequency $\hbar \omega$ can be extracted as function of :

- The nuclei (N,Z) and the interaction (Gogny, SLy4, and SIII?)
- The excitation energy E*
- The width parameter ν for the AMD case

$$\begin{array}{l} \text{Initial state :} \\ - |\Psi(t=0)\rangle = \hat{U}_{0}(k)|\Psi_{GS}\rangle \quad \hat{U}_{0}(k) = e^{ik\hat{r}^{2}} \\ \text{RPA limit } (k \to 0) \Longrightarrow \Im (\text{FT}[r](\omega)) \propto S(\omega) \\ S(\omega) = \sum_{n} |\langle 0|\hat{r}^{2}|n\rangle|^{2}\delta(\hbar\omega - E_{n}) \\ - \text{FMD } \vec{b}_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}\vec{b}_{i} ; \quad a_{i}' = \frac{1+2ika_{i}}{1+4k^{2}a_{i}^{2}}a_{i} \\ - \text{AMD } \vec{b}_{i}(t=0) = \vec{b}_{i}^{0} + k\vec{u}_{ir} \end{array}$$

From $\langle r^2 \rangle^{1/2}$ Vs t, the frequency $\hbar \omega$ can be extracted as function of :

- The nuclei (N,Z) and the interaction (Gogny, SLy4, and SIII?)
- The excitation energy E*
- The width parameter ν for the AMD case

• The amplitude
$$\Delta \langle r^2 \rangle^{1/2} = \left(\mathsf{Max}(\langle r^2 \rangle^{1/2}) - \mathsf{Min}(\langle r^2 \rangle^{1/2}) \right)/2$$

- The table shows the physical frequencies where $E^* \simeq \hbar \omega$
- The results are in good agreement with TDHF/RPA for ⁴⁰Ca with SLy4 : $-\hbar\omega$ (TDHF) = 22.1MeV
 - $\hbar\omega(\text{RPA}) = 21.6\text{MeV}$
- $\hbar\omega$ increase with the incompressibility $K_{\infty}(\text{Gogny}) = 228 \text{MeV}$ $K_{\infty}(\text{SLy4}) = 229.9 \text{MeV}$ $K_{\infty}(\text{SIII}) = 355.4 \text{MeV}$
- The second frequency is more affected by ${\it K}_\infty$ for the FMD case

$\hbar\omega$ [MeV]	AMD SLy4	AMD SIII	AMD Gogny	FMD SLy4	FMD SIII
¹² C	13.0	15.5	12.8	14.4 & 25.2	16.3 & 31.4
¹⁶ O	21.6	23.5	21.0	22.3 & 24.7	23.7 & 30.6
⁴⁰ Ca	23.3	26.0	22.3	21.6	26.8

K.H.O. Hasnaoui, T. Furuta, F. Gulminelli, C. Leclercq and A. Ono

Monopole oscillations in light nuclei with a molecular dynamics approach

• The ¹²C is taken as an example (same behavior for ¹⁶O and ⁴⁰Ca)

- The ¹²C is taken as an example (same behavior for ¹⁶O and ⁴⁰Ca)
- The most optimal ground states for $^{12}{
 m C}$ is the case for $u = 0.155 \text{ fm}^{-2}$

- The ¹²C is taken as an example (same behavior for ¹⁶O and ⁴⁰Ca)
- The most optimal ground states for $^{12}{
 m C}$ is the case for $u = 0.155 \text{ fm}^{-2}$
- The frequency of the monopole vibration depends of $\Delta \langle r^2
 angle^{1/2}$, E* and u

- The ¹²C is taken as an example (same behavior for ¹⁶O and ⁴⁰Ca)
- The most optimal ground states for $^{12}{
 m C}$ is the case for $u = 0.155 \text{ fm}^{-2}$
- The frequency of the monopole vibration depends of $\Delta \langle r^2
 angle^{1/2}$, E* and u
- Two types of regimes : small vibrations (O) and crossings (X) of α clusters

Motion of the Gaussian wave packets in the phase space

Case of the wide width

- The (X) represents the ground state configuration $\implies d_{\alpha-\alpha} \simeq 0$
- Motion in a potential with a single minimum

Motion of the Gaussian wave packets in the phase space

Case of the narrow width

- The (X) represents the ground state configuration $\Longrightarrow d_{lpha-lpha}$ are finite
- Motion in a potential with two minimums :
 - Oscillations arround an equilibrium fro the small amplitudes \implies Islet in the phase space
 - Crossing type for the larger amplitudes \implies The α clusters circulate arround $(R_{\alpha}, P_{\alpha}) = (0, 0)$

• One frequency comes from the motion of the centroids

- The width degree of freedom contains the two frequencies
- The third frequency comes from the lsovector mode which is slightly exited

$$E(3\alpha \text{ threshold})=7.3 \text{MeV}$$

Introduction

• The AMD/FMD models : general frameworks AMD = Antisymmetrized Molecular Dynamics FMD = Fermionic Molecular Dynamics

• Monopole vibrations studied with molecular dynamics

• Summary and perspectives

• The collective modes in light nuclei are dominated by quasimolecular cluster structures

- The collective modes in light nuclei are dominated by quasimolecular cluster structures
- The frequencies of the collective modes depend on K_{∞} Sensitivity appears only with FMD (importance of the width degree of freedom)

Summary

- The collective modes in light nuclei are dominated by quasimolecular cluster structures
- The frequencies of the collective modes depend on K_{∞} Sensitivity appears only with FMD (importance of the width degree of freedom)
- Depending of the ground state configuration we found :
 - Only one type of monopole vibrations for the wide widths
 - \implies The frequencies decrease gradually with the amplitude
 - \implies Potential with a single minimum
 - A transition between two types of monopole vibrations for the narrow widths
 - \Longrightarrow The frequencies behave as if we have a potential with two minimums

Summary

- The collective modes in light nuclei are dominated by quasimolecular cluster structures
- The frequencies of the collective modes depend on K_{∞} Sensitivity appears only with FMD (importance of the width degree of freedom)
- Depending of the ground state configuration we found :
 - Only one type of monopole vibrations for the wide widths
 - \implies The frequencies decrease gradually with the amplitude
 - \implies Potential with a single minimum
 - A transition between two types of monopole vibrations for the narrow widths
 - \Longrightarrow The frequencies behave as if we have a potential with two minimums
- Depending of the cluster structures of the nucleus more complicated spectral functions can be observed (Ex : with ²⁴Mg)

- The collective modes in light nuclei are dominated by quasimolecular cluster structures
- The frequencies of the collective modes depend on K_{∞} Sensitivity appears only with FMD (importance of the width degree of freedom)
- Depending of the ground state configuration we found :
 - Only one type of monopole vibrations for the wide widths
 - \implies The frequencies decrease gradually with the amplitude
 - \implies Potential with a single minimum
 - A transition between two types of monopole vibrations for the narrow widths
 - \Longrightarrow The frequencies behave as if we have a potential with two minimums
- Depending of the cluster structures of the nucleus more complicated spectral functions can be observed (Ex : with ²⁴Mg)

AMD/FMD are very powerfull tools : Interplay between cluster structures, collective modes, and multiple breakup of various nuclei including unstable nuclei

Same study with branching process and collision term :

- Decay of the collective modes
- Fragmentation of the monopole strength

Same study with branching process and collision term :

- Decay of the collective modes
- Fragmentation of the monopole strength

Monopole vibrations for exotic nuclei :

- For an isotopic chain we can study the influence of the symmetry energy on the phenomenology in using different energy functionals
- Interplay between the cluster structers and the symmetry energy