ORDER PARAMETER DISTRIBUTIONS IN NUCLEAR MULTIFRAGMENTATION

E. Bonnet[†], R. Botet^{*}, A. Chbihi[†], <u>J.D. Frankland[†]</u>, <u>D. Gruyer[†]</u>, M. Płoszajczak[†]

[†]GANIL, CEA/DSM - CNRS/IN2P3, Bvd. Henri Becquerel, F-14076 Caen *Laboratoire de Physique des Solides Bât. 510, CNRS/Université Paris-Sud, Centre d'Orsay, F-91405 Orsay

ORDER PARAMETER DISTRIBUTIONS IN NUCLEAR MULTIFRAGMENTATION

- 1. Which order parameter ?
 - why order parameter distributions?
 - what OP for multifragmentation?
 - universal fluctuations systematic
- 2. Extreme value statistics
 - the Gumbel distribution in all its splendour
 - 3 largest fragments in Au+Au
- 3. Evolution of OP distribution with energy
 - data Xe+Sn: from gauss to gumbel
 - Smoluchowski & percolation: R=0 & criticality

Sac

What is an order

parameter ?

"The order parameter is normally a quantity which is zero in one phase (usually above the critical point), and non-zero in the other.

It characterises the onset of order at the phase transition."

(Unknown author, Wikipedia)

e.g. net magnetisation of ferromagnetic material around $T_{_{Curie}}$, $(\rho_{_{\rm L}}\text{-}\rho_{_{\rm G}})$ of fluid around $T_{_{\rm C}}$

What is an order

parameter ?

"The order parameter is normally a quantity which is zero in one phase (usually above the critical point), and non-zero in the other.

It characterises the onset of order at the phase transition."

The Δ -scaling relation between the mean and variance of the observable m

 $\sigma^{\scriptscriptstyle \perp} \sim \langle m \rangle^{2\Delta}$

Phys. Rev. E62(2000)1825

The Δ -scaling relation between the mean and variance of the observable m

 $\sim \langle m \rangle^{2\Delta}$

Phys. Rev. E62(2000)1825

The Δ -scaling relation between the mean and variance of the observable m

 $\sim \langle m \rangle^{2\Delta}$

ESNT Sacia

Phys. Rev. E62(2000)1825

The Δ -scaling relation for distributions of the observable *m*

$$\langle m \rangle^{\Delta} P_N[m] = \Phi(z_{(\Delta)}) = \Phi\left(\frac{m - \langle m \rangle}{\langle m \rangle^{\Delta}}\right)$$

Phys. Rev. E62(2000)1825

The Δ -scaling relation for distributions of the observable *m*

$$\langle m \rangle^{\Delta} P_N[m] = \Phi(z_{(\Delta)}) = \Phi\left(\frac{m - \langle m \rangle}{\langle m \rangle^{\Delta}}\right)$$

Phys. Rev. E62(2000)1825

...and can be scaled to a single Gaussian distribution

J.D. Fr

ESNT

Sac

Phys. Rev. E62(2000)1825

The fluctuations of the size of the largest fragment (Z_{max}) "suddenly" increase...

J.D. Fra

The form of largest fragment size distributions

The Gumbel distribution(s)

Asymptotic distribution of k^{th} largest value among M random independent variables

$$\phi_k(s_k) = \frac{k^k}{(k-1)!} \frac{1}{b_M} e^{-k(s_k - e^{-s_k})}$$

$$s_k = \frac{Z_k - a_M}{b_M}$$

Gaussian equivalent for Extreme Value Statistics

B.V. Gnedenko, Ann. Math 44(1943)423

ESNT Saclay

J.D. Frankl

OP distributions in more detail: (I) Au+Au

Au+Au: Gumbel fits to 3 largest fragments

J.D. Fran

 $=\frac{Z_k-a_M}{b_M}$

$$\phi_k(s_k) = \frac{k^k}{(k-1)!} \frac{1}{b_M} e^{-k(s_k - e^{-s_k})} \qquad s_k$$

OP distributions in more detail: (I) Au+Au

Au+Au: Gumbel fits to 3 largest fragments

$$(1/\xi) \exp{-Z/\xi}$$

$$a_M \approx \xi \ln \frac{M}{k}, \ b_M \approx \xi$$

J.D. Fra

ESNT Sacia

OP distributions in more detail: (I) Au+Au

Apparent multiplicity M calculated according to:

$$a_M \approx \xi \ln \frac{M}{k}$$

Gumbel hypothesis + exponential size distribution

$$\int_{a_M}^{\infty} f(Z') \, \mathrm{d}Z' = \frac{k}{M}$$

J.D. Fra

Gumbel hypothesis + experimental size distribution

OP distributions in more detail: (II) Xe+Sn

Hypothesis: OP distribution at intermediate energies are admixture of 2 asymptotic distributions

$$f(x) = \eta f_{Ga}(x) + (1 - \eta) f_{Gu}(x)$$

$$f_{Ga}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

$$f_{Gu}(x) = \frac{1}{b_m} \exp\left[-\frac{(x-a_m)}{b_m} - \exp\left(-\frac{(x-a_m)}{b_m}\right)\right] \quad 454$$

J.D. Frankland

ESNT Saciay

OP distributions in more detail: (II) Xe+Sn

INDRA data ¹²⁹Xe + ^{nat}Sn b< $0.1*b_{max}$

$$f(x) = \eta f_{Ga}(x) + (1 - \eta) f_{Gu}(x)$$

The relative proportions of the two distributions evolve smoothly with energy

Equal proportions (R=0) are observed for E_{beam} ~30A.MeV

J.D. Fran

ESNT Sacia

OP distributions in more detail: (II) Xe+Sn

Can we find an equivalent behaviour in models of phase transitions ?

To answer this question, we consider two clusterization models having $Z(S)_{max}$ as order parameter:

- at-equilibrium critical behaviour

- no time
- geometric transition

SMOLUCHOWSKI COALESCENCE

J.D. Fra

Percolation

3D percolation with N=216

Gaussian distribution for $p >> p_c$

(percolating cluster is additive order parameter)

J.D. Frankl

ESNT Saclay

J.D. Frar

ESNT Sacia

Ar+KCl:

ESNT Sacia

J.D. Fra

Ni+Ni, Xe+Sn:

cf. link between partitions and flow (Eric), systematic on stopping/transparency (Olivier)

ESNT Saclay

J.D. Frankland

Merci de votre attention...

...et surtout merci à

DIEGO, Eric, Abdou, Marek, et Robert

