Clustering in nuclear matter

Camille Ducoin

Institut de Physique Nucléaire de Lyon - Université Lyon 1

Collaborateurs :

Caen : Philippe Chomaz, Francesca Gulminelli Orsay : Jérôme Margueron Coimbra : Constança Providência, Isaac Vidaña Bruxelles : Nicolas Chamel

Workshop "Fluctuations and Temporal Evolution in Heavy-Ion Collisions" - Saclay - May 2012

Clustering in nuclear matter

About the nuclear liquid-gas phase transition and its role in cluster formation in nuclear physics and astrophysics

Workshop "Fluctuations and Temporal Evolution in Heavy-Ion Collisions" - Saclay - May 2012

Introduction

Exotic nuclei

Nuclear interaction

Nuclei Finite (small) systems Positively charged

Heavy-ion collisions

experiment nuclear interaction

Laboratory exploration :

 $\begin{cases} \text{densities } \rho \neq \rho_0 \\ \text{temperatures (MeV)} \\ N/Z \text{ asymmetry} \end{cases}$

Macroscopic Electroneutrality

Stars

Compact stars

(neutron stars, supernova cores)

Large interval of :

densityρtemperatureTasymmetryI

Knowledge of the equation of state: Ε (ρ, Ι, Τ)

Introduction

Study of isospin effects (role of neutron/proton asymmetry)

Outline

- **1.** <u>Nuclear liquid-gas phase transition</u> Spinodal region in nuclear matter
- 2. <u>Cluster formation</u>

Spinodal \rightarrow Finite size instabilities

- **3.** <u>Nuclear multifragmentation</u> Isospin distributions
- 4. <u>Clustering in compact stars</u>

Neutron-star crust / Supernova core

1. Nuclear liquid-gas phase transition

Nuclear matter :

Infinite, homogeneous, no Coulomb

Nuclear interaction :

- 2. Cluster formation
- 3. Nuclear multifragmentation
- 4. Clustering in compact stars
- → Summary and perspectives

Nuclear liquid-gas phase transition

Study of the phase transition :

Mean field approach (independent particles)

Skyrme effective force (e.g. Sly230a)

Phase separation determined by **entropy maximization**

Entropy curvature and Gibbs construction

Phase equilibrium of nuclear matter

Phase equilibrium of nuclear matter

For each T<T_c

Ensemble of couples "liquid-gas"
+ 2 critical points

Nuclear-matter spinodal

Nuclear-matter spinodal

- 1. Nuclear liquid-gas phase transition
- 2. Cluster formation
- 3. Nuclear multifragmentation
- 4. Clustering in compact stars
- → Summary and perspectives

Cluster formation

Is the nuclear liquid-gas transition physical ?

What about **Coulomb** interaction ? **Surface** tension ?

Thermodynamic spinodal

Finite-size instabilities in nuclear matter

Finite-size instabilities in nuclear matter

k-dependant spinodal regions

Coulomb interaction reduces instability for **low k**

Density-gradient terms reduce instability for **high k**

k-dependant spinodal regions

Coulomb interaction reduces instability for **low k**

Density-gradient terms reduce instability for **high k**

- 1. Nuclear liquid-gas phase transition
- 2. Cluster formation
- 3. Nuclear multifragmentation
- 4. Clustering in compact stars
- → Summary and perspectives

Nuclear multifragmentation

Example of application : Properties of isospin distributions

Isospin distillation

Isospin fractionation

Equilibrium direction

- ✓ *Not constant-Z/A* direction
- ✓ Shift towards *isoscalar* direction

- → Isospin fractionation
- → Liquid + symmetric

Equation of State: $a_I(\rho_L) > a_I(\rho_G)$ (symmetry-energy evolution at low ρ) **Observation:** neutron distillation in multifragmentation

Isospin fractionation

Phase separation out of equilibrium : **spinodal decomposition**

- Line of constant Z/A = 0.3
- Equilibrium direction
- Instability direction
- ---- Isoscalar direction

Isospin fractionation in spinodal decomposition

- More fractionation than at equilibrium
- Separation direction linked to $a_I(\rho_{Source})$

Need to desentangle asy-EOS at low density versus reaction mechanism

One issue : the symmetry energy

asy-EOS : a crucial input for compact-star physics

Experimental measurements ?

- 1. Nuclear liquid-gas phase transition
- 2. Cluster formation
- 3. Nuclear multifragmentation
- 4. Clustering in compact stars
- → Summary and perspectives

Clustering in compact stars

Neutrino-cluster interaction in supernova cores

Core-crust transition in neutron stars

Yes, they exist...

Nuclear-matter clustering in astrophysics

Coulomb interaction at macroscopic level
 Proton charge neutralized by electrons

The **thermodynamic Liquid-Gas** phase separation is quenched But **finite-size instabilities** are not

- → What is the impact of electrons on matter clustering ?
 → Applications :
 - **Neutron stars / core-crust transitions Supernovae / role of neutrino trapping**

Matter clusterization with electrons

Matter clusterization with electrons

additional degree of freedom high incompressibility χ_{a}^{-1}

e-

additional degree of freedom \rightarrow Extension of instability region

 Perturbation of cNM instalilities (effects at low k)

[N. Chamel]

Transition density ρt Transition pressure Pt

> Mass + Width of the crust

Interpretation of observations glitches, X-ray transcients, ...

Neutron stars : core-crust transition

Neutron stars : core-crust transition

Full **equilibrium** calculation (*numerical*) versus **spinodal-crossing** approximation (*analytical*)

Supernovae : role of neutrino trapping

Core-collapse supernova

Simulations : Difficulty to get **external layers expulsion**

- → Additional, delayed **push by neutrinos** ?
- → Neutrino diffusion affected by **matter clustering**

Supernovae : role of neutrino trapping

Star-matter clusterization : Region of instability in (T, ρ_n , ρ_p)

Case of star-matter at β -equilibrium : in/out instability region ?

Neutron stars :

Low temperature (T ~ 0) Transparent to neutrinos Low proton fraction (Yp ~ 3%) but large spinodal region

→ core-crust transition
= spinodal crossing

Supernovae :

High temperature (up to several 10 MeV) Neutrino trapping Higher proton fraction (Yp ~ 30%) but smaller spinodal region

→ Presence of spinodal region ?

Supernovae : role of neutrino trapping

Summary

Perspectives

<u>Multifragmentation and measure of E_{sym}(ρ<ρ₀)</u>

- Need to disentangle asy-EOS at low density versus reaction mechanism (degree of equilibration before fragment separation, secondary decays...)
- → Could info on $E_{sym}(\rho < \rho_0)$ help to determine the reaction process instead ?

<u>Clustering in compact stars</u>

- Spinodal = good approximation to localize inhomogeneous matter Advantage : analytical
- → Predictions depend on the details of asy-EOS at low ρ no simple link with $E_{sym}(\rho_0)$

Extensive studies of exotic nuclei are needed