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@ Applications to neutron star crusts
> equilibrium structure and collective excitations



Why do we need new Skyrme functionals ?

The interpretation of many astrophysical phenomena requires
the knowledge of nuclear properties which are not
experimentally accessible and won’'t be measured in a near
future




Effective nuclear energy density functional

@ In principle, one can construct the nuclear functional
from realistic NN forces (i.e. fitted to experimental NN
phase shifts) using many-body methods

h2

&= M 7 (7n + 7p) + A(pn, pp) + B(pn, pp)m + B(pp, on)7p

+C(pn, pp)(Vpn)?+C(p, Pn)(Vop)>+D(pn, pp) (Vo) (Vop)

+ Coulomb, spin-orbit and pairing
Drut,Furnstahl and Platter,Prog.Part.Nucl.Phys.64(2010)120.

@ But this is a very difficult task  so in practice, we
construct phenomenological (Skyrme) functionals
Bender,Heenen and Reinhard,Rev.Mod.Phys.75, 121 (2003).



Why not using existing Skyrme functionals?

Most of existing Skyrme functionals are not suitable for
astrophysics.

@ They were adjusted to a few selected nuclei (mostly in the
stability valley)
— not suited for investigating stellar nucleosynthesis.

@ They were not fitted to the neutron-matter E0S
— not suited for neutron-star studies.

It is difficult to get physical insight on how to optimize the
functional because each one was constructed using a different
fitting procedure.



Construction of the functional

Experimental data :
@ 2149 atomic masses with Z,N > 8 from 2003 AME
@ compressibility 230 < Ky < 250 MeV
@ charge radius of 2°®Pp, R, = 5.501 + 0.001 fm
@ symmetry energy J = 30 MeV
N-body calculations with realistic forces
@ isoscalar effective mass M¢/M = 0.8
@ equation of state of pure neutron matter
@ 1S, pairing gaps in symmetric and neutron matter

@ Landau parameters, stability against spurious spin and
spin-isospin instabilities



Phenomenological corrections for atomic nuclei

For atomic nuclei, we add the following corrections

@ Wigner energy

2 2
Ew =Vw eXp{—)\<N_Z> }+V\§V|N—Z\exp{—<A> }
A Ay

Vw ~ —2 MeV, V, ~ 1 MeV, A ~ 300 MeV, Ag ~ 20
@ rotational and vibrational spurious collective energy

Eoor = EG™{b tanh(c|8z1) + |8 exp{-1(152| - 89)%}}

In this way, these collective effects do not contaminate the
parameters of the functional. ’




Pairing functional



Local pairing energy density functionals

The pairing EDF is very poorly
BB ] constrained by fitting pairing
gaps in nuclei. Other
observables are required to

i pinpoint the density and isospin

1 dependence of the pairing
, i strength.
OO/ 0.62 D“O4 O,bﬁ D“OS 0‘,1 0,12 D“14 0,‘16 D“18 02 Chamel’ Gorlely’ Pearson’ Nuc"
pyIm’] Phys.A812,72 (2008).

The pairing energy is assumed here to be locally the same as
in homogeneous matter. J



Empirical pairing energy density functionals

The pairing functional is generally parametrized as

1 _ )
Epir = 3 D V™ pn. ppl g
q=n,p

. pn + pp\
v™pn, pp] = V2, <1—nq (%) >

This functional has to be supplemented with a cutoff
prescription.

Drawbacks

@ not enough flexibility to fit realistic pairing gaps in infinite
nuclear matter and in finite nuclei (= isospin dependence)

@ the global fit to nuclear masses would be computationally
very expensive




Pairing in nuclei and in homogeneous nuclear matter

V™ [pn, pp] = V™I[Aq(pn, pp)] constructed so as to reproduce
exactly a given pairing gap Aq in infinite homogeneous matter

™ _ _877[-2 hz 2 zﬂ 67/\ -
v . 2log +A
Vg \2Mg Aq Hq

A(x) = log(16x) + 2v/1 + x — 2log (1 + m) _4

S.p. energy cutoff e above the Fermi level
Chamel, Phys. Rev. C 82, 014313 (2010)

@ one-to-one correspondence between pairing in nuclei
and homogeneous nuclear matter

@ no free parameters
@ automatic renormalization of the pairing strength with 5
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Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

472 K2 3/2
mq ol =
vl 0= =2 ()

should coincide with the bare force in the 1Sy channel.

A fit to the experimental 1Sy NN phase shifts yields
exn~ 7 — 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).
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On the other hand, a better mass fit
can be obtained with ep ~ 16 MeV
Goriely et al., Nucl.Phys.A773(2006),279.
Chamel et al., arXiv:1204.2076
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Choice of the pairing gap

Fit the 1Sy pairing gap obtained with realistic NN potentials at
the BCS level

1S, pairing gaps in
neutron matter obtained
with Argonne V 14
potential
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@ An(pn) essentially independent of the NN potential
@ An(pn) completely determined by experimental 1Sq nn
phase shifts

Dean&Hjorth-Jensen,Rev.Mod.Phys.75(2003)607.



Other contributions to pairing

In order to take into account

@ Coulomb and charge symmetry breaking effects

@ polarization effects in odd nuclei (we use the equal filling
approximation)

@ coupling to surface vibrations

we introduce renormalization factors fcjt (f: = 1 by definition)

V7Tn fr?:vwn

VAL fgtv”p

Typically fif ~1—1.2



HFB-16 mass table

Results of the fit on the 2149 measured masses with Z,N > 8
from the 2003 Atomic Mass Evaluation

HFB-16 FRDM
a(M) Mev] 0.632 0.656
é(M) Mev] -0.001 0.058

o(Mnr) IMev] | 0.748 0.919
€(Mpr) (Mev] | 0.161 0.047

o(Sn) Mev] 0.500 0.399
€(Sn) Mev] | -0.012  -0.001

o(Qgp) vev] | 0.559 0.498
€(Qg3) Mev] 0.031 0.004
a(R¢) [fm] 0.0313 0.0545
€(R¢) [fm] -0.0149 -0.0366

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).
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HFB-17 mass model: microscopic pairing gaps
including medium polarization effects

Fit the 1Sy pairing gaps of both neutron matter and symmetric
nuclear matter obtained from Brueckner calculations taking
into account medium polarization effects

Neutron matter Symmetric nuclear matter
B 4.5 ]
4 ]
] 3.5 -
i %‘ 3 i
52.5 -
] Q2 ]
q 1.5 ]
. l N
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OO

pIfm’] plfm
Cao et al.,Phys.Rev.C74,064301(2006).



HFB-17 mass table

Results of the fit on the 2149 measured masses with Z,N > 8
from the 2003 Atomic Mass Evaluation

HFB-16 HFB-17
0(2149M) | 0.632  0.581
é2149M) | -0.001  -0.019
o(Mnr) 0.748  0.729
é(Mnr) 0.161  0.119
o(Sn) 0.500  0.506
)

&(Sn -0.012  -0.010
7(Qs) 0559  0.583

#(Qp) 0.031  0.022
o(R;) | 0.0313 0.0300

§Rc) | -0.0149 -0.0114
0(2%PpPb) | 0.15 0.15

Goriely, Chamel, Pearson, PRL102,152503 (2009).



HFB-17 mass predictions

Differences between experimental and calculated masses as a
function of the neutron number N for the HFB-17 mass model.
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Goriely, Chamel, Pearson, PRL102,152503 (2009).




Predictions of HFB vs newly measured atomic masses

HFB mass models were fitted to the 2003 Atomic Mass
Evaluation. How reliable are these models?

The predictions of these models are in good agreement
with new mass measurements

HFB-16 HFB-17
o(434M) | 0.484  0.363
434 M) | -0.136  -0.092
o(142M) | 0516  0.548
Z142M) | -0.070  0.172

Litvinov et al., Nucl.Phys.A756, 3(2005)

http://research.jyu.fi/igisol/JYFLTRAP_masses/ gs_masses.txt



Spin-isospin instabilities



Ferromagnetic instability

Unlike microscopic calculations, conventional Skyrme
functionals predict a ferromagnetic transition in nuclear matter
sometimes leading to a ferromagnetic collapse of neutron stars.

o
=

o
w

o
N

proton fraction X, = pp/ p

-300F |— BSk17: no polarization 4
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Margueron et al., Chamel et al.,
J.Phys.G36(2009),125102. Phys.Rev.C80(2009),065804.



Spin and spin-isospin instabilities
Skyrme functional in polarized homogeneous nuclear matter
52%', = u”p°'+C$sz+CS(sn —8p)?+CJlsT+C/l (sn—Sp)(Ta—Tp)

Spurious spin and spin-isospin instabilities arise from the Cg
and C] terms in the Skyrme functional.

In symmetric nuclear matter, the
ferromagnetic stability is governed by
the Landau parameter

Go = 2Np(Cj + Cgké).

. | I | I | I | | |
40 01 02 03 04 05 06 07 08 09 1

plim?



Spin stability in symmetric nuclear matter restored

The ferromagnetic instability can be completely removed by
including the density-dependent term in the Skyrme force

1
ts(L +XsPg) 15Py-p(F)” 3(ri) Py

Problem: this new term will also change the nuclear properties
at low densities! Introduce another force of the form

; ta(1+XaPo) 7 {p., p(r)’ 5(fij)+5(fij)ﬂ(f)5puz}

The t; and ts terms exactly cancel in unpolarized nuclear
matter (for any isospin asymmetry) provided

t4(1 — x4) = —3ts5(1 + Xs5), X4(5 + 4x5) = —(4 + 5xs)
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



Spin stability in asymmetric nuclear matter restored

With t4 and ts terms, the ferromagnetic instability is completely
removed not only in symmetric nuclear matter but also in
neutron matter for any spin polarization.

8 500
7 450F 1
6 " FP /
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We have checked that no instabilities arise in neutron stars at
any densities.
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



HFB-18 mass model

Results of the fit on the 2149 measured masses with Z,N > 8

HFB-18 HFB-17
) [MeV] 0.585 0.581
) [MeV] 0.007 -0.019
o(Mpr) Mev] | 0.758 0.729
Mnr) [Mev] | 0.172 0.119
o(Sn) Mev] 0.487 0.506
€(Sn) Ivev] | -0.012 -0.010

5)Mev] | 0.561  0.583
£(Qs) Mev1 | 0.025  0.022
o(R¢) [fm] 0.0274 0.0300
éR¢) fm] | 0.0016 -0.0114

0(%°8Pb) fm) | 0.15 0.15

HFB-18 yields almost identical results as HFB-17 for nuclei J
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Spin-isospin instabilities

Although HFB-18 yields stable neutron-star matter, it still
predicts spurious spin-isospin instabilities in symmetric matter. J

All instabilities (at any temperature and degree of polarization)
can be removed by setting CtT = 0, which means dropping J?
terms due to gauge invariance.

Difference between the energy per
particle in fully polarized neutron
matter and in unpolarized neutron
matter with (dashed line) and without
(solid line) C{ terms.

-200F ) Chamel&Goriely, Phys.Rev.C82, 045804

TS _BSK17
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Landau parameters and the J? terms

Landau parameters for selected Skyrme forces which were
fitted without the J? terms. Values in parenthesis were obtained

by setting C = 0.

Go Gg G
SGll 0.01 (0.62) | 0.51(0.93) | -0.07 (1.19)
SLy4 1.11 (1.39) | -0.13 (0.90) | 0.11 (1.27)
Skil -8.74 (1.09) | 3.17 (0.90) | -5.57 (1.10)
Ski2 -1.18 (1.35) | 0.77 (0.90) | -1.08 (1.24)
Ski3 0.57 (1.90) | 0.20(0.85) | -0.19 (1.35)
Skl4 -2.81 (1.77) | 1.38 (0.88) | -2.03 (1.40)
Ski5 0.28 (1.79) | 0.30(0.85) | -0.31 (1.30)
SkO -4.08 (0.48) | 1.61 (0.98) | -3.17 (0.97)
LNS 0.83(0.32) | 0.14 (0.92) | 0.59 (0.91)

Microscopic 0.83 1.22 0.77
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Impact of the J2 terms
Dropping the J? terms and their associated time-odd parts
@ removes spin and spin-isospin instabilities atany T > 0
@ prevents an anomalous behavior of the entropy

@ improves the values of Landau parameters (especially Gy)
and the sum rules.

Warning:

Adding or removing a posteriori the J2 terms
without refitting the functional can induce
large errors!

Chamel & Goriely, Phys.Rev.C82, 045804 (2010)
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More about the J2 terms

On the other hand dropping the J? terms leads to

@ unrealistic effective masses in polarized matter

h? h?
2Mg,  2Mg

i[s(Cg —CJ) +254CT | = M& = Mz, = M;

@ self-interaction errors.

Instabilities can be removed with the J? terms by adding
density-dependent terms in C} and C/ . But only for zero

temperature.
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



Self-interactions



Self-interactions

In the one-particle limit, the potential energy obtained from
phenomenological functionals may not vanish.

Considering the most general semi-local functional with all
possible bilinear terms up to 2nd order in the derivatives

Esy= Y Clot+ClmAp + Clpr +CT iV - &
t=0,1

1 5
+Ct ZJt ;w\]t nv + CTrJ (Z Jtv##) ECEJ Z\]t,;w‘]t,u,u
v

wv

+CPs? + CPSsy - Asy + Cl'sy - Ty + Cli2 +CVlsy - V x

+C3(V -st)’ + Cfst - Fy



Removal of self-interactions

Requiring the cancellation of self-interactions leads to the
fundamental constraints

C{+Cl+C5+Ci=0
C§ +C] +Cf +C] =4(C8 +C2¥ +Cs + Chs)
4(Cy5+CY%)+Cf+CL =0
C{+C]—2(C§ +C{)—(C§ +Cf)—4(Css+CPs) =0

Chamel, Phys. Rev. C 82, 061307(R) (2010).



Self-interaction errors

Self-interaction errors in the one-particle limit can contaminate
systems consisting of many particles.

For instance, in polarized neutron matter the error in the energy
density caused by self-interactions is given by

0€Raum = (C§ + Cf +C§ +C)p?

If C§ + C{ + C§ + C3 < 0, self-interactions would thus drive a
ferromagnetic collapse of neutron stars.

The use of effective forces prevent one-particle self-interaction
errors but not necessarily many-body self-interaction errors (t3
term).



Neutron-matter stiffness



Neutron-matter equation of state at high densities
We have recently constructed a family of three different
generalized Skyrme functionals BSk19, BSk20 and BSk21

(with t4 and t5) spanning the range of realistic neutron-matter
eqguations of state at high densities.

T — T T T 1
t| & Friedman-Pandharipande (1981) B
|| a4 Wiringa (1988) R
1000 e APR (1998)
[ = BHF (2008)
800 — BSk19 B

1200

E/A[MeV]

400 2 -4




Neutron-matter equation of state at low densities

All three functionals yield similar neutron-matter equations of
state at subsaturation densities consistent with microscopic
calculations using realistic NN interactions

25 T T T T T
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— BSk20
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3 151 i i
3
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plfm?



Nuclear-matter equation of state

Our functionals are also in very good agreement with BHF
calculations not only in neutron matter but also in symmetric
nuclear matter (not fitted).
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HFB-19,HFB-20 and HFB-21 mass tables

Results of the fit on the 2149 measured masses with Z,N > 8
from the 2003 Atomic Mass Evaluation

HFB-19 HFB-20 HFB-21 | HFB-18
o(M)[Mev] | 0583 0583 0577 | 0.585
&M)Mmev | -0.038 0.021 -0.054 | 0.007
o(Mnr) Mev] | 0.803 0790  0.762 | 0.758
é(Mnr) Mev | 0.243 0217  -0.086 | 0.172
o(Sn) Mev] | 0502 0525 0532 | 0.487
&(Sn) Mev] | -0.015 -0.012  -0.009 | -0.012
o(Qz) Mev] | 0.612  0.620  0.620 | 0.561
#(Qp) Mev] | 0.027  0.024  0.000 | 0.025
o(Rg) fm] | 0.0283 0.0274 0.0270 | 0.0274
Z(Rc) fm | -0.0032 0.0009 -0.0014 | 0.0016
0(%Pb) m) | 0.140  0.140  0.137 | 0.150

Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).



Comparison with the latest experimental data

Comparison with the latest AME of 2294 nuclei transmitted by
G. Audi (unpublished).

M) Mev] (M) [Mev]
HFB-21 -0.031 0.574
HFB-20 -0.010 0.595
HFB-19 0.051 0.593
HFB-18 0.026 0.582
HFB-17 0.0008 0.581
FRDM 0.062 0.645




Nuclear matter properties

BSk19 BSk20 BSk21 | BSk18
ay [Mev] | -16.078 -16.080 -16.053 | -16.063
poim=3 | 0.1596 0.1596 0.1582 | 0.1586
J [MeV] 30.0 30.0 30.0 30.0
Kv Mev] 237.3 241.4 245.8 241.8
L [Mev] 31.9 37.4 46.6 36.2
KsymiMev] | -191.4  -136.5 -37.2 -180.9
KrMev] -342.8 -317.1 -264.6 | -343.7
Mg /M 0.80 0.80 0.80 0.80
My /M 0.61 0.65 0.71 0.79

Note that BSk21 predicts a realistic splitting of effective masses
in agreement with microscopic calculations.

J



Applications to neutron stars



Properties of neutron star crusts
The crust of a neutron star is a very strongly coupled nuclear
system formed of a crystal lattice of nuclear clusters embedded
in a neutron superfluid

2 »-e |ongitudinal superfluid bosons|
+ -+ longitudinal lattice phonons

0.1/ lowest mixed mode
“~|~— highest mixed mode

0.1F

.08 Preliminary results

r [fm] log,,ny [fm?)

Chamel,Phys.Rev.C85,035801(2012).

A realistic description of the crust requires a consistent
treatment of both clusters and superfluid neutrons.



Unified equation of state of neutron stars

The EDF theory allows for a unified description of all regions of
a neutron star.
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Neutron star observations rule out the softest of our EoS.
Chamel et al.,Phys.Rev.C84,062802(2012).



Summary

We have developed a family of Skyrme EDF constrained by
both experiments and N-body calculations:

@ they give an excellent fit to essentially all nuclear mass
data (¢ < 0.6 MeV)

@ they give an excellent fit to other properties of finite nuclei
such as charge radii (c < 0.03 fm)

@ they also reproduce various properties of homogeneous
nuclear matter (EoS, 1S, pairing gaps, effective masses
etc)

@ they do not contain spurious instabilities in homogeneous
nuclear matter

But surface vibrations, finite-size instabilities, self-interactions
require further studies.



