
There are two aspects to density functionals:

• The energy is expressed as a stationary functional E (n) of the
density n (~r) =

〈
Φ0

∣∣ψ† (~r)ψ (~r)
∣∣ Φ0

〉
. That can always be trivially

achieved by a Legendre transform in whichH → H+
∫
d3r J (~r)ψ† (~r)ψ (~r).

(One could equally well contruct a stationary functional of the mag-
netic moment...)

• The possibility of expressing the exact density in terms of a Slater
determinant:

n (~r) =
∑

λ∈F

〈λ |~r〉 〈~r |λ〉

The single particle orbits |λ〉, called Kohn-Sham orbits in this case,
are calculated with a static (energy independent) and local poten-
tial:

[h0 + J (~r)] 〈~r |λ〉 = eλ 〈~r |λ〉

This saves a lot of complications (static potential) and computing
time (local potential).

∗∗
Do not confuse this with the possibility of expressing the energy

E (ρ) = 〈φ |H|φ〉 of a Slater determinant as a functional of its density

matrix ρij =
〈
φ

∣∣∣a†jai
∣∣∣φ

〉
. The density matrix cannot be exact in this

case (Hartree-Fock theory).
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Consider electrons interacting with a Coulomb potential:

H − µN

=

∫
d3r ψ† (~r) (h0 − µ)ψ (~r)

+
1

2

∫
d3r1d

3r2 ψ
† (~r1)ψ

† (~r2)
e2

4π |~r1 − ~r2|
ψ (~r2)ψ (~r1)

where h0 = t + u0 (~r).
For nucleons interacting with π, ω, ρ, σ, ... mesons, the theory is the

same, only with more terms.
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After a simple bosonization the ground state energy E0 acquires the
form:

E0 − µN0 = −
1

β

∫
D (φ) e−I(φ)

The euclidian action I (φ) is a functional of the Coulomb field φ:

I (φ) = −Tr ln (∂τ + h0 − µ + φ)

+
1

2

∫
d4x1d

4x2 φ (x1)
〈
x1

∣∣K−1
∣∣x2

〉
φ (x2)

and K is the instantaneous Coulomb interaction:

〈x1 |K|x2〉 = δ (τ1 − τ2)
e2

4π |~r1 − ~r2|
(x ≡ τ, ~r)

x1 x2=

The fermion propagator is:

〈x1 |G0| x2〉 =

〈
x1

∣∣∣∣
1

∂τ + h0 − µ

∣∣∣∣x2

〉

x1 x2

=

The key feature is that there exists a coulomb field which couples to
the density n (~r) =

〈
ψ† (~r)ψ (~r)

〉
of the system.
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Typical connected diagram:

The diagram has:

• na = 4 articulation lines : dashed lines such that the diagram
separates into two disconnected parts when an articulation line is
cut.

• nc = 3 cycles : closed loops formed by the fermion propagators
which are connected only to articulation lines.

• nI = 2 irreducible parts : which cannot be separated into into two
disconnected parts by cutting a dashed line.

nI + nc − na = 1
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Let us add a local and static potential J (~r) to h0. The fermion
propagator becomes:

G (J) =
1

∂τ + h0 + J − µ

and let Φ (J) be a chosen set of irreducible diagrams calculated with
the ’dressed’ propagator G (J):

+Φ(J) =
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Let us choose the potential J (~r) to be:

J (x) =

∫
d4y 〈x |K|x′〉

δ

δJ (x′)

{
Tr lnG−1 + Φ (J)

}

= + +x
x x

The density is then equal to:

n (x) = −
δ

δJ (x)

{
Tr lnG−1 + Φ (J)

}

= + x+x x

Note that:

J (x1) = −

∫
d4y 〈x1 |K| x2〉n (x2)

J (~r1) = −

∫
d3r2

e2

|~r1 − ~r2|
n (~r2)

= self-consistent Coulomb potential.
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The energy of the system is the sum of connected diagrams:

E0 = −
1

β

∑

Γc

Γc

Φ(J) =

= +
+

=
∑

Γc

nI (Γc) Γc

+...+ +

=
∑

Γc

nc (Γc) Γc = Tr ln
(
G0G

−1
)

=
∑

Γc

na (Γc) Γc =
1

2
nKn = −

1

2
JK−1J
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Add the first two and subtract the third to get:

−
1

β

∑

Γc

Γc (nI + nc − na) = −
1

β

∑

Γc

Γc = E (J)

= −
1

β

{
Tr lnG (J) +

1

2
JK−1J + Φ (J)

}

Also:

−β
δE (J)

δJ (x)
=

δ

δJ (x)

(
Tr lnG (J) + Φ (J) +K−1J

)
= 0

because:

J (x) = −K
δ

δJ

{
Tr lnG−1 + Φ (J)

}

Since J = Kn, E (J) ↔ E (n) so that δE(n)
δn(x) = 0.
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Résumé:

1. Make an initial guess at the potential J (~r).

2. Choose a set of irreducible diagrams:

+Φ(J) =

expressed in terms of G−1 = ∂τ + h0 − µ + J (~r).

3. Calculate the density:

n (x) = −
δ

δJ (x)

{
Tr lnG−1 + Φ (J)

}

= + x+x x

4. Calculate the potential J = Kn:

J (~r) = −

∫
d3r′

e2

|~r − ~r′|
n (~r′)

and return to step 2.

J (~r) is the Coulomb potential.
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Simple cases.

• All one-line irreducible diagrams are neglected: Φ (J) = 0. This is
the Hartree approximation.

• The only irreducible diagram is:

Φ(J) =

Then:

+ +~r ~r ~rJ (~r) =

• All one-line irreducible diagrams are included. The density and the
energy are then exact.

What has this got to do with Kohn-Sham orbits? Nothing so far...
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The density is equal to:

n (x) = −
δ

δJ (x)

{
Tr lnG−1

J + Φ (J)
}

= −〈x |GJ |x〉 −
δΦ (J)

δJ (x)

Split the potential into two terms J (x) = J0 (x) + Jint (x):

G−1
J0+Jint

= ∂τ + h0 − µ + J0 + Jint = G−1
J0

+ Jint

G−1
J0+Jint

= GJ0
−GJ0

JintGJ0+Jint

The density becomes:

n (x) = −〈x |GJ0
| x〉 + 〈x |GJ0

JintGJ0+Jint
| x〉 −

δΦ (J0 + Jint)

δJ (x)

Choose J0 (x) such that the exact density n (x) should be given by the
first term:

n (x) = −〈x |GJ0
| x〉 =

∑

eλ<µ

〈λ |~r〉 〈~r |λ〉

[h0 + J0 (~r)] |λ〉 = eλ |λ〉

The |λ〉 are Kohn-Sham orbits. Then Jint is determined by:

〈x |GJ0
JintGJ0+Jint

| x〉 −
δΦ (J0 + Jint)

δJ (x)
= 0

Considerably more complicated! Except in one case...
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Consider the case where there are no σ nor ω mesons in the theory
as in ChPT. Then Kφ = 0 so that J = Kφn = 0.

Consider the case where there are only pions. The only boson prop-
agator is:

〈
x

∣∣Kπ
µν

∣∣ y
〉

= gA

(
1

2fπ

)2 〈
x

∣∣∣∣∂µ
1

−∂2 +m2
π

∂ν

∣∣∣∣ y
〉

yνπ
xµ=

and (with very few exceptions) one-line irreducible diagrams vanish:

π = 0

for symmetry reasons: the pion field gives rise to a potential which
breaks parity. It couples to the density
ρa (~r) =

〈
ψ† (~r) γ5τaψ (~r)

〉
and not to the particle density n (~r) =〈

ψ† (~r)ψ (~r)
〉
.
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Legendre transform.

n̂ (~r) ≡ ψ† (~r)ψ (~r)

E (J) =

〈
φJ

∣∣∣∣H +

∫
d3r J (~r) n̂ (~r)

∣∣∣∣φJ
〉

n (~r) = 〈φJ |n̂ (~r)|φJ〉 =
δE (J)

δJ (~r)

The density functional is:

W (n) = E (J) −

∫
d3r J (~r)n (~r)

δW (n)

δn (~r)
= −J (~r)

When J (~r) = 0:

δW (n)

δn (~r)
= 0 n0 (~r) =

δE (J)

δJ (~r)

∣∣∣∣
J=0
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Example:

+Φ(J) =
π

π

π

calculated with:

G−1
J = ∂τ + h0 − µ + J ≡ G−1

0 + J

The particle density is then:

n (x) = − 〈x |GJ | x〉|J=0 −
δΦ (J)

δJ (x)

∣∣∣∣
J=0

= + x+
x x
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Instead of choosing J = 0 as in the Legendre transform method, set:

J (x) = J0 (x) + Jint (x)

GJ0+Jint
= GJ0

−GJ0
JintGJ0+Jint

Density:

n (x) = −〈x |GJ0
|x〉 + 〈x |GJ0

JintGJ0+Jint
| x〉 −

δΦ (J)

δJ (x)

Choose J0 (x) such that the density should be given by the first term
only:

n (x) = −〈x |G0| x〉 =
∑

λ∈F

〈λ |~r〉 〈~r |λ〉

(h0 + J0) |λ〉 = eλ |λ〉 Kohn− Sham orbits

Jint (x) is determined by the equation:

〈x |GJ0
JintGJ0+Jint

| x〉 =
δΦ (J)

δJ (x)

Set Jint = −J0 and obtain an equation for J0:

〈x |GJ0
J0G0| x〉 = −

δΦ (J)

δJ (x)

∣∣∣∣
J=0
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Solve 〈x |GJ0
J0G0| x〉 = − δΦ(J)

δJ(x)

∣∣∣
J=0

for J0 (x). Write:

∫
d4y 〈x |GJ0

|y〉 J0 (y) 〈y|G0| x〉 = −
δΦ (J)

δJ (x)

∣∣∣∣
J=0

∫
d4y 〈x |D| y〉 J0 (y) = −

δΦ (J)

δJ (x)

∣∣∣∣
J=0

where 〈x |D| y〉 = 〈x |GJ0
|y〉 〈y|G0|x〉. Then:

J0 (x) = −

∫
d4y

〈
x

∣∣D−1
∣∣ y

〉 δΦ (J)

δJ (x)

∣∣∣∣
J=0

= +~r ~r
π

π

π

~r1 ~r2

〈
x

∣∣∣D−1
∣∣∣ y

〉
=

Can be solved by iteration using two sets of orbits:

h0 |λ〉 = eλ |λ〉 (h0 + J0)
∣∣λ

〉
= eλ

∣∣λ
〉

to calculate D and D−1.
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