There are two aspects to density functionals:

e The energy is expressed as a stationary functional E (n) of the
density n (7) = (P |¢Jf (7)Y (F)| @y ). That can always be trivially
achieved by a Legendre transform in which H — H+ [ d3r J (7) " (7) 9 (7)

(One could equally well contruct a stationary functional of the mag-
netic moment...)

e The possibility of expressing the exact density in terms of a Slater

determinant:
n(F) =Y (A7) (F|A)
\EF

The single particle orbits |A), called Kohn-Sham orbits in this case,
are calculated with a static (energy independent) and local poten-

tial:
o + J(F)] {F|A) = ex (T |A)

This saves a lot of complications (static potential) and computing

time (local potential).
Kk

Do not confuse this with the possibility of expressing the energy
E (p) = (¢ |H| ¢) of a Slater determinant as a functional of its density

matrix p;; = ( ¢ a;ai ¢ ). The density matrix cannot be exact in this

case (Hartree-Fock theory).



Consider electrons interacting with a Coulomb potential:
H — uN

- /d3r 6 () (ho — 1) o (7
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where hy =t + ug (7).

For nucleons interacting with 7, w, p, o, ... mesons, the theory is the
same, only with more terms.
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After a simple bosonization the ground state energy Ey acquires the
form:

1
Ey — uNy = -3 / D (¢)e 1
The euclidian action I (¢) is a functional of the Coulomb field ¢:
I(¢)=—-Trn(0; + hy— p+ @)

b [ iz, () o1 | 22

and K is the instantaneous Coulomb interaction:
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(x1|K|x2) =6 (11 — ) prr—— (x=71,7)
The fermion propagato? ig: ________ N
(21 |Go| 22) = <901 . + fllo yy 902>
T ) T

The key feature is that there exists a coulor_nb field which couples to
the density n (r) = <¢T (7) 9 (f’)> of the system.



Typical connected diagram:

The diagram has:

e n, = 4 articulation lines: dashed lines such that the diagram
separates into two disconnected parts when an articulation line is
cut.

e n. = 3 cycles: closed loops formed by the fermion propagators
which are connected only to articulation lines.

e n; = 2 irreducible parts: which cannot be separated into into two
disconnected parts by cutting a dashed line.

nr+n.—ng,=1



Let us add a local and static potential J () to hg. The fermion
propagator becomes:

1
O+t ho+J—p

and let ® (J) be a chosen set of irreducible diagrams calculated with
the 'dressed’” propagator G (J):

G (J)



Let us choose the potential J (1) to be:

J()—/ (z |K|z") J5 {TrinG~"+ @ (J)}

O CDMQO

The density is then equal to:

Y
0J (x

@@O

J (@) = — / 2y (o | K] 22) 1 (22)
T (7)) = —/d% _° (7)

—n
|71 — 75|

()}

n () =

Note that:

= self-consistent Coulomb potential.



The energy of the system is the sum of connected diagrams:

1
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Add the first two and subtract the third to get:

_EZFC(n[—I—nc—na):—%ZFCZE(‘])
L.

Also:

O (J) J iy
_65J(a:) =57 @) (TrInG(J)+ @ (J)+ K 'J) =0

because:

J(x) = —K% {TrinG'+ & (J)}

Since J = Kn, E(J) < E (n) so that fsf((g; =0.




Résumé:
1. Make an initial guess at the potential J (7).

2. Choose a set of irreducible diagrams:

&) |

expressed in terms of G~ =8, + hg — pu+ J (T
3. Calculate the density:

n(x) =

= ()}

©<><>©

4. Calculate the potential J = Kn:

J(7) = —/di’w ezmn(F')

|7 —

and return to step 2.

J (7) is the Coulomb potential.



Simple cases.

e All one-line irreducible diagrams are neglected: ® (J) = 0. This is
the Hartree approximation.

e The only irreducible diagram is:

B(J) =

Then:

e All one-line irreducible diagrams are included. The density and the
energy are then exact.

What has this got to do with Kohn-Sham orbits? Nothing so far...
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The density is equal to:

J
= — TrinG;' + @
n(a:) 5](1’){ THGJ + (J)}
. 50 ()
Split the potential into two terms J (x) = Jy (z) + Ji (2):

Gl =0 +ho— i+ Jo+ Ji = Gl + Ji
Gl =G — GpJiiG s,

The density becomes:
00 (Jo + Jint)

6J (x)
Choose Jy (x) such that the exact density n (x) should be given by the
first term:

n(z)=—(z|Gylz) =Y (A7) (FIA)
ex<pu
7o+ Jo (M) |A) = ex|A)

The |A\) are Kohn-Sham orbits. Then J;,; is determined by:
) (J() + Jmt)

6J (x)

Considerably more complicated! Except in one case...

n (gj) - = <l’ ‘GJO‘ 33'> + <J§' ‘GJOJintGJ0+Jmt| gj> o

<$ |G<]0JintG<]0+<]mt‘ l’> o =0
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Consider the case where there are no ¢ nor w mesons in the theory
as in ChPT. Then K4 = 0 so that J = Kyn = 0.
Consider the case where there are only pions. The only boson prop-

agator 1s:
i 1\’ 1
(@ |K7|v) = g 2. L 8ﬂ_a2+m72ray Yy
- Tu - — — m_ yv

and (with very few exceptions) one-line irreducible diagrams vanish:

for symmetry reasons: the pion field gives rise to a potential which
breaks parity. It couples to the density

pa () = <¢T (7) Y5 Ta 0 (77)> and not to the particle density n (7) =
W (P Y (7).
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Legendre transform.

n(7) =9 (7) ¢ (7)

)

E(J)= <¢>J H+/d3rJ(F)ﬁ(F)
(7] = (02 7 (7)1 62) = 53

The density functional is:

oW (n) g
on (1) ==/
When J () = 0:
W) . SE()
on (7) =0 no(7) G
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Example:

&)

calculated with:
G'l=0.+hy—pu+J=Gy" +J

The particle density is then:

()

6J (x)

n(r)=—(v|Gslz)|,_, -

J=0
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Instead of choosing J = 0 as in the Legendre transform method, set:
J(x) = Jy (x) + Jie ()
G ot g = Gay — G Jint G gyt g
Density:
P (J)
6J (x)
Choose Jy (x) such that the density should be given by the first term

only:
n(x) = — (]Gol ) = 3~ (M) (7IA)
AEF
(ho + Jo) [A) =ex|\)  Kohn — Sham orbits

Jint () is determined by the equation:

n(w) - = <l’ ‘GJO‘ $> + <l’ ‘GJO‘]thJO‘i‘JmJ $> o

0P (J)
0J ()
Set J;,y = —Jy and obtain an equation for Jy:

0 (J)
6T ()],

(2 |G 1, JintG gy10] ) =

(z |G g JoGol z) =
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Solve (x |G 5, JoGo| ) = — ??—Exj)) o for Jy (x). Write:

/d4y (|G, ly) Jo(y) (Y| Go| x) = —

J
[ atvtallo) i) = - 57
where (z |D|y) = (z |G, |y) (y| Go| x). Then:

4 —1 0
Jo (z) = —/dy<$|D ) SEQ =0

-0 ]

(|D7y)= 7 > 2
Can be solved by iteration using two sets of orbits:

holA) =ex|A)  (ho+ Jo) [A) = ex|X)
to calculate D and D!

50 (J)
J (x)

J=0
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