There are two aspects to density functionals:

- The energy is expressed as a stationary functional $E(n)$ of the density $n(\vec{r})=\left\langle\Phi_{0}\right| \psi^{\dagger}(\vec{r}) \psi(\vec{r})\left|\Phi_{0}\right\rangle$. That can always be trivially achieved by a Legendre transform in which $H \rightarrow H+\int d^{3} r J(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r})$ (One could equally well contruct a stationary functional of the magnetic moment...)
- The possibility of expressing the exact density in terms of a Slater determinant:

$$
n(\vec{r})=\sum_{\lambda \in F}\langle\lambda \mid \vec{r}\rangle\langle\vec{r} \mid \lambda\rangle
$$

The single particle orbits $|\lambda\rangle$, called Kohn-Sham orbits in this case, are calculated with a static (energy independent) and local potential:

$$
\left[h_{0}+J(\vec{r})\right]\langle\vec{r} \mid \lambda\rangle=e_{\lambda}\langle\vec{r} \mid \lambda\rangle
$$

This saves a lot of complications (static potential) and computing time (local potential).

$$
* *
$$

Do not confuse this with the possibility of expressing the energy $E(\rho)=\langle\phi| H|\phi\rangle$ of a Slater determinant as a functional of its density matrix $\rho_{i j}=\langle\phi| a_{j}^{\dagger} a_{i}|\phi\rangle$. The density matrix cannot be exact in this case (Hartree-Fock theory).

Consider electrons interacting with a Coulomb potential:

$$
\begin{gathered}
H-\mu N \\
=\int d^{3} r \psi^{\dagger}(\vec{r})\left(h_{0}-\mu\right) \psi(\vec{r}) \\
+\frac{1}{2} \int d^{3} r_{1} d^{3} r_{2} \psi^{\dagger}\left(\overrightarrow{r_{1}}\right) \psi^{\dagger}\left(\overrightarrow{r_{2}}\right) \frac{e^{2}}{4 \pi\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|} \psi\left(\overrightarrow{r_{2}}\right) \psi\left(\overrightarrow{r_{1}}\right)
\end{gathered}
$$

where $h_{0}=t+u_{0}(\vec{r})$.
For nucleons interacting with $\pi, \omega, \rho, \sigma, \ldots$ mesons, the theory is the same, only with more terms.

After a simple bosonization the ground state energy E_{0} acquires the form:

$$
E_{0}-\mu N_{0}=-\frac{1}{\beta} \int D(\phi) e^{-I(\phi)}
$$

The euclidian action $I(\phi)$ is a functional of the Coulomb field ϕ :

$$
\begin{gathered}
I(\phi)=-\operatorname{Tr} \ln \left(\partial_{\tau}+h_{0}-\mu+\phi\right) \\
+\frac{1}{2} \int d^{4} x_{1} d^{4} x_{2} \phi\left(x_{1}\right)\left\langle x_{1}\right| K^{-1}\left|x_{2}\right\rangle \phi\left(x_{2}\right)
\end{gathered}
$$

and K is the instantaneous Coulomb interaction:

$$
\begin{gathered}
\left\langle x_{1}\right| K\left|x_{2}\right\rangle=\delta\left(\tau_{1}-\tau_{2}\right) \frac{e^{2}}{4 \pi\left|\vec{r}_{1}-\vec{r}_{2}\right|} \quad(x \equiv \tau, \vec{r}) \\
=x_{1}--------x_{2}
\end{gathered}
$$

The fermion propagator is:

$$
\begin{gathered}
\left\langle x_{1}\right| G_{0}\left|x_{2}\right\rangle=\left\langle x_{1}\right| \frac{1}{\partial_{\tau}+h_{0}-\mu}\left|x_{2}\right\rangle \\
=\frac{x_{2}}{x_{1}}
\end{gathered}
$$

The key feature is that there exists a coulomb field which couples to the density $n(\vec{r})=\left\langle\psi^{\dagger}(\vec{r}) \psi(\vec{r})\right\rangle$ of the system.

Typical connected diagram:

The diagram has:

- $n_{a}=4$ articulation lines: dashed lines such that the diagram separates into two disconnected parts when an articulation line is cut.
- $n_{c}=3$ cycles: closed loops formed by the fermion propagators which are connected only to articulation lines.
- $n_{I}=2$ irreducible parts: which cannot be separated into into two disconnected parts by cutting a dashed line.

$$
n_{I}+n_{c}-n_{a}=1
$$

Let us add a local and static potential $J(\vec{r})$ to h_{0}. The fermion propagator becomes:

$$
G(J)=\frac{1}{\partial_{\tau}+h_{0}+J-\mu}
$$

and let $\Phi(J)$ be a chosen set of irreducible diagrams calculated with the 'dressed' propagator $G(J)$:

Let us choose the potential $J(\vec{r})$ to be:

$$
J(x)=\int d^{4} y\langle x| K\left|x^{\prime}\right\rangle \frac{\delta}{\delta J\left(x^{\prime}\right)}\left\{\operatorname{Tr} \ln G^{-1}+\Phi(J)\right\}
$$

The density is then equal to:

$$
n(x)=-\frac{\delta}{\delta J(x)}\left\{\operatorname{Tr} \ln G^{-1}+\Phi(J)\right\}
$$

Note that:

$$
\begin{gathered}
J\left(x_{1}\right)=-\int d^{4} y\left\langle x_{1}\right| K\left|x_{2}\right\rangle n\left(x_{2}\right) \\
J\left(\vec{r}_{1}\right)=-\int d^{3} r_{2} \frac{e^{2}}{\left|\vec{r}_{1}-\overrightarrow{r_{2}}\right|} n\left(\vec{r}_{2}\right)
\end{gathered}
$$

$=$ self-consistent Coulomb potential.

The energy of the system is the sum of connected diagrams:

$$
E_{0}=-\frac{1}{\beta} \sum_{\Gamma_{c}} \Gamma_{c}
$$

$=\sum_{\Gamma_{c}} n_{I}\left(\Gamma_{c}\right) \Gamma_{c}$

$$
=\sum_{\Gamma_{c}} n_{c}\left(\Gamma_{c}\right) \Gamma_{c}=\operatorname{Tr} \ln \left(G_{0} G^{-1}\right)
$$

$$
=\sum_{\Gamma_{c}} n_{a}\left(\Gamma_{c}\right) \Gamma_{c}=\frac{1}{2} n K n=-\frac{1}{2} J K^{-1} J
$$

Add the first two and subtract the third to get:

$$
\begin{aligned}
& -\frac{1}{\beta} \sum_{\Gamma_{c}} \Gamma_{c}\left(n_{I}+n_{c}-n_{a}\right)=-\frac{1}{\beta} \sum_{\Gamma_{c}} \Gamma_{c}=E(J) \\
& \quad=-\frac{1}{\beta}\left\{\operatorname{Tr} \ln G(J)+\frac{1}{2} J K^{-1} J+\Phi(J)\right\}
\end{aligned}
$$

Also:

$$
-\beta \frac{\delta E(J)}{\delta J(x)}=\frac{\delta}{\delta J(x)}\left(\operatorname{Tr} \ln G(J)+\Phi(J)+K^{-1} J\right)=0
$$

because:

$$
J(x)=-K \frac{\delta}{\delta J}\left\{\operatorname{Tr} \ln G^{-1}+\Phi(J)\right\}
$$

Since $J=K n, E(J) \leftrightarrow E(n)$ so that $\frac{\delta E(n)}{\delta n(x)}=0$.

Résumé:

1. Make an initial guess at the potential $J(\vec{r})$.
2. Choose a set of irreducible diagrams:

expressed in terms of $G^{-1}=\partial_{\tau}+h_{0}-\mu+J(\vec{r})$.
3. Calculate the density:

$$
n(x)=-\frac{\delta}{\delta J(x)}\left\{\operatorname{Tr} \ln G^{-1}+\Phi(J)\right\}
$$

4. Calculate the potential $J=K n$:

$$
J(\vec{r})=-\int d^{3} r^{\prime} \frac{e^{2}}{\left|\vec{r}-\vec{r}^{7}\right|} n\left(\vec{r}^{\prime}\right)
$$

and return to step 2.
$J(\vec{r})$ is the Coulomb potential.

Simple cases.

- All one-line irreducible diagrams are neglected: $\Phi(J)=0$. This is the Hartree approximation.
- The only irreducible diagram is:

Then:

- All one-line irreducible diagrams are included. The density and the energy are then exact.
What has this got to do with Kohn-Sham orbits? Nothing so far...

The density is equal to:

$$
\begin{aligned}
n(x) & =-\frac{\delta}{\delta J(x)}\left\{\operatorname{Tr} \ln G_{J}^{-1}+\Phi(J)\right\} \\
& =-\langle x| G_{J}|x\rangle-\frac{\delta \Phi(J)}{\delta J(x)}
\end{aligned}
$$

Split the potential into two terms $J(x)=J_{0}(x)+J_{\text {int }}(x)$:

$$
\begin{gathered}
G_{J_{0}+J_{i n t}}^{-1}=\partial_{\tau}+h_{0}-\mu+J_{0}+J_{i n t}=G_{J_{0}}^{-1}+J_{i n t} \\
G_{J_{0}+J_{i n t}}^{-1}=G_{J_{0}}-G_{J_{0}} J_{i n t} G_{J_{0}+J_{i n t}}
\end{gathered}
$$

The density becomes:

$$
n(x)=-\langle x| G_{J_{0}}|x\rangle+\langle x| G_{J_{0}} J_{i n t} G_{J_{0}+J_{i n t}}|x\rangle-\frac{\delta \Phi\left(J_{0}+J_{i n t}\right)}{\delta J(x)}
$$

Choose $J_{0}(x)$ such that the exact density $n(x)$ should be given by the first term:

$$
\begin{gathered}
n(x)=-\langle x| G_{J_{0}}|x\rangle=\sum_{e_{\lambda}<\mu}\langle\lambda \mid \vec{r}\rangle\langle\vec{r} \mid \lambda\rangle \\
{\left[h_{0}+J_{0}(\vec{r})\right]|\lambda\rangle=e_{\lambda}|\lambda\rangle}
\end{gathered}
$$

The $|\lambda\rangle$ are Kohn-Sham orbits. Then $J_{\text {int }}$ is determined by:

$$
\langle x| G_{J_{0}} J_{i n t} G_{J_{0}+J_{i n t}}|x\rangle-\frac{\delta \Phi\left(J_{0}+J_{i n t}\right)}{\delta J(x)}=0
$$

Considerably more complicated! Except in one case...

Consider the case where there are no σ nor ω mesons in the theory as in ChPT. Then $K_{\phi}=0$ so that $J=K_{\phi} n=0$.
Consider the case where there are only pions. The only boson propagator is:

$$
\begin{gathered}
\langle x| K_{\mu \nu}^{\pi}|y\rangle=g_{A}\left(\frac{1}{2 f_{\pi}}\right)^{2}\langle x| \partial_{\mu} \frac{1}{-\partial^{2}+m_{\pi}^{2}} \partial_{\nu}|y\rangle \\
=x \mu
\end{gathered}
$$

and (with very few exceptions) one-line irreducible diagrams vanish:

for symmetry reasons: the pion field gives rise to a potential which breaks parity. It couples to the density
$\rho_{a}(\vec{r})=\left\langle\psi^{\dagger}(\vec{r}) \gamma_{5} \tau_{a} \psi(\vec{r})\right\rangle$ and not to the particle density $n(\vec{r})=$ $\left\langle\psi^{\dagger}(\vec{r}) \psi(\vec{r})\right\rangle$.

Legendre transform.

$$
\begin{gathered}
\hat{n}(\vec{r}) \equiv \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \\
E(J)=\left\langle\phi_{J}\right| H+\int d^{3} r J(\vec{r}) \widehat{n}(\vec{r})\left|\phi_{J}\right\rangle \\
n(\vec{r})=\left\langle\phi_{J}\right| \widehat{n}(\vec{r})\left|\phi_{J}\right\rangle=\frac{\delta E(J)}{\delta J(\vec{r})}
\end{gathered}
$$

The density functional is:

$$
\begin{gathered}
W(n)=E(J)-\int d^{3} r J(\vec{r}) n(\vec{r}) \\
\frac{\delta W(n)}{\delta n(\vec{r})}=-J(\vec{r})
\end{gathered}
$$

When $J(\vec{r})=0$:

$$
\frac{\delta W(n)}{\delta n(\vec{r})}=0 \quad n_{0}(\vec{r})=\left.\frac{\delta E(J)}{\delta J(\vec{r})}\right|_{J=0}
$$

Example:

$$
\Phi(J)=-\overbrace{-}^{\pi} \overbrace{-}^{\pi} \overbrace{-}^{\pi} \downarrow
$$

calculated with:

$$
G_{J}^{-1}=\partial_{\tau}+h_{0}-\mu+J \equiv G_{0}^{-1}+J
$$

The particle density is then:

Instead of choosing $J=0$ as in the Legendre transform method, set:

$$
\begin{gathered}
J(x)=J_{0}(x)+J_{i n t}(x) \\
G_{J_{0}+J_{i n t}}=G_{J_{0}}-G_{J_{0}} J_{i n t} G_{J_{0}+J_{i n t}}
\end{gathered}
$$

Density:

$$
n(x)=-\langle x| G_{J_{0}}|x\rangle+\langle x| G_{J_{0}} J_{i n t} G_{J_{0}+J_{i n t}}|x\rangle-\frac{\delta \Phi(J)}{\delta J(x)}
$$

Choose $J_{0}(x)$ such that the density should be given by the first term only:

$$
\begin{gathered}
n(x)=-\langle x| G_{0}|x\rangle=\sum_{\lambda \in F}\langle\lambda \mid \vec{r}\rangle\langle\vec{r} \mid \lambda\rangle \\
\left(h_{0}+J_{0}\right)|\lambda\rangle=e_{\lambda}|\lambda\rangle \quad \text { Kohn }- \text { Sham orbits }
\end{gathered}
$$

$J_{\text {int }}(x)$ is determined by the equation:

$$
\langle x| G_{J_{0}} J_{i n t} G_{J_{0}+J_{i n t}}|x\rangle=\frac{\delta \Phi(J)}{\delta J(x)}
$$

Set $J_{\text {int }}=-J_{0}$ and obtain an equation for J_{0} :

$$
\langle x| G_{J_{0}} J_{0} G_{0}|x\rangle=-\left.\frac{\delta \Phi(J)}{\delta J(x)}\right|_{J=0}
$$

Solve $\langle x| G_{J_{0}} J_{0} G_{0}|x\rangle=-\left.\frac{\delta \Phi(J)}{\delta J(x)}\right|_{J=0}$ for $J_{0}(x)$. Write:

$$
\begin{gathered}
\int d^{4} y\langle x| G_{J_{0}}|y\rangle J_{0}(y)\langle y| G_{0}|x\rangle=-\left.\frac{\delta \Phi(J)}{\delta J(x)}\right|_{J=0} \\
\int d^{4} y\langle x| D|y\rangle J_{0}(y)=-\left.\frac{\delta \Phi(J)}{\delta J(x)}\right|_{J=0}
\end{gathered}
$$

where $\langle x| D|y\rangle=\langle x| G_{J_{0}}|y\rangle\langle y| G_{0}|x\rangle$. Then:

$$
J_{0}(x)=-\left.\int d^{4} y\langle x| D^{-1}|y\rangle \frac{\delta \Phi(J)}{\delta J(x)}\right|_{J=0}
$$

$$
\langle x| D^{-1}|y\rangle=\vec{r}_{1} \Longrightarrow \overrightarrow{r_{2}}
$$

Can be solved by iteration using two sets of orbits:

$$
h_{0}|\lambda\rangle=e_{\lambda}|\lambda\rangle \quad\left(h_{0}+J_{0}\right)|\bar{\lambda}\rangle=e_{\bar{\lambda}}|\bar{\lambda}\rangle
$$

to calculate D and D^{-1}.

SOME REFERENCES

Diagram resummations: C.DeDominicis and P.Martin,Journ.Math.Physics 5(1964)1007
Stationary density functional and Kohn-Sham orbits: P.Hohenberg and W.Kohn, Phys.Rev.136(1964)B864
Static mean fields and stationary energy functionals: J.P.Blaizot and G.Ripka, Quantum theory of finite systems, MIT Press(1986)

Density functionals using Legendre transform: M.Valiev and G.W.Ferrando, Phys.Rev.B54(1998)9700

Density functionals for nucleons interacting with mesons: G.Ripka, arXiv:0910.1935 [nucl-th]

