J. Messud, Conseil Régional d'Aquitaine (Bordeaux, France)

Results on a 1D model.

Some numerical results

- A self-bound system with two particles of different kinds => the c.m. correlations are the most demanding for small systems
- A 1D model: more sensible to c.m. correlations effects
- A harmonic oscillator interaction (models proton + neutron):

$$H = \frac{p^{(1)^2}}{2m} + \frac{p^{(1)^2}}{2m} + \frac{1}{4}m\omega^2(r^{(1)} - r^{(2)})^2$$

$$H_{\text{int}} = \frac{\tau^2}{2\mu} + \frac{1}{2}\mu\omega^2\xi^2$$

- A benchmark:

Energy:
$$E_{int} = \frac{1}{2}\hbar\omega$$

C.m. frame 1-body density:

$$\rho_{int}^{(l)}(r) = \int dr^{(1)} dr^{(2)} \delta(R) |\psi_{int}(r^{(1)} - r^{(2)})|^2 \delta(r - (r^{(l)} - R))$$
$$= \sqrt{\frac{2m\omega}{\pi\hbar}} \exp\left\{-\frac{2m\omega}{\hbar}r^2\right\}$$

- The internal DFT energy:

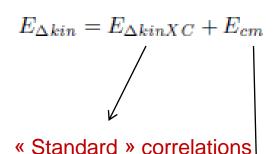
$$\begin{split} E_{int}[\rho_{int}^{(1)},\rho_{int}^{(2)}] &= (\varphi_{int}^{(1)}|\frac{p^2}{2m}|\varphi_{int}^{(1)}) + (\varphi_{int}^{(2)}|\frac{p^2}{2m}|\varphi_{int}^{(2)}) \\ &+ E_H^{(12)}[\rho_{int}^{(1)},\rho_{int}^{(2)}] & \longrightarrow \text{Hartree} \\ &+ E_C^{(12)}[\rho_{int}^{(1)},\rho_{int}^{(2)}] & \longrightarrow \text{ $\%$ Standard $\%$ correlations} \\ &+ E_{\Delta kin}^{(12)}[\rho_{int}^{(1)},\rho_{int}^{(2)}] & \longrightarrow \text{ $\%$ Standard $\%$ correlations} \\ &+ \text{c.m. correlations} \end{split}$$

- The exact density functionals (valid only for this system):

$$\begin{split} E_{H}^{(12)}[\rho_{int}^{(1)},\rho_{int}^{(2)}] &= \int dr dr' \rho_{int}^{(1)}(r) \rho_{int}^{(2)}(r') \frac{1}{4} m \omega^{2}(r-r')^{2} \\ E_{C}^{(12)}[\rho_{int}^{(1)},\rho_{int}^{(2)}] &= \int dr dr' \Big[\gamma_{int}^{(12)}(r,r') - \rho_{int}^{(1)}(r) \rho_{int}^{(2)}(r') \Big] \frac{1}{4} m \omega^{2}(r-r')^{2} \\ &= \int dr \frac{1}{2} \Big(\rho_{int}^{(1)}(r) + \rho_{int}^{(2)}(r) \Big) m \omega^{2} r^{2} - \int dr dr' \rho_{int}^{(1)}(r) \rho_{int}^{(2)}(r') \frac{1}{4} m \omega^{2}(r-r')^{2} \\ E_{\Delta kin}^{(12)}[\rho_{int}^{(1)},\rho_{int}^{(2)}] &= \sum_{l=1}^{2} \Big[\int dr^{(1)} dr^{(2)} \delta(R) \psi_{int}^{*}(r^{(1)}-r^{(2)}) \frac{p^{(l)2}}{2m} \psi_{int}(r^{(1)}-r^{(2)}) - (\varphi_{int}^{(1)}|\frac{p^{2}}{2m}|\varphi_{int}^{(1)}) \Big] \\ &= -\frac{3}{2} \hbar \omega + \frac{3}{2} \int dr \Big(\rho_{int}^{(1)}(r) + \rho_{int}^{(2)}(r) \Big) m \omega^{2} r^{2} \end{split}$$

Some numerical results

- A proposition for the c.m. correlation functional:

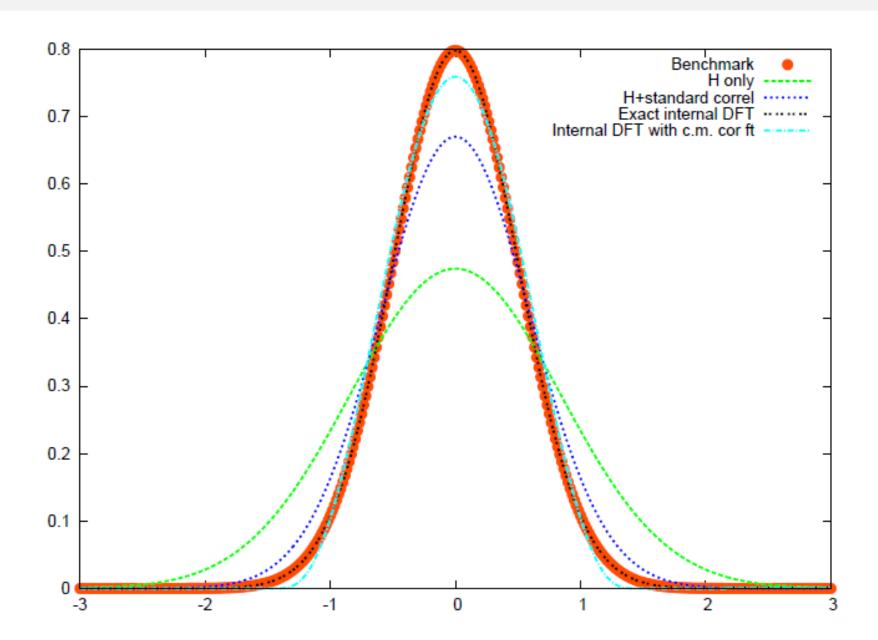


Mostly included in actual realistic parametrized functionals

C.m. correlations

The proposed functional (in progress):

$$\begin{split} E_{cm}^{(12)} \; = \; -\frac{\hbar^2}{2m} \int dr \Big[\varphi_{int}^{(1)*}(r) \Delta_r \varphi_{int}^{(1)}(r) \Big(2 \sqrt{\frac{\pi}{K}} |\varphi_{int}^{(2)}(-r)|^2 - 1 \Big) \\ + \; \varphi_{int}^{(2)*}(r) \Delta_r \varphi_{int}^{(2)}(r) \Big(2 \sqrt{\frac{\pi}{K}} |\varphi_{int}^{(1)}(-r)|^2 - 1 \Big) \Big] \\ - \frac{\hbar^2}{2m} \sqrt{K\pi} \int dr |\varphi_{int}^{(1)}(r)|^2 |\varphi_{int}^{(2)}(-r)|^2 \end{split}$$



Some numerical results

Formalism	Non-interacting kin. energy	$E_{H}^{(12)}$	$E_C^{(12)}$	$E_{\Delta kin}^{(12)}$ or E_{cm}	Total energy
H only	0.353	0.353	0	0	0.71
H + standard corr.	0.706	0.177	0.177	0	1.06
Exact internal DFT	1.000	0.125	0.125	-0.750	0.50
Internal DFT with c.m. corr. ft	1.275	0.115	0.115	-1.001	0.50

TABLE I: The energies of the various formalisms (in units where $\hbar = m = 1$;total energy of the benchmark = 0.50, with $(\psi_{int}|\frac{\tau^2}{2\mu}|\psi_{int}) = (\psi_{int}|\frac{1}{2}\mu\omega^2\xi^2|\psi_{int}) = 0.25)$.

Interacting kinetic energy = non-interacting kinetic energy + $E_{cm}^{(12)} \sim 0.25$

=> One has to be cautious with the meaning that is given to the non-interacting kinetic energy in mean-field like calculations: it cannot be interpreted as a first order approximation of the kinetic energy of the interacting system, at least for small self-bound systems.

Prospects

- > Local c.m. correlations potential
- To be published soon; tests on 1D models in progress
- Tests on fully realistic 3D nuclear codes? You're very welcome
- > Non-interacting v-representability related questions
- Adaptation of the Lieb constrained search formalism and other funny mathematical but fundamental stuff to answer some open questions
- Generalization to any symmetry group?
- Study under which conditions there is a decoupling for the kinetic energy term
- Should shed some light on the symmetry breaking question

... and certainly other suprises that do all the charms of Physics

Thank you for your attention

- Stationary internal DFT: J. Messud, M. Bender, E. Suraud, Phys. Rev. C 80, 054314 (2009)

- Time-dependent internal DFT: J. Messud, Phys. Rev. C 80, 054614 (2009)

- Multicomponent internal DFT: J. Messud, Phys. Rev. A 84, 052113 (2011)

- Local c.m. correlations potential: J. Messud, to be submitted soon