Analytic density functionals
S. Karataglialis, B. G. Giraud (CEA/Saclay)

Introduction

All approaches for the calculation of density functionals from Hamiltonians describing many-body systems to date have been numerical.
These are based on the Kohn-Sham (KS) method [Phys. Rev. 40, A1133 (1965)], which reduces the many-body problem to that of an effective one-body problem.

One starts with a Hamiltonian, H, from which the energy is,

$$
F[\rho]=\inf _{\psi \rightarrow \rho}\langle\psi| H|\psi\rangle
$$

where the wave functions are chosen under the constraint of obtaining the density. It is necessarily a many-body problem. Diagonalisation of the Hamiltonian requires,

$$
\frac{\delta F}{\delta \rho}=0
$$

One may also consider a similar definition for the kinetic energy, viz.,

$$
G[\rho]=\inf _{\psi \rightarrow \rho}\langle\psi| T|\psi\rangle .
$$

CEA/Saclay, April 11, 2012

Continuing on (with a somewhat obvious statement),

$$
\begin{aligned}
F & =G+(F-G) \\
\frac{\delta F}{\delta \rho} & =0=\frac{\delta G}{\delta \rho}+\frac{\delta(F-G)}{\delta \rho} \\
& =\frac{\delta G}{\delta \rho}+u
\end{aligned}
$$

where we have identified the potential,

$$
u=\frac{\delta(F-G)}{\delta \rho}
$$

This reduces the many-body problem to an effective one-body problem.

Normal calculations of the density functional, found in this fashion, can only be done numerically.

1. Is the KS assumption, which reduces the problem in this fashion, valid?
2. Is there an analytic density functional?

Consider a basis of n orthonormal, single-particle states, $\varphi_{\alpha}(\mathbf{r}, \sigma, \tau)$ Slater determinants, ϕ_{i}, made out of the s-p states for N fermions make a finite subspace. The Hamiltonian can be approximated by configuration mixing.

$$
\begin{aligned}
\Psi & =\sum_{j=1}^{\mathcal{N}}\left(C_{j}+i C_{j}^{\prime}\right) \phi_{j} \\
H_{i j} & =\left\langle\phi_{i}\right| H\left|\phi_{j}\right\rangle .
\end{aligned}
$$

The energy is

$$
\begin{gathered}
\eta=\sum_{i, j=1}^{\mathcal{N}} C_{i} H_{i j} C_{j} \\
\sum_{i=1}^{\mathcal{N}} C_{i}^{2}=1
\end{gathered}
$$

The density is quadratic in the mixing coefficients,

$$
\rho(\mathbf{r})=\sum_{i, j} C_{i}\left\langle\phi_{i}\right| a_{\mathbf{r}}^{\dagger} a_{\mathbf{r}}\left|\phi_{j}\right\rangle C_{j} .
$$

Take, as an expansion set, a complete, orthonormal set of "vanishing average" functions:

$$
\begin{aligned}
& \left\{S_{v}(\mathbf{r})\right\}, v=1, \ldots, \infty \\
& \int d \mathbf{r} S_{v}(\mathbf{r})=0, \forall v \\
& \int d \mathbf{r} S_{\mu}(\mathbf{r}) S_{v}(\mathbf{r})=\delta_{\mu v}, \forall \mu, v
\end{aligned}
$$

We take the density with respect to some reference density, to obtain a difference

$$
\Delta \rho=\rho-\rho_{0}
$$

from which we obtain the Fourier coefficients

$$
\begin{aligned}
\Delta_{v} & =\int d \mathbf{r} S_{v}(\mathbf{r}) \Delta \rho(\mathbf{r}) \\
& =\sum_{i, j} C_{i}\left[\int d \mathbf{r} S_{v}(\mathbf{r})\left\langle\phi_{i}\right| a_{\mathbf{r}}^{\dagger} a_{\mathbf{r}}\left|\phi_{j}\right\rangle\right] C_{j}-\rho_{0 v} .
\end{aligned}
$$

CEA/Saclay, April 11, 2012

These define the density, as

$$
\begin{aligned}
\rho & =\rho_{0}+\sum_{i=1}^{\infty} \Delta_{v} S_{v} \\
\rho_{0 v} & =\int d \mathbf{r} S_{v}(\mathbf{r}) \rho_{0}(\mathbf{r}) .
\end{aligned}
$$

Consider, once more,

$$
\begin{aligned}
\Delta_{v} & =\int d \mathbf{r} S_{v}(\mathbf{r}) \Delta \rho(\mathbf{r}) \\
& =\sum_{i, j} C_{i}\left[\int d \mathbf{r} S_{v}(\mathbf{r})\left\langle\phi_{i}\right| a_{\mathbf{r}}^{\dagger} a_{\mathbf{r}}\left|\phi_{j}\right\rangle\right] C_{j}-\rho_{0 v}
\end{aligned}
$$

Taking these, and the energies,

$$
\begin{aligned}
\eta= & \sum_{i, j=1}^{\mathcal{N}} C_{i} H_{i j} C_{j} \\
& \sum_{i=1}^{\mathcal{N}} C_{i}^{2}=1,
\end{aligned}
$$

eliminates the last $\left(\mathcal{N}^{\prime}+1\right)$ coefficients.

This leaves a polynomial

$$
\mathcal{R}\left(\eta, \Delta_{1}, \ldots, \Delta_{\mathcal{N}^{\prime}}, C_{1}, \ldots, C_{\mathcal{N}-\mathcal{N}^{\prime}-1}\right)=0
$$

The energy must be minimized with respect to the remaining coefficients,

$$
\begin{aligned}
& \frac{\partial \mathcal{R}}{\partial C_{i}}=0, i=1, \ldots, \mathcal{N}-\mathcal{N}^{\prime}-1 \\
& \quad \Rightarrow \mathcal{E}\left(\eta, \Delta_{1}, \ldots, \Delta_{\mathcal{N}^{\prime}}\right)=0
\end{aligned}
$$

This leaves a polynomial

$$
\mathcal{R}\left(\eta, \Delta_{1}, \ldots, \Delta_{\mathcal{N}^{\prime}}, C_{1}, \ldots, C_{\mathcal{N}-\mathcal{N}^{\prime}-1}\right)=0
$$

The energy must be minimized with respect to the remaining coefficients,

$$
\begin{aligned}
& \frac{\partial \mathcal{R}}{\partial C_{i}}=0, i=1, \ldots, \mathcal{N}-\mathcal{N}^{\prime}-1 \\
& \quad \Rightarrow \mathcal{E}\left(\eta, \Delta_{1}, \ldots, \Delta_{\mathcal{N}^{\prime}}\right)=0
\end{aligned}
$$

This last polynomial is the analytic (or algebraic) density functional.

Simple considerations.

Let \mathcal{H} be the matrix representing the Hamiltonian on an orthonormal basis, and let \mathcal{D}_{1} and \mathcal{D}_{2} be the matrices representing two constraints parameterizing the density [eg.
$\left(\Delta_{\nu}+\rho_{0 \nu}\right)$]. A polynomial in $\varepsilon, \lambda_{1}, \lambda_{2}$ results:

$$
P\left(\varepsilon, \lambda_{1}, \lambda_{2}\right) \equiv \operatorname{det}\left(\mathcal{H}-\lambda_{1} D_{1}-\lambda_{2} D_{2}\right)=0
$$

ε is the free energy, $\quad \lambda_{1}, \lambda_{2}$ are Lagrange multipliers. From this,

$$
\begin{aligned}
\frac{\partial \varepsilon}{\partial \lambda_{i}} & =-D_{i} \\
& =-\left(\frac{\partial P}{\partial \lambda_{i}}\right)\left[\frac{\partial P}{\partial \varepsilon}\right]^{-1} \\
D_{i} & \equiv\left\langle D_{i}\right\rangle, i=1,2,
\end{aligned}
$$

leading to two more polynomials,

$$
Q_{i}\left(D_{i}, \varepsilon, \lambda_{1}, \lambda_{2}\right) \equiv \frac{\partial P}{\partial \varepsilon} D_{i}-\frac{\partial P}{\partial \lambda_{i}}=0
$$

Now

$$
\begin{aligned}
& \varepsilon=\eta-\lambda_{1} D_{1}-\lambda_{2} D_{2} \\
& \eta \equiv\langle H\rangle
\end{aligned}
$$

from which, by a process of elimination,

$$
\mathcal{E}\left(\eta, D_{1}, D_{2}\right)=0,
$$

which generates the analytic DF.

Toy model

To illustrate the utility of the method, we consider a system of two fermions, whose Hamiltonian may be constructed as

$$
\begin{aligned}
H & =T+V \\
T & =-\frac{1}{2}\left(\frac{d^{2}}{d r_{1}^{2}}+\frac{d^{2}}{d r_{2}^{2}}\right)+\frac{1}{2}\left(r_{1}^{2}+r_{2}^{2}\right) \\
\left\langle r_{1} r_{2}\right| V\left|r_{1}^{\prime} r_{2}^{\prime}\right\rangle & =-\frac{V_{0}}{\sqrt{2 \pi}} \delta\left[\frac{1}{2}\left(r_{1}+r_{2}-r_{1}^{\prime}-r_{2}^{\prime}\right)\right] e^{\left[\left(r_{2}^{2}-r_{1}^{2}\right)^{2}+\left(r_{2}^{\prime 2}-r_{1}^{\prime 2}\right)^{2}\right]^{\prime}}\left(r_{2}-r_{1}\right)\left(r_{2}^{\prime}-r_{1}^{\prime}\right) .
\end{aligned}
$$

We utilise the first four harmonic oscillator wave functions, $\varphi_{0}, \ldots, \varphi_{3}$, creating a basis of four negative-parity Slater determinants:

$$
\left\{\varphi_{0}, \varphi_{1}\right\},\left\{\varphi_{0}, \varphi_{3}\right\},\left\{\varphi_{2}, \varphi_{1}\right\},\left\{\varphi_{2}, \varphi_{3}\right\}
$$

10

Choosing, $V_{0}=3$, and constraining the Hamiltonian by the second moment operator, $\left(r_{1}^{2}+r_{2}^{2}\right)$,

$$
\begin{aligned}
& \mathcal{H}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 7 / 4 & 3 \sqrt{3} / 4 & 0 \\
0 & 3 \sqrt{3} / 4 & 7 / 4 & 0 \\
0 & 0 & 0 & 45 / 8
\end{array}\right] \\
& \mathcal{D}=\left[\begin{array}{cccc}
2 & \sqrt{3 / 2} & 1 / \sqrt{2} & 0 \\
\sqrt{3 / 2} & 4 & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 4 & \sqrt{3 / 2} \\
0 & 1 / \sqrt{2} & \sqrt{3 / 2} & 6
\end{array}\right]
\end{aligned}
$$

The polynomials read

$$
\begin{aligned}
P_{\text {toy }}(\varepsilon, \lambda)= & -360+154 \varepsilon+344 \varepsilon^{2}-154 \varepsilon^{3}+16 \varepsilon^{4}+1464 \lambda \\
& +1692 \varepsilon \lambda-1636 \varepsilon^{2} \lambda+256 \varepsilon^{3} \lambda+725 \lambda^{2}-5140 \varepsilon \lambda^{2} \\
& +1408 \varepsilon^{2} \lambda^{2}-4192 \lambda^{3}+3072 \varepsilon \lambda^{3}+2064 \lambda^{4} \\
& =0, \\
Q_{\text {toy }}(D, \varepsilon, \lambda)= & -1464-1692 \varepsilon+1636 \varepsilon^{2}-256 \varepsilon^{3}-1450 \lambda \\
& +10280 \varepsilon \lambda-2816 \varepsilon^{2} \lambda+12576 \lambda^{2}-9126 \varepsilon \lambda^{2}-8256 \lambda^{3} \\
& +\left(154+688 \varepsilon-462 \varepsilon^{2}+64 \varepsilon^{3}+1692 \lambda-3272 \varepsilon \lambda+768 \varepsilon^{2} \lambda-5140 \lambda^{2}+2816 \varepsilon \lambda^{2}+3072 \lambda^{3}\right) D \\
= & 0 .
\end{aligned}
$$

With the substitution $\varepsilon=\eta-\lambda D$ we have for the DF

$$
\mathcal{E}_{\text {toy }}(\eta, D)=0
$$

This is $12^{\text {th }}$ order in both η and D.

The density functional

Contour of $\mathcal{E}_{\text {toy }}(\eta, D)=0$.

Ground state:

$$
D=2, \eta=-1
$$

Eigenvalues:

$$
\begin{aligned}
& \mathcal{H}: 45 / 8,-1 \\
& \mathcal{D}: 4 \pm \sqrt{4+\sqrt{15}}
\end{aligned}
$$

Potential energy

There is also a polynomial relating the potential energy to the constraints. Take the Hamiltonian as

$$
\begin{aligned}
H & =h+V \\
V & =-V_{0} \mathcal{V} .
\end{aligned}
$$

V_{0} is an interaction strength, and may be considered a Lagrange multipler. A polynomial may be obtained:

$$
\begin{aligned}
& \mathcal{F}\left(\langle h\rangle,\langle\mathcal{V}\rangle, D_{1}, \ldots, D_{\mathcal{N}^{\prime}}\right) \\
\Rightarrow & \frac{\partial\langle h\rangle}{\partial\langle\mathcal{V}\rangle}=V_{0} \\
\Rightarrow & \mathcal{G}\left(V_{0},\langle h\rangle,\langle\mathcal{V}\rangle, D_{1}, \ldots, D_{\mathcal{N}^{\prime}}\right) \equiv V_{0} \frac{\partial \mathcal{F}}{\partial\langle h\rangle}-\frac{\partial \mathcal{F}}{\partial\langle\mathcal{V}\rangle}=0 .
\end{aligned}
$$

We can replace $\langle h\rangle \rightarrow \eta+\langle\mathcal{V}\rangle V_{0}$.
Eliminate η and V_{0} between \mathcal{E} and \mathcal{F}, \mathcal{G}. This provides links from the potential to the D_{i}. A similar approach may be utilised to construct a polynomial strictly for the kinetic energy.

Kohn-Sham considerations

The theory presented bypasses completely Kohn-Sham. KS can be illustrated by considering a basis of single-particle states, $\varphi_{\alpha}, \alpha=1, \ldots, n$, from which a Slater determinant, of N orthonormal orbitals is constructed.

Orbitals
Hamiltonian
Kinetic
Potential

$$
\begin{aligned}
\psi_{\gamma} & =\sum_{\alpha=1}^{n} c_{\gamma \alpha} \varphi_{\alpha} \\
H & =T+V \\
T_{\alpha \beta} & =\left\langle\varphi_{\alpha}\right| T\left|\varphi_{\beta}\right\rangle \\
V_{\alpha \beta \gamma \delta} & =\left\langle\varphi_{\alpha} \varphi_{\beta}\right| V\left|\varphi_{\gamma} \varphi_{\delta}\right\rangle
\end{aligned}
$$

Toy model II

We construct a Slater determinant, Φ, from one positive parity and one negative parity orbital, constructed from the first 4 oscillator wave functions, $\varphi_{0}, \ldots, \varphi_{3}$:

$$
\begin{aligned}
& \Psi_{+}=t \varphi_{0}+u \varphi_{2} \\
& \Psi_{-}=v \varphi_{1}+w \varphi_{3} .
\end{aligned}
$$

This choice ensures orthogonality. Trigonometric transformation in the coefficients:

$$
\begin{aligned}
t & =\frac{1-a^{2}}{1+a^{2}}, u=\frac{2 a}{1+a^{2}} \\
v & =\frac{1-b^{2}}{1+b^{2}}, w=\frac{2 b}{1+b^{2}}
\end{aligned}
$$

Density

The density is a Gaussian modulated by a polynomial of the coordinate,

$$
\left|\Psi_{+}\right|^{2}+\left|\Psi_{-}\right|^{2}=\rho(r)=\frac{e^{-r^{2}}}{\sqrt{\pi}}\left(a_{6} r^{6}+a_{4} r^{4}+a_{2} r^{2}+a_{0}\right) .
$$

Normalisation

$$
\int_{-\infty}^{\infty} \rho(r) d r=\frac{15}{8} a_{6}+\frac{3}{4} a_{4}+\frac{1}{2} a_{2}+a_{0}=2 .
$$

There are only two independent coefficients.
The density constraint, $\Phi \Rightarrow \rho$, gives

$$
\begin{aligned}
4 w^{2} / 3 & =a_{6} \\
t^{2}-\sqrt{2} t u+u^{2} / 2 & =a_{0} \\
2 u^{2}+4 \sqrt{2 / 3} v w-4 w^{2} & =a_{4} \\
2 \sqrt{2} t u-2 u^{2}+2 v^{2}-2 \sqrt{6} v w+3 w^{2} & =a_{2}
\end{aligned}
$$

In terms of a and b

$$
a_{6}=\frac{16 b^{2}}{3\left(1+b^{2}\right)^{2}}, a_{0}=\frac{1-2 \sqrt{2} a+2 \sqrt{2} a^{3}+a^{4}}{\left(1+a^{2}\right)^{2}},
$$

$3 a_{4}\left(1+a^{2}\right)^{2}\left(1+b^{2}\right)^{2} / 8=3 a^{2}+\sqrt{6} b+2 \sqrt{6} a^{2} b+\sqrt{6} a^{4} b-6 b^{2}-6 a^{2} b^{2}$

$$
-6 a^{4} b^{2}-\sqrt{6} b^{3}-2 \sqrt{6} a^{2} b^{3}-\sqrt{6} a^{4} b^{3}+3 a^{2} b^{4},
$$

$$
a_{2}\left(1+a^{2}\right)^{2}\left(1+b^{2}\right)^{2} / 2=1+2 \sqrt{2} a-2 a^{2}-2 \sqrt{2} a^{3}+a^{4}-2 \sqrt{6} b-4 \sqrt{6} a^{2} b
$$

$$
-2 \sqrt{6} a^{4} b+4 b^{2}+4 \sqrt{2} a b^{2}-4 \sqrt{2} a^{3} b^{2}+4 a^{4} b^{2}+2 \sqrt{6} b^{3}
$$

$$
+4 \sqrt{6} a^{2} b^{3}+2 \sqrt{6} a^{4} b^{3}+b^{4}+2 \sqrt{2} a b^{4}-2 a^{2} b^{4}-2 \sqrt{2} a^{3} b^{4}+a^{4} b^{4}
$$

We select a_{6} and a_{0} as the independent parameters, and eliminate a, b

$$
\begin{aligned}
0= & 256-1024 a_{0}+1536 a_{0}^{2}+256 a_{0}^{4}-768 a_{4}+1792 a_{0} a_{4}-1280 a_{0}^{2} a_{4} \\
& +256 a_{0}^{3} a_{4}+864 a_{4}^{2}-960 a_{0} a_{4}^{2}+352 a_{0}^{2} a_{4}^{2}-432 a_{4}^{3}+144 a_{0} a_{4}^{3}+81 a_{4}^{4}-4680 a_{6} \\
& +3840 a_{0} a_{6}-2048 a_{0}^{2} a_{6}+768 a_{0}^{3} a_{6}+8640 a_{4} a_{6}-6192 a_{0} a_{4} a_{6}+2112 a_{0}^{2} a_{4} a_{6} \\
& -5184 a_{4}^{2} a_{6}+1296 a_{0} a_{4}^{2} a_{6}+972 a_{4}^{3} a_{6}+25056 a_{6}^{2}-10944 a_{0} a_{6}^{2}+1824 a_{0}^{2} a_{6}^{2} \\
& -22032 a_{4} a_{6}^{2}+4752 a_{0} a_{4} a_{6}^{2}+5346 a_{4}^{2} a_{6}^{2}-38880 a_{6}^{3}+6480 a_{0} a_{6}^{3}+14580 a_{4} a_{6}^{3}
\end{aligned}
$$

$$
+18225 a_{6}^{4}
$$

The Slater energy is

$$
\begin{aligned}
\eta & \equiv\langle\Phi| H|\Phi\rangle \\
= & \left(t^{2}+5 u^{2}+3 v^{2}+7 w^{2}\right) / 2-V_{0}\left[2\left(4 t^{2}+u^{2}\right) v^{2}-4 \sqrt{3} t u v w+\left(6 t^{2}+u^{2}\right) w^{2}\right] / 8 \\
& =\left[2+12 a^{2}+2 a^{4}+12 b^{2}+40 a^{2} b^{2}+12 a^{4} b^{2}+2 b^{4}+12 a^{2} b^{4}+2 a^{4} b^{4}\right. \\
& -V_{0}\left(1-a^{2}+a^{4}-2 \sqrt{3} a^{3} b+b^{2}-2 a^{2} b^{2}+a^{4} b^{2}+2 \sqrt{3} a b^{3}-2 \sqrt{3} a^{3} b^{3}\right. \\
& \left.\left.+b^{4}-a^{2} b^{4}+a^{4} b^{4}\right)\right] /\left[\left(1+a^{2}\right)\left(1+b^{2}\right)\right]^{2} .
\end{aligned}
$$

The DF is constrained now by

$$
\begin{aligned}
\mathcal{F}[\rho] & =\min _{\Phi \Rightarrow \rho}\langle\Phi| H|\Phi\rangle \\
& =\min _{\Phi \Rightarrow a_{6}}\langle\Phi| H|\Phi\rangle
\end{aligned}
$$

For the ground state, $a_{6}=0$, (no halo), and b is eliminated. This leaves the precursor...

$$
\begin{aligned}
\mathcal{P}\left(\eta, a_{6}, a\right)= & 0 \\
& =1024+12288 a^{2}+38912 a^{4}+12288 a^{6}+1024 a^{8} \\
& +1536 a_{6}+12288 a^{8} a_{6}+21504 a^{4} a_{6}+12288 a^{6} a_{6} \\
& +1536 a^{8} a_{6}+576 a_{6}^{2}+2304 a^{2} a_{6}^{2}+3456 a^{4} a_{6}^{2}+2304 a^{6} a_{6}^{2} \\
& +576 a^{8} a_{6}^{2}-1024 \eta-8192 a^{2} \eta-14336 a^{4} \eta-8192 a^{6} \eta \\
& -1024 a^{8} \eta-768 a_{6} \eta-3072 a^{2} a_{6} \eta-4608 a^{4} a_{6} \eta-3072 a^{6} a_{6} \eta \\
& -768 a^{8} a_{6} \eta+256 \eta^{2}+1024 a^{2} \eta^{2}+1536 a^{4} \eta^{2}+1024 a^{6} \eta^{2} \\
& +256 a^{8} \eta^{2}-1024 V_{0}-5120 a^{2} V_{0}+4096 a^{4} V_{0}-5120 a^{6} V_{0} \\
& -1024 a^{8} V_{0}-576 a_{6} V_{0}+384 a^{2} a_{6} V_{0}+384 a^{4} a_{6} V_{0} \\
& +384 a^{6} a_{6} V_{0}-576 a^{8} a_{6} V_{0}+144 a_{6}^{2} V_{0}+288 a^{2} a_{6}^{2} V_{0} \\
& +288 a^{4} a_{6}^{2} V_{0}+288 a^{6} a_{6}^{2} V_{0}+144 a^{8} a_{6}^{2} V_{0}+512 \eta V_{0} \\
& +512 a^{2} \eta V_{0}+512 a^{6} \eta V_{0}+512 a^{8} \eta V_{0}-96 a_{6} \eta V-192 a^{2} a_{6} \eta V_{0} \\
& -192 a^{4} a_{6} \eta V_{0}-192 a^{6} a_{6} \eta V_{0}-96 a^{8} a_{6} \eta V_{0}+256 V_{0}^{2} \\
& -512 a^{2} V_{0}^{2}+768 a^{4} V_{0}^{2}-512 a^{6} V_{0}^{2}+256 a^{8} V_{0}^{2} \\
& -96 a_{6} V_{0}^{2}-480 a^{2} a_{6} V_{0}^{2}+960 a^{4} a_{6} V_{0}^{2}-480 a^{6} a_{6} V_{0}^{2} \\
& -96 a^{8} a_{6} V_{0}^{2}+9 a_{6}^{2} V_{0}^{2}+432 a^{2} a_{6}^{2} V_{0}^{2}-846 a^{4} a_{6}^{2} V_{0}^{2} \\
& +432 a^{6} a_{6}^{2} V_{0}^{2}+9 a^{8} a_{6}^{2} V_{0}^{2}
\end{aligned}
$$

Energy minimsation, with respect to a :

$$
\begin{aligned}
\mathcal{Q} & \equiv \frac{\partial \mathcal{P}}{\partial a}=0 \\
& =\left(32+24 a_{6}-16 \eta-16 V_{0}+3 a_{6} V_{0}\right)\left(128+48 a_{6}-32 \eta-8 V_{0}+3 a_{6} V_{0}\right) \\
& \times\left(4096+4608 a_{6}+1152 a_{6}^{2}-3072 \eta-1536 a_{6} \eta+512 \eta^{2}-2304 V_{0}\right. \\
& \left.-480 a_{6} V_{0}+216 a_{6}^{2} V_{0}+640 \eta V_{0}-144 a_{6} \eta V_{0}+128 V_{0}^{2}-144 a_{6} V_{0}^{2}+63 a_{6}^{2} V_{0}^{2}\right)
\end{aligned}
$$

Minimisation with respect to a_{6}

$$
\begin{aligned}
\mathcal{S} & \equiv \frac{\partial \mathcal{Q}}{\partial a_{6}}=0 \\
& =\left(\eta+V_{0}-2\right)\left(4 \eta+V_{0}-16\right)\left(8 \eta+V_{0}-48\right)\left(4 \eta+3 V_{0}-16\right) \\
& \times\left(64+36 V_{0}-2 \eta V_{0}+V_{0}^{2}\right) \\
& \times\left(-1024-1152 V_{0}+64 \eta V_{0}+316 V_{0}^{2}-348 \eta V_{0}^{2}+47 \eta^{2} V_{0}^{2}-264 V_{0}^{3}+52 \eta V_{0}^{3}+5 V_{0}^{4}\right)
\end{aligned}
$$

21

Combining these two equations gives the condition for a_{6} :

$$
\begin{aligned}
& a_{6}\left(3 a_{6}-4\right)\left(3 a_{6} V_{0}-24 V_{0}-64\right)\left(524288+491520 V_{0}-49512 a_{6} V_{0}\right. \\
& +151552 V_{0}^{2}+46080 a_{6} V_{0}^{2}-54144 a_{6}^{2} V_{0}^{2}+18432 V_{0}^{3}+7680 a_{6} V_{9}^{3} \\
& \left.-10152 a_{6}^{2} V_{0}^{3}+3024 a_{6} V_{0}^{4}-2961 a_{6}^{2} V_{0}^{4}\right)=0 .
\end{aligned}
$$

We set $V_{0}=3$ as before, whence,

$$
\begin{aligned}
& \left(16-33 a_{6}+16 \eta\right)\left(104+57 a_{6}-32 \eta\right) \\
& \left(-1664+1872 a_{6}+2367 a_{6}^{2}-1152 \eta-1968 a_{6} \eta+512 \eta^{2}\right)=0
\end{aligned}
$$

Lowest root: $\eta=-2.98623$, spurious, as it gives a negative value for a_{6}.

Allowed values for η

$$
\begin{aligned}
\eta & =-1 \\
a_{6} & =0 \\
\Rightarrow b & =0 \\
\Rightarrow a & =0 \\
a_{0} & =1 \\
a_{4} & =0 \\
a_{2} & =2
\end{aligned}
$$

Hence, the optimal density,

$$
\rho=\frac{\left(1+2 r^{2}\right) e^{-r^{2}}}{\sqrt{\pi}} .
$$

Kohn-Sham potentials

Consider a truncated subspace on some finite single particle basis for a system of N particles with projector \mathcal{P}.

Hamiltonian: $\mathcal{P H \mathcal { P }}$
One-body Hamiltonian: $H_{0}=T+W_{0}$

$$
W_{0}=\sum_{i=1}^{N} w_{0}\left(r_{i}\right)
$$

Ground state density:

$$
\Phi_{0} \Rightarrow \rho_{0}
$$

Difference:

$$
\begin{aligned}
\Delta \rho & =\rho-\rho_{0} \\
& =\sum_{\beta=1}^{\infty} b_{\beta} S_{\beta}(r)
\end{aligned}
$$

24

Given a Hamiltonian, H_{0}, the polynomial method returns $\mathcal{K}\left(\kappa, b_{1}, \ldots, b_{\mathcal{N}^{\prime}}\right)$.
For which, for the lowest root of $\mathcal{K}=0$,

$$
\kappa^{\prime}=\min _{\Phi \Rightarrow b_{1}, \ldots, b_{\mathcal{N}^{\prime}}}\langle\Phi| H_{0}|\Phi\rangle
$$

For the full Hamiltonian, one gets a polynomial and constrained minimum for the lowest root,

$$
\begin{gathered}
\mathcal{E}\left(\eta, b_{1}, \ldots, b_{\mathcal{N}^{\prime}}\right), \\
\eta^{\prime}=\min _{\Psi=b_{1}, \ldots, b_{\mathcal{N}^{\prime}}}\langle\Psi| H|\Psi\rangle .
\end{gathered}
$$

Difference:

$$
\Omega\left(\omega ; b_{1}, \ldots, b_{\mathcal{N}^{\prime}}\right) ; \omega=\eta-\kappa
$$

Diagonalisation of $\mathcal{P} H \mathcal{P} \Rightarrow \frac{\partial \kappa}{\partial b_{\beta}}+\frac{\partial \omega}{\partial b_{\beta}}=0, \beta=1, \ldots \mathcal{N}^{\prime}$
One-body potential: $\quad v_{\beta}=-\frac{\partial \Omega}{\partial b_{\beta}} \frac{\partial \omega}{\partial \Omega}$

$$
v_{\Delta}(r)=\sum_{\beta=1}^{\mathcal{N}^{\prime}} v_{\beta} S_{\beta}(r) .
$$

Φ is the ground state of $\mathcal{P}\left[H_{0}+\sum_{i=1}^{N} v_{\Delta}\left(r_{i}\right)\right] \mathcal{P}$. Note:

$$
\langle\Phi| \mathcal{P} S_{\beta} \mathcal{P}|\Phi\rangle=\langle\Phi| S_{\beta}|\Phi\rangle
$$

Energy derivatives:

$$
\begin{aligned}
\frac{\partial E}{\partial v_{\beta}} & =\int\left(r^{d-2} d r\right)\left(\Delta \rho+\rho_{0}\right) S_{\beta} \\
& =b_{\beta}+b_{0}
\end{aligned}
$$

Kohn-Sham potential: $\mathcal{P}\left(w_{0}+v_{\Delta}\right) \mathcal{P}$

Conclusions

Conclusions

- A method showing how an analytic density functional may be constructed has been illustrated.

Conclusions

- A method showing how an analytic density functional may be constructed has been illustrated.
- The properties of concavity are explicitly contained in the method.

Conclusions

- A method showing how an analytic density functional may be constructed has been illustrated.
- The properties of concavity are explicitly contained in the method.
- Potential and kinetic energies are easily obtainable.

Conclusions

- A method showing how an analytic density functional may be constructed has been illustrated.
- The properties of concavity are explicitly contained in the method.
- Potential and kinetic energies are easily obtainable.
- Kohn-Sham can be recovered.

