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Introduction

All approaches for the calculation of density functionals from Hamiltonians describing
many-body systems to date have been numerical.

These are based on the Kohn-Sham (KS) method [Phys. Rev. 40, A1133 (1965)],
which reduces the many-body problem to that of an effective one-body problem.

One starts with a Hamiltonian, 7/, from which the energy is,
Flp|=inf(y|H
[p]= inf (y|H|y)

where the wave functions are chosen under the constraint of obtaining the density. It
is necessarily a many-body problem. Diagonalisation of the Hamiltonian requires,

SF
op
One may also consider a similar definition for the kinetic energy, viz.,

Glp]= inf (y|T|y). < J
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Continuing on (with a somewhat obvious statement),

F=G+(F-G)
6F _,_0G  4(F-G)
op op op
_9G
S
where we have identified the potential,
L 6(F-G)
S5

This reduces the many-body problem to an effective one-body problem.

done numerically.
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Questions:

1. Is the KS assumption, which reduces the problem in this fashion, valid?

2. Is there an analytic density functional?

Consider a basis of » orthonormal, single-particle states, p , (r, o, 7) Slater determinants,
®; , made out of the s-p states for / fermions make a finite subspace. The Hamiltonian can
be approximated by configuration mixing.

N
W= (C,+iC))p,
j=1

Hij = <¢1|H|¢J>
The energy is
N
n=2 CHC,

i,j=1

N

ZC'Z —1 \‘~|f/

i=1 l
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The density is quadratic in the mixing coefficients,

:ZCi <¢i a‘a ¢j>Cj.

Take, as an expansion set, a complete, orthonormal set of “vanishing average” functions:

{S r },v:l,...,oo

Idr =0,Vv,

Idr (r)=96,,.vuv.

We take the density with respect to some reference density, to obtain a difference
Ap=p—py,

from which we obtain the Fourier coefficients

la,[9,) |C; - po.. %‘%

A, = [dr s, (r)ap(r)
UNIVgFR’SITY
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These define the density, as
p=py+ 2AVSW
Pu, = [ dr S, () py (1),
Consider, once more,
A, = [dr s, (r)ap(r)

:;CiUdr 5, (r)(9,

.*_
al’ al‘

¢j>:|cj ~ Pov-
Taking these, and the energies,

N
n=2 CHC,

ij=1

N
D .cl=1,
i=1

|
eliminates the last (V' + 1) coefficients. %%
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This leaves a polynomial

R(MA s Ap,CroeuCopr_aey ) =0.

The energy must be minimized with respect to the remaining coefficients,
IR _
oC,

= &(N,A,....A5 )=0.

0,i=1,... N -N"-1
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This leaves a polynomial

R(MA s Ap,CroeuCopr_aey ) =0.

The energy must be minimized with respect to the remaining coefficients,
IR _
oC,

= &(N,A,....A5 )=0.

0,i=1,... N -N"-1

Is last polynomial is the analytic (or algek
functional.
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Simple considerations.

Let 7/ be the matrix representing the Hamiltonian on an orthonormal basis, and let 71,

and ), be the matrices representing two constraints parameterizing the density [eg.
(A, + po)]. Apolynomial in ¢, A1, A5 results:

P(e, A, A,)=det(H - A,D, - ,D,)=0.

¢ is the free energy, A4,,4, are Lagrange multipliers. From this,
oe

oena)-To-Tzo i3
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Now

€= 77_2*11)1 _ﬂszz

from which, by a process of elimination,
£(n,D,,D,)=0,

which generates the analytic DF.
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Toy model

To illustrate the utility of the method, we consider a system of two fermions, whose
Hamiltonian may be constructed as

H=T+V
\(d> &) 1,, ,
T=——+—7 |+=(r+r
2(drf dr;) 2(l ?)

, V 1 , , (r2 - ) +(r2'2—r1'2)2 /4 , ,
@GWW%>:—J§E5&jG+B—G—EﬂJ- }(e—nﬂe—n)

We utilise the first four harmonic oscillator wave functions, ¢, ,...,¢,, creating a basis of four
negative-parity Slater determinants:

19001 | 1000 [ 1920, | 192005 |
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Choosing, V, = 3, and constraining the Hamiltonian by the second moment operator,

(72 +7),

—1
0

0

2

J3/2
1//2

0
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The polynomials read

P, (e,A)=-360+154e+344¢e’ —154¢’ +16¢" +1464 1

+1692€A —1636€°A+256€° A+ 7251> —5140€A’
+1408€°A* —41921° + 30724’ + 2064 1.*
=0,
O, (D,e,1)=-1464 —1692¢ +1636¢” —256¢” — 14504
+10280€4 —2816€°A+12576 4> —9126€A” — 8256 A°
+(154 +688c—462e> + 64> +16921 — 3272eA+ 768’1 — 51401 +2816€A” + 3072/13)0
=0.

With the substitution € =1n—-AD we have for the DF

E..(n,D)=0.

toy

This is 12t order in both 17 and D.
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The density functional

Contour of &, (1.D)=0.

R Ground state:
D=2n=-1
4.
Eigenvalues:
| 4 |
= B | H:45/8,-1
- ‘ D:4+4++15
0.,
-2 O v w00y [ R [ R 1
1 2 3 4 5 6 7
D %'%
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Potential energy

There is also a polynomial relating the potential energy to the constraints. Take the
Hamiltonian as

H=h+V
V=-VV.

V,, is an interaction strength, and may be considered a Lagrange multipler. A polynomial
may be obtained:

oh) _
ﬁW—Vo

_OF  OF _
zgwxmmﬂﬂw~Jﬁ=%am‘MW ’

We can replace (h)—n+(V)V,.

Eliminate 17 and V, between & and F,G. This provides links from the potential to the
D, . A similar approach may be utilised to construct a polynomial strictly for the kinetic

energy.
t\'/i
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Kohn-Sham considerations

The theory presented bypasses completely Kohn-Sham. KS can be illustrated by
considering a basis of single-particle states, ¢, ,o¢ =1,...,n, from which a Slater
determinant, of /N orthonormal orbitals is constructed.

Orbitals v, = 2%%
a=l1

Hamiltonian H=T+V

Kinetic T,s=(9.|T|0,)

Potential Voso =(0.05V0,05 )

%'%
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Toy model |l

We construct a Slater determinant, @, from one positive parity and one negative parity
orbital, constructed from the first 4 oscillator wave functions, @, ,...,Q;:
Y, =19, +up,
Y_=vp +wo,

This choice ensures orthogonality. Trigonometric transformation in the coefficients:

t_l—az L= 2a
1+a”’ 1+a’
V_l—b2 2b

= , W=
1+b° 1+b?
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Density

The density is a Gaussian modulated by a polynomial of the coordinate,

“P+|2 +|‘I’_‘2 =p(r)= eﬁ(a%r6 +a,rt +a,r’ +ao).

Normalisation

Jip(r)dr = %% +§a4 -I—%a2 +a,=2.

There are only two independent coefficients.
The density constraint, ® — ok gives

4w?/3=a,

12 =20+ u? /2 =a,

2u’ + 42/ 3vw— 4w’ = a,

2200 —2u +2v? = 23/6vw+ 3w? = a,
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In terms of « and /

165> 1-22a+224° +a*
a6:—22’a0: 5\2 s
3(1+0°) (1+a*)

3a,(1+a®) (146} 18 = 3a® +36b +246a°b +6a*b — 6b* — 6D’
—6a*b* —\J6b> — 264> —\6a'b’ + 32",
a,(1+a*) (1+6*) 12 =14+2v2a 24> —=2v24* + a* - 2J/6b — 464D
2J6a'b+4b* + 4\2ab* — 424D + 4a*b? + 24/6b°
+4~3/64°b* +2364'b* +b* + 22ab* —24°b* — 22a°b* + a*b*

We select ¢, and g, as the independent parameters, and eliminate «,b

0=256-1024a, +1536a; +256a, — 768a, +1792a,a, —1280a;a,
+256a,a, + 864a; —960a,a;, +352aa; —432a, +144a,a; + 8la, —4680a,
+3840a,a, — 2048a;a, + 768a.a, + 8640a,a, — 6192a,a,a, +2112a;a,a,

2

—5184aa, +1296a,a;a, +972a a, +25056a; —10944a,a; +1824a;a;

—22032a,a; +4752a,a,a; + 5346a;a; —38880a, + 6480a,a; +14580a,a; \ly
+18225a; { }
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The Slater energy is
n=(®/H|®)
= (t2 +5u° + 307 + 7w2)/2— V, [2(4t2 + L12)1/2 — 4\/§tuvw+(6t2 + uz)wz]/S
=|2+12d” +2a* +120° +40a°b* +12a*b* + 2b* +12a°b* + 24"
-V, (1 —a*+a' - 2x/§a3b +b*=2a’b* +a'b* + 2\/§ab3 — 2\/§a3b3

1t = bt +a'b?) |1 (1+a?)(1+67) ]

The DF is constrained now by

F[p]=min(®|H| D)

O=p

= min(®|H| D).

‘I):>a6

For the ground state, ¢,=0, (no halo), and 4 is eliminated. This leaves the precursor...
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UNIVERSITY
OF

: JOHANNESBURG
CEA/Saclay, April 11, 2012 19

Thursday, 12 April 12



P(n,a¢,a)=0

=1024+12288a’ + 38912a" +122884° +10244°

+1536a, +12288a’a, +21504a"a, +12288a°a,
+1536a°a, +576a; +2304a’a; +3456aa; +2304a°a;
+576a’a; —10241n—8192a’n—14336a*n—81924°n
~1024a°n - 768a,n - 3072a’a,n — 4608a"a,n —3072a°an
~768a"a,n+256n" +1024a’n* +1536a'n’ +1024a"n’
+256a°n’ —1024V, — 5120a°V, + 4096a*V, — 5120a°V,
~1024a"V, - 576a,V, + 384a’a,V, + 384a’a V,
+384a°a,V, — 576a°aV, +144a.V, +288a’a’V,
+288a'a.V, +288a°a.V, +144a’aV, + 5121V,

+512a°nV, +512a°nV, + 512a*nV, — 96a,nV —192a’a,nV,
~192a*a,nV, —192a°a,nV, — 96a’anV, + 256V,
~512a’V;} +768a'V;} — 512a°V;} +2564°V,

—96a,V; —480a°a,V, +960a’a.V, — 480a’a,V;
—96a°a,Vy +9a V] +432a’alV;} — 846a*alV}
+432a°a V) +9a°alVy
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Energy minimsation, with respect to a:

oP
=——=(
< da
=(32+24a,—16n-16V, + 3a,V, )(128 + 48a, — 321 - 8V, + 3a,V,)
x (4096 + 46084, +1152a; — 30721 —1536a,n+ 5121 — 2304V,

—480a,V, +216a.V, + 6401V, —144a,nV, + 128V} —144a,V, + 63a§V02)

Minimisation with respect to a,

S= 9Q =0
da

=(n+V,=2)(4n+V, ~16)(8n+V, —48)(4n+3V, - 16)

x(64+36V, —2nV, +V; )

><(—1024 — 1152V, +64nV, + 316V, — 3481V, +4Tn°V,;] — 264V +52nV.’ + 5VO4)

%|%
UNIVEBSITY
JOHANNESBURG

CEA/Saclay, April 11, 2012 o1

Thursday, 12 April 12



Combining these two equations gives the condition for «,:

as(3a, —4)(3a,V, — 24V, — 64)(524288 + 491520V, — 495124V,
+151552V; +46080a,V, — 541444V, +18432V, +7680a,V,
~10152a;V, +3024a,V, —2961a;V,')=0.

We set J/,= 3 as before, whence,

(16 —33a, +161)(104 + 57a, — 321)
(—1664 +1872a, +2367a; — 115217 —1968a,1+ 512n° ) = 0.

Lowest root: 7 = —2.98623, spurious, as it gives a negative value for «,.
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Allowed values for n

- _1

6 -
== 2 |
g - - 2 :
o - —— e | 1
/.s\\...._..- - :

a, =2
Hence, the optimal density,

(1+277)e

L a6 p: \/E

<r
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Kohn-Sham potentials

Consider a truncated subspace on some finite single particle basis for a system of
N particles with projector P .

Hamiltonian: PH P

One-body Hamiltonian: H, =T + W,

N
W, = Ewo (”z)
i=1

Ground state density: D, = p,

Difference: Ap=p—p,
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Given a Hamiltonian, H ,, the polynomial method returns lC(K,bl,...,bN,).

For which, for the lowest root of K= 0,

K’= min <(D|HO| <I)>.

q)ﬁb] ,...,be
For the full Hamiltonian, one gets a polynomial and constrained minimum for the lowest root,

E(n.by,....by),
n'=_ min (Y|H|¥).

\P:>b1 y .,bN’f
Difference: Q(a);bl,...,bN,); w=N—-K
oK Jdw
Diagonalisation of PHP =—+—=0, B=1,...N’
db;  db,
0Q dw
One-body potential: Vg =T
dbg 0Q t\'/j
N’/
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N

® is the ground state of P{HO +ZVA(7;.):|P . Note:

(@|Ps,P|@)=(@|s,|@)

Energy derivatives:

oE

E = J.(rd_zdr)(Ap + pO)Sﬂ

=bs +b,

Kohn-Sham potential: P(WO + VA)P
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Conclusions

S
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Conclusions

@ A method showing how an analytic density functional may be constructed has been

illustrated.
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Conclusions

@ A method showing how an analytic density functional may be constructed has been
illustrated.

@ The properties of concavity are explicitly contained in the method.
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Conclusions

@ A method showing how an analytic density functional may be constructed has been
illustrated.

@ The properties of concavity are explicitly contained in the method.

@ Potential and kinetic energies are easily obtainable.
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Conclusions

@ A method showing how an analytic density functional may be constructed has been
illustrated.

@ The properties of concavity are explicitly contained in the method.
@ Potential and kinetic energies are easily obtainable.

@ Kohn-Sham can be recovered.
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