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Back to basics 

• In practice, the nuclear DF and/or EDF calculations which have 
been published look very much like Hartree-Fock or Hartree-
Bogoliubov calculations, where one has to guess a good form 
for the functional, with efficient parameters for the various 
energy terms, hence an efficient Kohn-Sham potential. 

• This approach has had quite an amount of success for the 
reproduction of experimental data, but this success pushed 
several basic problems to be partly forgotten. 

•  Present DF solutions are always localized, often deformed 
and often do not have a well defined particle number. The 
discussion to-day returns to the basic fact that a DFT or EDFT 
results from an energy minimization under constraint. This 
gives a new light to the restoration of (E)DF broken nuclear 
symmetries. 
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Potato of trial states, slices of density constraint, locus 
of energy minima 

Minima or Infima? 

Degeneracies? 

Analyticity for locus? 
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Verify concavity of F[\rho] 
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Slices, constraint calculus 

• A proper (E)DFT can consider nuclear states that are pure 
states, with a many-body density operator | \psi >< \psi |. But 
sets of mixed states, such as  \sumn wn | \psin >< \psin |, can 
be most useful to minimize the energy. 

• Many states have the same one-body density \rho. Such 
states with the same \rho make a “slice”, labeled by \rho. 

• Energy shall be minimized within each slice constrained by its 
label \rho. The obtained minimum (or infimum) is a function 
of the slice, hence a functional, F[\rho], of the density.  

• This functional is necessarily, mathematically, CONCAVE. 
Typically, F[(\rho+\rho’)/2] < (F[\rho]+F[\rho’])/2. This is a 
major property of minimizations under constraint(s). 
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Hamiltonian and reduced information 

• As will be explained step by step, we advocate 
completing the usual nuclear Hamiltonian by: 

• a center-of-mass harmonic trap: k R2, and 

• a concavity term,  c (N2+Z2). 

 

• We also advocate a theory with few radial 
positions for measuring the density. The 
whole profile is not necessary. 
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Localizor Hamiltonian 
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The usual, Galilean invariant Hamiltonian, 

makes impractical the definition of a density: the center of mass (CM) is everywhere. 
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Internal density vs Lab density 
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Now, because of the FACTORIZATION of the wave functionwith the trapped 
CM, both densities turn out to be related by a convolution.  

The CM trap does not change the internal physics. It is thus easy to use a 
DFT in the Lab system and recover the internal density by a deconvolution. 
Alternate theory: see Messud et al, Phys. Rev. C 80 (2009) 054314  
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Consequence of rotational invariance of H 

Let Z,N,A ≡ Z + N be the proton, neutron, and mass numbers, respectively. The 
nuclear Hamiltonian H is invariant under rotations. Therefore, besides Z and 
N, nuclear g.s. carry good quantum numbers, J and M, for the total angular 
momentum and its z-component. Two cases occur: (i) either J = 0, hence a 
nondegenerate g.s., the density of which is 

ISOTROPIC, or (ii) J > 0, hence a trivial degeneracy for a magnetic multiplet of 
g.s., the densities of which, nonisotropic, contain several multipoles, with 
the same monopole part of the density for all members of the multiplet. 

In both cases, the many-body density operator for the (set of) ground state(s) of 
a given nucleus can read, 
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D 

INVARIANT under rotation, whether the nucleus is odd or even, deformed or 
spherical. The corresponding one-body density makes an ISOTROPIC profile.  
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The radial DFT (RDFT) 

• For any density matrix D in many-body space, the energy reads, 
E=Tr (H D), where Tr means the trace in many-body space of such a 
product of operators. 

• The previous slide showed that, for any nucleus, its g.s. energy, 
degenerate or not, results from a rotation invariant D. 

• The density of such a D is therefore a scalar. We need just to study 
functionals of radial profiles. 

• Notice: adding to H a term k J2, k small and variable, tells the spin. 

• Notice that the method is compatible with the CM trap, which is 
invariant under rotation. 

• This reduces (E)DFT to one-dimensional calculations. Partial filling 
of spherical orbitals will define spherical Kohn-Sham potentials.  

B. G. Giraud, IPhT Saclay, oct.'11 9 



About deformed solutions of the usual (E)DFT 

• Advantage: they do signal deformations and, when angular 
momentum projection is available, they give a whole band. 

• Defect: 3-dim or 2-dim calculations, while the RDFT means 1-dim. 

• Defect: angular momentum projection costly; furthermore, 
variation after projection costlier. 

• Advantage: density \tau in the intrinsic frame. 

• Can one define rigorously a DFT in an intrinsic frame? Yes! 

• Let D be a many-body density operator, not rotation invariant, and 
PJ be an angular momentum projector (magnetic label understood). 
Define a slice of D’s having the same one-body density \tau, 
deformed. Then, within the slice, minimize the ratio, 

   ( Tr H PJ D ) / (Tr PJ D).        

• This minimum, a function of the slice, defines a functional FJ(\tau). 

• Defect: J dependence! 
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Nature is not concave 

• Experimental binding energies show a valley of stability, hence at least an 
approximate amount of concavity. But second differences, EA-1-2EA+EA+1 , 
can be negative, because of, among other causes, pairing and/or shell 
effects. See, for instance, the sequence of tin isotopes: 
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Nature is not concave 

  Scatter plot of second differences  with respect to N 
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Nature is not concave 

  Scatter plot of second differences with respect to Z 
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Forcing Nature to be concave 

If the set of trial states carries good quantum numbers N and Z, one obtains a 
functional FN,Z[\rho]. But there is no reason to expect that, after changing N and Z, 
there will be concavity with respect to either N or Z. For instance, given the three 
g.s. densities \rhoN,Z-1 , \rhoN,Z , \rhoN,Z+1 , it can happen that  

    FN,Z[\rhoN,Z] > (FN,Z-1[\rhoN,Z-1]+FN,Z+1[\rhoN,Z+1])/2. Namely, interpolations can 
overestimate the binding! 

 

One would prefer a universal functional F(\rho), valid for all values of N and Z as 
defined by integrating \rho. This is specially useful for Hartree-Bogoliubov cases, 
where N and Z are treated as constrained average values of operators N and Z, 
within trial states that do not have such good quantum numbers. 

 

As already stated, constrained minimizations make necessarily concave function(al)s. 
Let -c be the worst negative second difference observed experimentally. Then a 
term, c(N2+Z2)/2, added to H, increases every second differences by c. Physics is 
not changed, since the added term commutes with H. But, this way, “Nature has 
been made concave” and, now, it can be accounted for by a “universal” DF. 
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Constructive DFT, via polynomials, from configuration 
mixing 
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 the density at the origin and the density at the mid-surface or in the tail. Then  
the free energy and the Lagrange multipliers are related by polynomial equations, 
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Constructive DFT, via polynomials, from configuration 
mixing 
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Constructive DFT, toy model, 1 constraint, subspace dimension 4 
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Constructive DFT, toy model, 1 constraint, subspace dimension 4 

This final polynomial has order d x (d-1), with d the number of mixed states. It can be 
unwieldy. But it ensures analyticity, and the lowest root makes a concave branch. 
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Summary of results 

• CM problem solved; modest cost 1- and 2-body 
operator trap. 

• Rotation problem solved; RDFT brings 1-d 
simplification. 

• Existence of DFT for deformations in intrinsic frame, 
but complicated projection and J-dependence. 

• Compatibility between Hamiltonian and concavity; 
modest cost N2+Z2 term. 

• Constructive theory; cost big polynomials. 
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