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INTRODUCTION (1)

In view of solving the A=3 Schrodinger equation

(E — Hy)U = V¥ V=3V, (1)

i<j
Faddeev wrote in 1960 a set of equations, equivalent to (1), which provides a proper
mathematical scheme for the variety of physical situations involved.
Apart from the 3-body bound state, the scattering of one particle on a 2-body bound state gives
rise to a very complex description
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INTRODUCTION (ll)

Soon latter (19676), Yakubovsky generalized the equations to A>4 thus providing a complete
mathematical tool for the “exact” solution of the A-body problem

(B — Hy)¥ =V V=XV (1)

i<j

Till now, only the A=3 and (partially) the A=4 problem have been solved in their “full complexity”
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The 3- and 4-body break-up is still “on the way” (R. Lazauskas, using Complex Scaling)



INTRODUCTION (ll)

A “Fadeev-like” - but independent - approach exists based on AGS(*) equations
They have been developped recently by A. Fonseca and A. Deltuva (Lisbon) with great succes

All this machinery is superfluous when dealing only with bound states

For solving this problem, other independent methods methods have been developped leading
in the last 10 years to a spectacular progress in the field:

No Core Shell Model (cf B. Barret talk) A=14 (?)
combined with RGM solve “simple” scattering problems (A=4,5 Navratil, Sofia)
Green Function Monte Carlo A=12
also “simple” scattering problems (A=4,5)
CCM (cf. M Dufour, last FUTIPEN workshop)
Hyperspherical Harmonics (Pisa A=3-4, + M. Gattobigio A=6)
Based on a Faddeev decomposition of the wf and Khon variational principle
Applied to full scattering results A=3,4

(*) Alt, Grasberger, Sandhas



THE MACHINERY A=3 (I)

The first step is to isolated the intrinsc dynamics of the 3-body Hamiltonian

H—hz 1A+]A+1A*
H=THo+V S22 m " Tm T Ty

V =Vi(ry — 73) + Va(rs — 1) + V() — 75)

The first step is to isolated the intrinsic dynamics of the 3-body Hamiltonian.
This is done by introducing the Jacobi coordinates (3 sets!)

- 2m;imy - o .
Xj = (ri—rn), 1=1,2,3
mo(m;j + my)

. [2mi(mj+my) F'_mj?j-l—mk;:k
Yi= moM omj+my

And the center of mass coordinate R. In terms of them
V=Vi(x1)+ Va(xa) + V3(x3)

The total 3-body wf factorizes into an intrinsic part ® and a c.o.m. plane wave
W (xi,yi, R) = @ (i, yi) el R



THE MACHINERY A=3 (ll)

@ is a solution of the 3-body « intrinsic » Schrodinger equation
[E — Ho — ‘/1<LU1> — %(IQ) — VE;(SUg)} b =0 (1) Hy=—— [Afz’ + Ay}]

None of the Jacobi sets is privileged: all are necessary to properly describe the interaction
region and the asymptotic behaviours of the differents channels.
And @ ?

The seminal idea of Faddeev was to split the total 3-body wavefunction in a sum® of as many
components (Faddeev Amplitudes) as asymptotic channels

b =P+ Py + D3
@, fulfill a set of coupled equations — the Faddeev Equations- strictly equivalent to (1)
[E— Ho— Vi(x1)]®1(X1, 1) = Vix)[P2(X2, Y2) + P3(X3, ¥3)]
[E — Ho — Va(x2) | ®2(X2, ¥2) = Va(x2) [ @3(X3, ¥3) + P1(X1, Y1)
[E — Ho — V3(x3)|®3(X3, ¥3) = V3(x3)[ @1 (X1, Y1) + P2(X2, ¥2) ]

- Each FC is « naturally » expressed in its own Jacobi set
- Coupling is ensured by the rhs. Is strongly non local, given by the linear reletions between different J sets

- In the «non interacting region » V=0, the FE decouple and corresponding FC has simple asymtpotics

) not a product !!! as one could expect from the N-body approximate solutions



THE MACHINERY A=3 (lll)

In case of 3 identical particles

- The 3 potentials are the same V=V

- The 3 Faddeev equations are the same

- The functional form of the FA - in its own Jacobi set - is the same

B — Hy— V(x)|V(&1,00) = V(xr) [V(Z2, 1) + V(Zs, 13)]
O = \Ij<flvgl> + \P(f% 52) —+ \Ij(f?)a 373)

Introducing the Permutation operators Pi\IJ(aE’Z-, Vi) = V(Tit1, Yit1)
[E — Hy— V()| W(Z,y) = V(z) [PT+ P7]V(Z,9)
d=(1+P"+P)¥

If we impose PosW(Z,¥y) = eV (&, y) with ¢ = +1
Onehas  P(1+ Pt + P7)U = ¢V

and the total 3-body wavefunction has the desired symetrie

Wow do we do it in practice ?



THE MACHINERY A=3 (IV)

To solve in practice equation
[E— Ho = V(2)]¥(2,9) = V(z) [PT + P ¥(Z, )
One expands the FC in terms of Bipolar Harmonics

TE(E, ) = Z 90 Y, y) By (2,9) a= {1y}

Bf;gﬁf(:frl,ﬁ:g) = > <bmy;loma|lily; LM > Yy, (1) Yigm, (Z2)

and obtain, after projecion, a set of integro-differential equations for the radial components

1 1
[E_HO_V]SOOz(xa y) - V(CL’) [Z /_1 dUHa,oz’<x7 Y, u)(pa’(x/7 y/) + Z /_1 dUHa,oz”(xa Y, u)@a”(*/ﬂ/a y//)

The integral comes from the P’s

x zo(x1,y1,u1), Y2 (1, Y1, v
bay (T1,Y1) Z/dm o (1,701 bas[T2(21, Y1, u1), Y2 (1, Y1, U1)]
r1Y1 L2Y2

To get the right symetry one must include only components such that:
= 57 la: T T 5
Po3U(Z,9) = (=)= eV (7, )






THE FY EQUATIONS FOR A=4

Two diferent types of coordinates « K » and « H »

Tic(ighl) = Ty, = M/ 2u(75 — 7))
- .. . mzf; _|_ mf’
yK(ijl) = y_,zl'ng = A 2,uij,k: (Tk — —m“ J J)
1]
7 (19 L Myt T 4 my T
Zr(igkl) = Zf]k = A2t (7”[ _ mJ j )
ijk

Tr(igkl) = Ty = M/2ui(T; —13)

Ua(ijkl) = i = M/ 2pu(Th —77)
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THE FY EQUATIONS FOR A=4

To solve the 4-body (intrinsic) Schrodinger equation

(E — H))¥U =VVU V= f Vi (3)

i<j=1
First step

Split W in the usual Faddeev amplitudes, W;;, associated with each
interacting pair (i, 7).

=3 W =W+ Wi+ Wiy + Woz + Woy + W3y

1<J

Equation (3) is equivalent to the system of 6 coupled equations

(E— Hy)U1p = Vig (V1o + Ui+ Uy + o + Woy + Usy)
(E— Ho)Wi3 = Vig(Wio+ Wiz + Wiy + Wog + Woy + Wsy)
(B — Ho)V1y = Vig (Wi + Uig+ Wy + Wog + Woy + Wyy)
(B — Hy)Waos = Vg (V1o + Uyg + Wy + Wog + Wy + Wyy)
(E— Hy)Voy = Vog (V1o + Ui+ Uiy + Wog + Wy + Usy)
(B — Ho)Ws3y = Vay (Wio+ Wiz + Wiy + Wog + Woy + Uyy)



Second step

Fach W;; 1s in its turn splitted in 3, the FY amplitudes, corresponding
to the different asymptotics of the remaining two particles

Let us consider e.g:
(E'— Ho)W1p = Vig (V1o + W13 + Wiy + Woz + Woy + W3y)
writen in the form
(E— Hy — Vig)U19 = Vig (W13 + Wiy + Wos + oy + Wsy)  (3)
We make the following partition
Wip = Wiyg + Uiy + Uia 3
and split equation (3) into a system

(E — Hy— Vig)Ul 3 = Vio (W13 + Wa3)
(E — Hy— Vig)Wy, = Vio (W14 + Way)
(E— Hy— Vig)Ui934 = Vig (Usy)



[f we do the same for the Faddeev amplitudes on the r.h.s.

Ui =W+ U+ Uy i< jik <l

and for each Faddeev equation, we end with the set of
equations equivalents to (1)

<E HO ‘/12)\11123
(E HO - ‘/12> 124
(E — Ho

—Vig)Wig34 =

(E Hy — ‘/13)‘11134 =

(E — Hy —
(E — Hy

Vi) Wis,

—Vig)Wi304 =

(E Hy — ‘/14)‘11142 =

(E— Hy— Vi) ¥l
(E — H,

SRS

—Vig) V1403 =

(E — Hp — ‘/23)‘1’%374 =

(E — Hy — Va3) W33,
(E — H,

NSRS

— Vo3)Wo314 =

(E — Hp — ‘/24)‘1’%471 =

(E — Hy —
(E — Hy

Vo) Wy s

S o

— Vo) Woy13 =

(E — Hy — ‘/554)‘1’3471 =

(E — Ho — V3a) W3y,
(E — H,

— V) Ws410 =

\11%34+\I/ 2+\111324+\D234+\Ij 1+\I’2314>
142+‘I’143+‘I/1423+‘I’241+‘I’243+‘I’2413>
301+ Wauo + Us410)

WPyo+ Uy 4+ Uraos + W3y, 4+ Uy + Way 1)
123+ Wiy + Wrags + Wag g + Wog g + Wag 1)
201+ Wous + Uagnz)

1 (Whys + Uy + Wizga + U5y + Woy g+ Way13)
4 134—1—\11132—1—\1/1324—1—\1!341+\P342+\IJ3412)
4 (Whs g+ Vo + Waz14)
3 (U501 + Uauz + Waunz + U3y y + Wayp + Wi o)
3 (Wiag + Wiy + Urzga + Uis g + Wiy + Wiz )
5 (o + Wl g+ Wiy 0)
1 (o + Wio s + Wings + Wiy o + WYy 5 + Wiy 03)
1 (Wog g+ Wagp + Wog g+ W5y + W5 + Wi 10)
Vas (Who g + Uiy + Wizga + Uiy + Wigo + Wiz o)
Va4 ‘1’1344“1’132"“1’1324"“1’142""1’143""1’1423>
‘/})4 @234+\I/ 1+\1123 14+KD2471+\I}2473+\DQ4,13>
Va4 ‘I’%23+‘1’124+‘I’1234>
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Case of 4 identical particles

In that case the 18 FY amplitudes can be obtained by the action of
the permutation operators I; on two of them, one \Ilﬁjk and one W;; 1
Let us take for instance K = 111111273 and H = Vo 3.
The K-H amplitudes satisfy the following equations

(E — HO — V)[( =V [(P23 + P13) (5 + P34) K + E(ng + Plg) H] (4)
(K —Ho—V)H = V[(Pi3Psy+ PiaPas) K + P3Py H] (5)

in which ¢ = £1 depending on bosons or fermions.
Each amplitude F' = K., H 1s considered as function of its own set of

Jacobi coordinates Z, v, 7

T = (75 —77) Ty = (79 — 7)
g = 37— 2 yn = (71— 775)
o= o) 5 = VE(HA -
and expanded in angular momentum variables for each coordinate
< ZJZ|F >= %j/d:%dg)dé % Yo (2,9, 2) (6)

Y, are generalized tripolar harmonics containing spin, isospin and an-

gular momentum variables



The label a holds for the set of intermediate quantum numbers defined

in a given coupling scheme and includes the specification for the type
of amplitudes K or H.

We have used the following couplings:

K amplitudes {[(t1t2)7xt3]T3 t4}T %Y { (lx(5132)0x)jx (ly33>jy]J3 (l234)jz}J

r® {[(lx(slsz)om)jx (1y(5354)a,) y] lz}

H amplitudes {(tltg)%(tgtzl)@ il
Jzy J

Each component F;, labelled by a set of 12 quantum numbers

The total 4-body wavefunction is obtained by the action of permutation operators on the

two FY amplitudes K and H

U) = [1+4¢e(Pa3 + P13)][1 + e(Prg + Pog + P34)] |K)
+ [14+¢e(Pi3+ Poz + Py + Poy) + Pi3Poy] |H)

One can show that, by imposing to

K the « right symetrie » in P12 (_1)033+Tx‘|‘la: — <_1>0y+7y+ly — ¢
H the « right symetrie » in P12 and P34

The total wf is also well symetrized.



After projection, we end with a sytem of 3d integro-differential equations, similr to the 3-body case
Z Daa’¢a’ (CU, Y, Z) — Z Vaa Z fa’a” Qba” (xgi’a” ’ y(];’oz” ) Zi’a”)
o 1
+ Z Vaa Z / du ho/oz” (I’, Yy, z, U) ¢oz” (CUZ/O[” , yZ/a» y ZZ/O/’)

+1

+1
+ ZVW Z/ du dvgaa(x Yy 2, Uy V) G (T s Yrors 21 )

with Daa’ = (E + Aa)éaa’ _ Vaa’

and f,h,g are known function to account for the permutation operators

Search solutions in the form
o2,y 2) = X cij 5ilw) Sjly) Si(2) =
1) 7

where S are spline functions.
This is the only assumption in the calculations

PIH cubiques

For bound state the boundary conditions are exponentially decreasing in all directions



We have derived analytic expressions for the integral kernels, e.qg. :

) 3 .
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SOME RESULTS



The 4He bound state “He binding energy B (MeV) and r.m.s. radius
N.=5+5 N.=15+4+9

B r B r

We obtained in 99 the B with local NN potentials
Phys. Lett. B447 (1999) 199

AV14 23.34 1.56 23.81 1.54
NIJM IT  23.39 1.4 2386 1.53
REID 93 23.65 1.53 24.12 1.52

We obtained in 2004 the B with local+TNI and with non-local NN potentials
Phys. Rev C70 (2004) 044002; nucl-th/04080

Potential (T) —(V) B R
INOY96 72.80 103.8 31.00 1.353
INOYO03 69.89 99.94 30.04 1.369
INOY04 69.49 9941 2991 1.372
INOY04' 69.46 99.36 29.88 1.372
AV18 98.69 123.6 24 95 1.511
Potential (T) —(V) —(E) R
INOY96 72.45 102.7 30.19 1.358
INOYO03 69.54 98.79 29.24 1.373
INOY04 69.14 98.62 29.11 1.377
INOYO04’ 69.11 98.19 29.09 1.376
AV18 97.77 122.1 24.22 1.516

97.80 1220 24.23[8,34]
AV18+UIX 1132 141.7 28.50[8,34]  1.44 [6]
Expt. 28.30 147




The 4He first excitation

Without Coulomb and isospin breaking it appears in most of models as loosely bound
Phys. Rev. C58 (1998) 58-74

2
Co0)= 2 j f dydz|W . (x,y.2)]%,
o (a =a,
triton *He (ground state)
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Not a « breathing mode »...

but a n orbiting aroud a triton !



3n and 4n resonances

n; and n, are not bound .... but where are they ?

Computed 3 and 4-n resonances solving full FY in the complex plane (CRM)

Phys. Rev. C71 (2005) 044004; nucl-th/0502037

Phys. Rev. C 72 (2005) 034003; nucl-th/0507022
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The A=4 scattering states

Have described the A=4 scattering prcess below breau-up
n+3H
p+3H— n+3He
N 2H + 2H
Maybe the more interesting was to found that the more familar interactions, even reproducing
the A=3 and A=4 binding energies, failled to describe the first resonance in nuclear physics !

3.0 ——————

2.54

1.0- — = — MT Il }
: - @--- Av.18+UIX

0.54 -~ @ Doleschall
0.0 T T
0.1 1

E (MeV)

(*) Phys. Lett. B447 (1999) 199  Phys. Rev C70 (2004) Phys. Rev. C71 (2005) 034004



The He atomic clusters

Our approach allows to deal with strongly repulsive potentials (« hard core »)
Wa could compute() the Van-der-Waals 3- and 4-body bound states of 4He atoms

Linax B; (mK) B; (mK) a(()1+2) (A) max (Ix,ly,lz) B, (mK) aé3+1) (A)
0 89.01 2.0093 155.39 0 348.8 ~—-855
2 120.67 2.2298 120.95 2 505.9 190.6
4 125.48 2.2622 116.37 4 548.6 111.6
6 126.20 2.2669 115.72 6 556.0 105.9
8 126.34 2.2677 115.61 8 557.7 103.7
10 126.37 2.2679 115.58
12 126.39 2.2680 115.56
14 126.39 2.2680 115.56

Using the large value of 3+1 sctatering length we predicted a B, =1.09 mK (below B,)

(*) Phys. Rev. A73 (2006)






Conclusion

The Faddeev-Yakubowsky methods are the only to provide a solution of the full A-body problem,
taking into account the rich variety of channels.

They are numerically quite heavy... and that's why A remains small !
With the present computers they can be extended to A=5 but A=4 brerakup is still “on the way”...

They are not as precise as the ad-hoc variational methods (although 4 digits is relatively easy to get)
However the possibility to acces to bound and scattering states on the same foot, lead in some cases to
spectacular predictions.

e.g. the first excited state of a H," (in the pp S=1 channel)

The binding energies of a H,* were calculated with 12 significant digits
In the pp S=1 channel, only one bound state was found

By computing the p+H scattering we found a scattering length value of A=750 a.u.
We predicted a first excited sate with B= 1.09 10 a.u.

Latter confirmed by “variational fishing” ... and yet not found experimenfaly !!!
One of greatest joys ... Y()
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