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 How to calculate the nuclear wave function of 4He ? 
  

The Faddeev-Yakubowsky approach 



INTRODUCTION (I) 

In view of solving the A=3 Schrodinger equation 

Faddeev wrote in 1960 a set of equations, equivalent to (1), which provides a proper  
mathematical scheme for the variety of physical situations involved. 
Apart from the 3-body bound state, the scattering of one particle on a 2-body bound state gives  
rise to a very complex description 

1 The Formalism

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (1)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (1) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist
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INTRODUCTION (II) 

Soon latter (19676), Yakubovsky generalized the equations to A>4 thus providing a complete 
mathematical tool for the “exact” solution of the A-body problem 

1 The Formalism

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (1)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (1) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist

1

Till now, only the A=3 and (partially) the A=4 problem have been solved in their “full complexity”   

The 3- and 4-body break-up is still “on the way” (R. Lazauskas, using Complex Scaling) 



INTRODUCTION (III) 

A “Fadeev-like” - but independent - approach exists based on AGS(*) equations  
They have been developped recently by A. Fonseca and A. Deltuva (Lisbon) with great succes 
 
All this machinery is superfluous when dealing only with bound states 
 
For solving this problem, other independent methods methods have been developped leading 
in the last 10 years to a spectacular progress in the field: 
 
No Core Shell Model (cf B. Barret talk)  A=14 (?)  

 combined with RGM solve “simple” scattering problems (A=4,5 Navratil, Sofia) 
Green Function Monte Carlo  A=12  

 also “simple” scattering problems (A=4,5) 
CCM (cf. M Dufour, last FUTIPEN workshop)  
Hyperspherical Harmonics (Pisa A=3-4, + M. Gattobigio A=6) 

 Based on a Faddeev decomposition of the wf and Khon variational principle  
 Applied to full scattering results A=3,4 

 

(*) Alt, Grasberger, Sandhas 



The first step is to isolated the intrinsc dynamics of the 3-body Hamiltonian 

THE MACHINERY A=3 (I) 

The total 3-body wf factorizes into an intrinsic part Φ and a c.o.m. plane wave  
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Fig. 1. Sets of three-particle Jacobi coordinates.

Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
the same foot the scattering states. They play there an unavoidable role, especially when many channels are open including
the break-up ones (dissociation into more than two clusters). At present, there exist three-body reliable scattering results in
nuclear and atomic physics including the break-up process [15–19]. In the four-body case, the progress remains limited to
elastic and rearrangement 1 + 3 and 2 + 2 particle channels in nuclear and atomic problems [20,21,13,22,12,23].

We present in this contribution some recent applications of the Faddeev–Yakubovsky formalism to describe cold atomic
structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
of a charged particle interacting with atomic hydrogen, with special interest in the p–H (or H+

2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by

!xi =
√

2m jmk

m0(m j + mk)
(!r j −!rk), i = 1,2,3 (1)

!yi =
√

2mi(m j + mk)

m0M

[
!ri − m j!r j + mk!rk

m j + mk

]
(2)

where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R

The first step is to isolated the intrinsic dynamics of the 3-body Hamiltonian. 
This is done by introducing the Jacobi coordinates (3 sets!) 
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Fig. 1. Sets of three-particle Jacobi coordinates.

Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
the same foot the scattering states. They play there an unavoidable role, especially when many channels are open including
the break-up ones (dissociation into more than two clusters). At present, there exist three-body reliable scattering results in
nuclear and atomic physics including the break-up process [15–19]. In the four-body case, the progress remains limited to
elastic and rearrangement 1 + 3 and 2 + 2 particle channels in nuclear and atomic problems [20,21,13,22,12,23].

We present in this contribution some recent applications of the Faddeev–Yakubovsky formalism to describe cold atomic
structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
of a charged particle interacting with atomic hydrogen, with special interest in the p–H (or H+

2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by

!xi =
√

2m jmk

m0(m j + mk)
(!r j −!rk), i = 1,2,3 (1)

!yi =
√

2mi(m j + mk)

m0M

[
!ri − m j!r j + mk!rk

m j + mk

]
(2)

where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R

1 The Formalism

V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (1)

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (2)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (2) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist

1
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Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
the same foot the scattering states. They play there an unavoidable role, especially when many channels are open including
the break-up ones (dissociation into more than two clusters). At present, there exist three-body reliable scattering results in
nuclear and atomic physics including the break-up process [15–19]. In the four-body case, the progress remains limited to
elastic and rearrangement 1 + 3 and 2 + 2 particle channels in nuclear and atomic problems [20,21,13,22,12,23].

We present in this contribution some recent applications of the Faddeev–Yakubovsky formalism to describe cold atomic
structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
of a charged particle interacting with atomic hydrogen, with special interest in the p–H (or H+

2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by

!xi =
√

2m jmk

m0(m j + mk)
(!r j −!rk), i = 1,2,3 (1)

!yi =
√

2mi(m j + mk)

m0M

[
!ri − m j!r j + mk!rk

m j + mk

]
(2)

where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R
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Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
the same foot the scattering states. They play there an unavoidable role, especially when many channels are open including
the break-up ones (dissociation into more than two clusters). At present, there exist three-body reliable scattering results in
nuclear and atomic physics including the break-up process [15–19]. In the four-body case, the progress remains limited to
elastic and rearrangement 1 + 3 and 2 + 2 particle channels in nuclear and atomic problems [20,21,13,22,12,23].

We present in this contribution some recent applications of the Faddeev–Yakubovsky formalism to describe cold atomic
structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
of a charged particle interacting with atomic hydrogen, with special interest in the p–H (or H+

2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by

!xi =
√

2m jmk

m0(m j + mk)
(!r j −!rk), i = 1,2,3 (1)

!yi =
√

2mi(m j + mk)

m0M

[
!ri − m j!r j + mk!rk

m j + mk

]
(2)

where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R

And the center of mass coordinate R. In terms of them 
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Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
the same foot the scattering states. They play there an unavoidable role, especially when many channels are open including
the break-up ones (dissociation into more than two clusters). At present, there exist three-body reliable scattering results in
nuclear and atomic physics including the break-up process [15–19]. In the four-body case, the progress remains limited to
elastic and rearrangement 1 + 3 and 2 + 2 particle channels in nuclear and atomic problems [20,21,13,22,12,23].

We present in this contribution some recent applications of the Faddeev–Yakubovsky formalism to describe cold atomic
structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
of a charged particle interacting with atomic hydrogen, with special interest in the p–H (or H+

2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by

!xi =
√

2m jmk

m0(m j + mk)
(!r j −!rk), i = 1,2,3 (1)

!yi =
√

2mi(m j + mk)

m0M

[
!ri − m j!r j + mk!rk

m j + mk

]
(2)

where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R
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Until now only N = 3 and N = 4 systems have been explored, although there is no any formal nor practical impediment
to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
and atomic systems, in configuration as well as in momentum space [10–14], still with a smaller accuracy than the varia-
tional methods. The real advantage in using the FY equations, which was also their original motivation, is in describing on
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structures. A short introduction to the Faddeev equations is given in Section 2. Section 3 is devoted to present some results
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2 molecular ion) and e±–H
systems. We study in Section 4 universal properties of the weakly bound N = 3 and N = 4 cold bosonic molecules. Some
results concerning 4He atomic multimers are given in Section 5. The last section is devoted to drawing some conclusion and
perspectives.

2. The formalism

We will develop in what follows the main ideas of the Faddeev equations for solving the three-body problem in config-
uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by
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where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2
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m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R
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to go beyond. Nowadays very accurate FY solutions have been obtained for the bound state problems on hadronic, nuclear
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uration space. This form is the best adapted to deal with atomic problems. Let us consider three different spinless particles
with masses mi , coordinates !ri and denote by (!xi, !yi) the three different sets of Jacobi coordinates defined by
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m j + mk

]
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where (i jk) denotes a cyclic permutation of the particle numbers (123), M = m1 + m2 + m3 is the total mass of the system
and m0 an arbitrary mass to be fixed at convenience. We will also assume that these particles interact via pairwise short
range local potentials V i(xi) vanishing at some distance Ri .

The dynamics of the system can be alternatively described by {!ri}i=1,2,3 or by choosing one of the Jacobi coordinate sets
(!xi, !yi), completed by the center of mass coordinate !R

M !R = m1!r1 + m2!r2 + m3!r3

The three-body Hamiltonian is assumed to have the form

H=H0 + V (3)

where H0 is the kinetic energy which can be written in one of these forms

H0 = − h̄2

2

(
1

m1
!!r1 + 1

m2
!!r2 + 1

m3
!!r3

)
= − h̄2

m0

[
! !xi

+ ! !yi
+ m0

2M
!!R

]

and V the total potential

V = V 1(x1) + V 2(x2) + V 3(x3) (4)

In order to remove the center of mass motion, the choice of a Jacobi set is mandatory. Only in terms of it, the three-body
wavefunction Ψ , eigenstate of the total three-body Hamiltonian (3), factorizes into

Ψ (!xi, !yi, !R) = Φ(!xi, !yi) ei !P ·!R



(*)  not a product !!! as one could expect from the N-body approximate solutions 

THE MACHINERY A=3 (II) 

The seminal idea of Faddeev was to split the total 3-body wavefunction in a sum(*) of as many 
components (Faddeev Amplitudes) as asymptotic channels 

Φ is a solution of the 3-body « intrinsic » Schrodinger equation  

None of the Jacobi sets is privileged: all are necessary to properly describe the interaction 
region and the asymptotic behaviours of the differents channels.  
And Φ ? 
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where Φ(!xi, !yi) is an eigenstate of the intrinsic Hamiltonian

HΦ = EΦ, H = − h̄2

m0
[" !xi

+ " !yi
] + V (5)

the only one that we are going to consider from now.
As it can be already seen from (4), none of the Jacobi sets is neither privileged nor fully satisfactory. The “non-interacting”

region of particles 2 and 3 is simply given by x1 > R1 but it is difficult to define this region in terms of say (!x2, !y2).
On the other hand, if we wish to describe for instance the scattering of particle 1 on a bound state of particles 2 and

3 – denoted symbolically by 1(2,3) – it will be natural to chose the coordinate set (!x1, !y1). However, the final state can
contain, together with the initial state, a superposition of channels 2(1,3) and/or 3(1,2) which can be hardly described in
terms of the same coordinate set. For the bound states and break-up channels the three ensembles will appear naturally on
the same footing.

The Faddeev equations are based on a partition of the total wave function on as many components as two-body asymp-
totic channels:

Φ = Φ1 + Φ2 + Φ3

It is straightforward to see that the three-body Schrödinger equation (5) is equivalent to the set of coupled partial differential
equations for the Faddeev components Φi

[
E − H0 − V 1(x1)

]
Φ1(!x1, !y1) = V 1(x1)

[
Φ2(!x2, !y2) + Φ3(!x3, !y3)

]

[
E − H0 − V 2(x2)

]
Φ2(!x2, !y2) = V 2(x2)

[
Φ3(!x3, !y3) + Φ1(!x1, !y1)

]

[
E − H0 − V 3(x3)

]
Φ3(!x3, !y3) = V 3(x3)

[
Φ1(!x1, !y1) + Φ2(!x2, !y2)

]
(6)

The coupling is ensured by the right-hand side. It is highly nonlocal due to the linear relations between two different sets
of Jacobi coordinates: !xα(!xβ , !yβ), !yα(!xβ , !yβ). In the non-interacting region, V i = 0, the three Faddeev equations decouple
and the boundary conditions for each component take a simple form when expressed in their own Jacobi coordinate set.

These boundary conditions are more easily implemented in terms of the reduced Faddeev components φi defined by:

φi = xi yiΦi (7)

and take the following Dirichlet form:

– they vanish for xi = 0 and yi = 0:

φi(!xi = 0, !yi) ≡ 0, φi(!xi, !yi = 0) ≡ 0 (8)

– for a 3-body bound state they decrease exponentially in all the directions. In practice one can force them to vanish at
sufficiently large distances

φi(xi > xmax, yi > ymax) = 0 (9)

– for an open i + ( jk) elastic or rearrangement scattering, the i-th Faddeev component splits into the product of the
two-body bound state wave function ϕi(xi) of the particle pair ( jk) and the scattering wave of particle i with respect
to the center of mass of this pair χi( !yi):

φi(!xi, !yi) = ϕi(xi)χi( !yi) (10)

– for the break-up reactions at large values of the hyperradius ρ =
√

x2
i + y2

i one overimposes to (10) the behavior

φi(!xi, !yi) ∼ eikρ

ρ1/2 (11)

As mentioned in the Introduction, the original Faddeev equations, above formulated, are not suitable for the Coulomb
scattering problems. The reason is that the right-hand sides of Eq. (6) do not decrease fast enough to ensure the decoupling
of Faddeev amplitudes in the asymptotic region and to allow unambiguous implementation of the boundary conditions. In
order to circumvent this problem, Merkuriev [7,8] proposed to split the Coulomb potential V into two parts, V = V s + V l ,
by means of some arbitrary cut-off function η:

V s(x, y) = V (x)η(x, y), V l(x, y) = V (x)
[
1 − η(x, y)

]
(12)

One is then left with a system of equivalent equations
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1 The Formalism

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆!xi

+ ∆!yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (1)

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (2)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (2) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist

1
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In case of 3 identical particles 
- The 3 potentials are the same Vi=V 
- The 3 Faddeev equations are the same 
- The functional form of the FA - in its own Jacobi set - is the same 
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Introducing the Permutation operators 

5.1 Reduction des equations

Dans ce cas les trois EF sont identiques et le forme fonctionelle des trois amplitudes est la même.
On est donc ramenes a une seule equation, portant sur une seule amplitude Ψ que l’on choisira d’exprimer
en fonction de (!x1, !y1)

[E − H0 − V (x1)] Ψ(!x1, !y1) = V1(x1) [Ψ(!x2, !y2) + Ψ(!x3, !y3)]

La solution que l’on cherche etant:

Φ = Ψ(!x1, !y1) + Ψ(!x2, !y2) + Ψ(!x3, !y3)

Il est commode de re-écrire ceci avec les opérateurs P± en oubliant l’indice des coordonées

[E − H0 − V (x)] Ψ(!x, !y) = V (x)(P+ + P−)Ψ(!x, !y) (5.1)

et
Φ = (1 + P+ + P−)Ψ

5.1.1 Symmétrie globale

On remarque que si l’on choisi
P23Ψ(!x, !y) = εΨ(!x, !y)

avec ε = ±1,alors
Pij(1 + P+ + P−)Ψ = εΨ

Il suffit d’imposer de bonnes propriétés de symmétrie à une amplitude par rapport à P23

pour obtenir des solutions globalement symmétriques ou antisymmétriques

On cherchera des solutions telles que:

P23Ψ(!x, !y) = Ψ(−!x, !y) = (−)lx+σx+s2+s3+τx+t2+t3Ψ(!x, !y)

• Bosons (s=0)

– Espace
P23Ψ(!x, !y) = (−)lx

– Isospin-Espace
P23Ψ(!x, !y) = (−)lx+τx+t2+t3

• Fermions (s=1/2)

– Spin-Espace
P23Ψ(!x, !y) = (−)lx+σx+1

– Isospin-Spin-Espace
P23Ψ(!x, !y) = (−)lx+σx+1+τx+t2+t3

Si t=1/2
P23Ψ(!x, !y) = (−)lx+σx+τx
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1.6 Opérateurs de permutation

1.6.1 Définition

On note par Pij la transposition avec

1. Nilpotente P 2 = 1

2. Transposé P †
ij = Pij

3. Hermitique ?

I(αβγ) = (αβγ)
P12(αβγ) = (βαγ)
P13(αβγ) = (γβα)
P23(αβγ) = (αγβ)

P23P12(αβγ) = (βγα) = P+

P13P12(αβγ) = (γαβ) = P−

P23P13(αβγ) = (γαβ) = P−

On pose P23P12 ≡ P+ car il fait ”tourner” dans le sens cyclique
On pose P13P12 ≡ P− car il fait ”tourner” dans le sens anti-cyclique

(P+)2 = P−

(P−)2 = P+

P+P− = 1
P−P+ = 1

1.6.2 Action sur les coordonnées

C’est évident avec la notation q(αβγ)

P [q(αβγ)] = qP (αβγ)]

avec les propriétés

P+ $x1 = $x2

P− $x1 = $x3

P+ $y1 = $y2

P− $y1 = $y3

1.6.3 Action sur les amplitudes

Etant donnée une fonction quelconques d’un jeu de coordonnées de Jacobi on definit

P±Ψ($xi, $yi) = Ψ($xi±1, $yi±1)

avec ordre cyclique sur les indices

P+Ψ($x1, $y1) = Ψ($x2, $y2)
P−Ψ($x1, $y1) = Ψ($x3, $y3)
P+Ψ($x2, $y2) = Ψ($x3, $y3)
P−Ψ($x2, $y2) = Ψ($x1, $y1)
P+Ψ($x3, $y3) = Ψ($x1, $y1)
P−Ψ($x3, $y3) = Ψ($x2, $y2)

31
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One has                                        

and the total 3-body wavefunction has the desired symetrie 

THE MACHINERY A=3 (III) 

Wow do we do it in practice ? 



THE MACHINERY A=3 (IV) 

To solve in practice equation 
1 The Formalism

[E − H0 − V (x)] Ψ(!x, !y) = V (x)
[

P + + P−]

Ψ(!x, !y)

P±!xi = !xi±1

P±!yi = !yi±1

[E − H0 − V (x1)] Ψ(!x1, !y1) = V (x1) [Ψ(!x2, !y2) + Ψ(!x3, !y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆!xi

+ ∆!yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (1)

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (2)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (2) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist

1

One expands the FC in terms of Bipolar Harmonics 1 The Formalism

ΨLM (!x, !y) =
∑

α

1

xy
ϕLM

α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)

[E − H0 − V (x)] Ψ(!x, !y) = V (x)
[

P + + P−]

Ψ(!x, !y)

P±!xi = !xi±1

P±!yi = !yi±1

[E − H0 − V (x1)] Ψ(!x1, !y1) = V (x1) [Ψ(!x2, !y2) + Ψ(!x3, !y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆!xi

+ ∆!yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (2)

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (3)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (2) which provides a proper mathematical scheme
to account for the variety of physical situations involved.
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1 The Formalism

BLM
l1l2

(x̂1, x̂2) =
∑

m1m2

< l1m1; l2m2|l1l2; LM > Yl1m1
(x̂1)Yl2m2

(x̂2)

ΨLM (!x, !y) =
∑
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xy
ϕLM

α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)

[E − H0 − V (x)] Ψ(!x, !y) = V (x)
[

P + + P−]

Ψ(!x, !y)

P±!xi = !xi±1

P±!yi = !yi±1
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[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆!xi

+ ∆!yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (2)

1

and obtain, after projecion, a set of integro-differential equations for the radial components  
1 The Formalism

[E−H0−V ]ϕα(x, y) = V (x)

[

∑

α′

∫

1

−1

duHα,α′(x, y, u)ϕα′(x′, y′) +
∑

α′′

∫

1

−1

duHα,α′′(x, y, u)ϕα′′(x′′, y′′)

]

P +φα

BLM
l1l2

(x̂1, x̂2) =
∑

m1m2

< l1m1; l2m2|l1l2; LM > Yl1m1
(x̂1)Yl2m2

(x̂2)

ΨLM ($x, $y) =
∑

α

1

xy
ϕLM

α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)

[E − H0 − V (x)] Ψ($x, $y) = V (x)
[

P + + P−]

Ψ($x, $y)

P±$xi = $xi±1

P±$yi = $yi±1

[E − H0 − V (x1)] Ψ($x1, $y1) = V (x1) [Ψ($x2, $y2) + Ψ($x3, $y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆$xi

+ ∆$yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1($r2 − $r3) + V2($r3 − $r1) + V3($r1 − $r2)

1

5.1 Reduction des equations

Dans ce cas les trois EF sont identiques et le forme fonctionelle des trois amplitudes est la même.
On est donc ramenes a une seule equation, portant sur une seule amplitude Ψ que l’on choisira d’exprimer
en fonction de (!x1, !y1)

[E − H0 − V (x1)] Ψ(!x1, !y1) = V1(x1) [Ψ(!x2, !y2) + Ψ(!x3, !y3)]

La solution que l’on cherche etant:

Φ = Ψ(!x1, !y1) + Ψ(!x2, !y2) + Ψ(!x3, !y3)

Il est commode de re-écrire ceci avec les opérateurs P± en oubliant l’indice des coordonées

[E − H0 − V (x)] Ψ(!x, !y) = V (x)(P+ + P−)Ψ(!x, !y) (5.1)

et
Φ = (1 + P+ + P−)Ψ

5.1.1 Symmétrie globale

On remarque que si l’on choisi
P23Ψ(!x, !y) = εΨ(!x, !y)

avec ε = ±1,alors
Pij(1 + P+ + P−)Ψ = εΨ

Il suffit d’imposer de bonnes propriétés de symmétrie à une amplitude par rapport à P23

pour obtenir des solutions globalement symmétriques ou antisymmétriques

On cherchera des solutions telles que:

P23Ψ(!x, !y) = Ψ(−!x, !y) = (−)lx+σx+s2+s3+τx+t2+t3Ψ(!x, !y)

• Bosons (s=0)

– Espace
P23Ψ(!x, !y) = (−)lx

– Isospin-Espace
P23Ψ(!x, !y) = (−)lx+τx+t2+t3

• Fermions (s=1/2)

– Spin-Espace
P23Ψ(!x, !y) = (−)lx+σx+1

– Isospin-Spin-Espace
P23Ψ(!x, !y) = (−)lx+σx+1+τx+t2+t3

Si t=1/2
P23Ψ(!x, !y) = (−)lx+σx+τx
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To get the right symetry one must include only components such that:  
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pour obtenir des solutions globalement symmétriques ou antisymmétriques

On cherchera des solutions telles que:

P23Ψ(!x, !y) = Ψ(−!x, !y) = (−)lx+σx+s2+s3+τx+t2+t3Ψ(!x, !y)

• Bosons (s=0)

– Espace
P23Ψ(!x, !y) = (−)lx

– Isospin-Espace
P23Ψ(!x, !y) = (−)lx+τx+t2+t3

• Fermions (s=1/2)

– Spin-Espace
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The integral comes from the P’s 

THE MACHINERY A=3 (IV) 

To solve in practice equation 
1 The Formalism

[E − H0 − V (x)] Ψ(!x, !y) = V (x)
[

P + + P−]

Ψ(!x, !y)

P±!xi = !xi±1

P±!yi = !yi±1

[E − H0 − V (x1)] Ψ(!x1, !y1) = V (x1) [Ψ(!x2, !y2) + Ψ(!x3, !y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆!xi

+ ∆!yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (1)

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (2)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (2) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist

1

One expands the FC in terms of Bipolar Harmonics 1 The Formalism
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α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)
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H = H0 + V

H0 = −
h̄2

m0
[∆!xi

+ ∆!yi
]

V = V1(x1) + V2(x2) + V3(x3)
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V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (2)

In view of solving

(E − H0)Ψ = V Ψ V =
∑

i<j
Vij (3)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (2) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

1
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BLM
l1l2

(x̂1, x̂2) =
∑

m1m2

< l1m1; l2m2|l1l2; LM > Yl1m1
(x̂1)Yl2m2

(x̂2)

ΨLM (!x, !y) =
∑

α

1

xy
ϕLM

α (x, y) BLM
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m0
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(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
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1

and obtain, after projecion, a set of integro-differential equations for the radial components  1 The Formalism

[E−H0−V ]ϕα(x, y) = V (x)
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∑
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∑

α

1

xy
ϕLM

α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)

[E − H0 − V (x)] Ψ($x, $y) = V (x)
[

P + + P−]

Ψ($x, $y)

P±$xi = $xi±1

P±$yi = $yi±1

[E − H0 − V (x1)] Ψ($x1, $y1) = V (x1) [Ψ($x2, $y2) + Ψ($x3, $y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆$xi

+ ∆$yi
]

V = V1(x1) + V2(x2) + V3(x3)

V = V1($r2 − $r3) + V2($r3 − $r1) + V3($r1 − $r2)

1

5.1 Reduction des equations

Dans ce cas les trois EF sont identiques et le forme fonctionelle des trois amplitudes est la même.
On est donc ramenes a une seule equation, portant sur une seule amplitude Ψ que l’on choisira d’exprimer
en fonction de (!x1, !y1)

[E − H0 − V (x1)] Ψ(!x1, !y1) = V1(x1) [Ψ(!x2, !y2) + Ψ(!x3, !y3)]

La solution que l’on cherche etant:

Φ = Ψ(!x1, !y1) + Ψ(!x2, !y2) + Ψ(!x3, !y3)

Il est commode de re-écrire ceci avec les opérateurs P± en oubliant l’indice des coordonées

[E − H0 − V (x)] Ψ(!x, !y) = V (x)(P+ + P−)Ψ(!x, !y) (5.1)

et
Φ = (1 + P+ + P−)Ψ

5.1.1 Symmétrie globale

On remarque que si l’on choisi
P23Ψ(!x, !y) = εΨ(!x, !y)

avec ε = ±1,alors
Pij(1 + P+ + P−)Ψ = εΨ

Il suffit d’imposer de bonnes propriétés de symmétrie à une amplitude par rapport à P23

pour obtenir des solutions globalement symmétriques ou antisymmétriques

On cherchera des solutions telles que:

P23Ψ(!x, !y) = Ψ(−!x, !y) = (−)lx+σx+s2+s3+τx+t2+t3Ψ(!x, !y)

• Bosons (s=0)

– Espace
P23Ψ(!x, !y) = (−)lx

– Isospin-Espace
P23Ψ(!x, !y) = (−)lx+τx+t2+t3

• Fermions (s=1/2)

– Spin-Espace
P23Ψ(!x, !y) = (−)lx+σx+1

– Isospin-Spin-Espace
P23Ψ(!x, !y) = (−)lx+σx+1+τx+t2+t3

Si t=1/2
P23Ψ(!x, !y) = (−)lx+σx+τx
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To get the right symetry one must include only components such that:  
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The integral comes from the P’s 





THE FY EQUATIONS FOR A=4  1.1 Coordonnées du type K

Convention: MYG, Cerba pag. 24, Thèse Fred

!xK(ijkl) ≡ !xl
ij,k = λ

√

2µij(!rj − !ri)

!yK(ijkl) ≡ !yl
ij,k = λ

√

2µij,k

(

!rk −
mi!ri + mj!rj

mij

)

!zK(ijkl) ≡ !zl
ij,k = λ

√

2µijk,l

(

!rl −
mi!ri + mj!rj + mk!rk

mijk

)

(1)

1.2 Coordonnées du type H

!xH(ijkl) ≡ !xij,kl = λ
√

2µij(!rj − !ri)

!yH(ijkl) ≡ !yij,kl = λ
√

2µkl(!rk − !rl)

!zH(ijkl) ≡ !zij,kl = λ
√

2µij,kl

(

mk!rk + ml!rl

mkl

−
mi!ri + mj!rj

mij

)

(2)

Il y a un signe oppose par rapport a la these de Cerba dans zH

3

Two diferent types of coordinates « K » and « H » 

1.1 Coordonnées du type K

Convention: MYG, Cerba pag. 24, Thèse Fred

!xK(ijkl) ≡ !xl
ij,k = λ

√

2µij(!rj − !ri)

!yK(ijkl) ≡ !yl
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(

!rk −
mi!ri + mj!rj
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!zK(ijkl) ≡ !zl
ij,k = λ

√

2µijk,l
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!rl −
mi!ri + mj!rj + mk!rk

mijk
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(1)

1.2 Coordonnées du type H

!xH(ijkl) ≡ !xij,kl = λ
√

2µij(!rj − !ri)

!yH(ijkl) ≡ !yij,kl = λ
√

2µkl(!rk − !rl)

!zH(ijkl) ≡ !zij,kl = λ
√

2µij,kl

(

mk!rk + ml!rl

mkl

−
mi!ri + mj!rj

mij

)

(2)

Il y a un signe oppose par rapport a la these de Cerba dans zH

3

y

4

x y

z
z

x

1

2

3

4

1

2

3

y

4

x y

z
z

x

1

2

3

4

1

2

3

2.1 Energie cinétique

H0 =
h̄2

2

( 1

m1

∆!r1
+

1

m2

∆!r2
+

1

m3

∆!r3
+

1

m4

∆!r4

)

Ecrivons

−
2m

h̄2
H0 = (∆!r1

+ ∆!r2
+ ∆!r3

) = (∇!r1
,∇!r2

,∇!r3
,∇!r4

)











∇!r1

∇!r2

∇!r3

∇!r4











= ∇†
!R
∇!R

On remarque que si
!X = A!R

alors
∇!R = At∇ !X

Ce qui permet d’obtenir facilement l’énergie cinétique dans une des coordonnées de Jacobi:

H0 = −
h̄2

2m
∇†

!R
∇!R = −

h̄2

2m
∇†

!X
AA† ∇ !X (7)

Si lon prend XK

H0 = −
h̄2

2m
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






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
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3
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4λ
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√
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








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
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4λ
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m
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− 1√
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4λ
√

m

0 2√
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6

1

4λ
√
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1 The Formalism

[E−H0−V ]ϕα(x, y) = V (x)

[

∑

α′

∫

1

−1

duHα,α′(x, y, u)ϕα′(x′, y′) +
∑

α′′

∫

1

−1

duHα,α′′(x, y, u)ϕα′′(x′′, y′′)

]

V =
4

∑

i<j=1
Vij = V12 + V13 + V14 + V23 + V24 + V34

P +φα

BLM
l1l2

(x̂1, x̂2) =
∑

m1m2

< l1m1; l2m2|l1l2; LM > Yl1m1
(x̂1)Yl2m2

(x̂2)

ΨLM ($x, $y) =
∑

α

1

xy
ϕLM

α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)

[E − H0 − V (x)] Ψ($x, $y) = V (x)
[

P + + P−]

Ψ($x, $y)

P±$xi = $xi±1

P±$yi = $yi±1

[E − H0 − V (x1)] Ψ($x1, $y1) = V (x1) [Ψ($x2, $y2) + Ψ($x3, $y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

H0 = −
h̄2

m0
[∆$xi

+ ∆$yi
]

V = V1(x1) + V2(x2) + V3(x3)

1



V = V1(!r2 − !r3) + V2(!r3 − !r1) + V3(!r1 − !r2)

V = V1(| !r2 − !r3 |) + V2(| !r3 − !r1 |) + V3(| !r1 − !r2 |)

(E − H0)Ψ = V Ψ V =
3

∑

i<j=1
Vij (2)

In view of solving

(E − H0)Ψ = V Ψ V =
4

∑

i<j=1
Vij (3)

Yakubovsky, generalising the Faddeev work for A=3, wrote a set of
equations equivalent to (3) which provides a proper mathematical scheme
to account for the variety of physical situations involved.

• All this machinery is superfluous if only bound states

• Other approaches exist

2

THE FY EQUATIONS FOR A=4  The so called Faddeev-Yakubovsky (FY) equations for 4 interacting
particles can be derived in two steps:

First step

Split Ψ in the usual Faddeev amplitudes, Ψij, associated with each
interacting pair (i, j).

Ψ =
∑

i<j
Ψij = Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34

Equation (3) is equivalent to the system of 6 coupled equations

(E − H0)Ψ12 = V12 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ13 = V13 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ14 = V14 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ23 = V23 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ24 = V24 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ34 = V34 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

or
Ψij = G0VijΨ (4)

3

To solve the 4-body (intrinsic) Schrodinger equation 
The so called Faddeev-Yakubovsky (FY) equations for 4 interacting
particles can be derived in two steps:

First step

Split Ψ in the usual Faddeev amplitudes, Ψij, associated with each
interacting pair (i, j).

Ψ =
∑

i<j
Ψij = Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34

Equation (1) is equivalent to the system of 6 coupled equations

(E − H0)Ψ12 = V12 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ13 = V13 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ14 = V14 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ23 = V23 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ24 = V24 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

(E − H0)Ψ34 = V34 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

or
Ψij = G0VijΨ (2)
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Second step

Each Ψij is in its turn splitted in 3, the FY amplitudes, corresponding
to the different asymptotics of the remaining two particles

Let us consider e.g:

(E − H0)Ψ12 = V12 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

writen in the form

(E − H0 − V12)Ψ12 = V12 (Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34) (3)

We make the following partition

Ψ12 = Ψ4
12,3 + Ψ3

12,4 + Ψ12,34

and split equation (3) into a system

(E − H0 − V12)Ψ
4
12,3 = V12 (Ψ13 + Ψ23)

(E − H0 − V12)Ψ
3
12,4 = V12 (Ψ14 + Ψ24)

(E − H0 − V12)Ψ12,34 = V12 (Ψ34)

If we do the same for the Faddeev amplitudes on the r.h.s.

Ψij = Ψl
ij,k + Ψk

ij,l + Ψij,kl i < j; k < l

and for each Faddeev equation, we end with the set of 18 coupled
equations equivalents to (1)

(E − H0 − Vij)Ψ
l
ij,k = Vij

(

Ψl
ik,j + Ψj

ik,l + Ψik,lj + Ψl
jk,i + Ψi

jk,l + Ψjk,il

)

(E − H0 − Vij)Ψ
k
ij,l = Vij

(

Ψk
il,j + Ψj

il,k + Ψil,kj + Ψk
jl,i + Ψi

jl,k + Ψjl,ik

)

(E − H0 − Vij)Ψij,kl = Vij

(

Ψj
kl,i + Ψi

kl,j + Ψkl,ij

)

for which it is possible to define appropriate boundary conditions en-
suring the unicity of the solution.

9



Faddeev-Yakubovsky equations

(E − H0 − V12)Ψ
4
12,3 = V12

(

Ψ2
13,4 + Ψ4

13,2 + Ψ13,24 + Ψ1
23,4 + Ψ4

23,1 + Ψ23,14

)

(E − H0 − V12)Ψ
3
12,4 = V12

(

Ψ3
14,2 + Ψ2

14,3 + Ψ14,23 + Ψ3
24,1 + Ψ1

24,3 + Ψ24,13

)

(E − H0 − V12)Ψ12,34 = V12

(

Ψ2
34,1 + Ψ1

34,2 + Ψ34,12

)

(E − H0 − V13)Ψ
2
13,4 = V13

(

Ψ3
14,2 + Ψ2

14,3 + Ψ14,23 + Ψ2
34,1 + Ψ1

34,2 + Ψ34,12

)

(E − H0 − V13)Ψ
4
13,2 = V13

(

Ψ4
12,3 + Ψ3

12,4 + Ψ12,34 + Ψ1
23,4 + Ψ4

23,1 + Ψ23,14

)

(E − H0 − V13)Ψ13,24 = V13

(

Ψ3
24,1 + Ψ1

24,3 + Ψ24,13

)

(E − H0 − V14)Ψ
3
14,2 = V14

(

Ψ4
12,3 + Ψ3

12,4 + Ψ12,34 + Ψ3
24,1 + Ψ1

24,3 + Ψ24,13

)

(E − H0 − V14)Ψ
2
14,3 = V14

(

Ψ2
13,4 + Ψ4

13,2 + Ψ13,24 + Ψ2
34,1 + Ψ1

34,2 + Ψ34,12

)

(E − H0 − V14)Ψ14,23 = V14

(

Ψ1
23,4 + Ψ4

23,1 + Ψ23,14

)

(E − H0 − V23)Ψ
1
23,4 = V23

(

Ψ3
24,1 + Ψ1

24,3 + Ψ24,13 + Ψ2
34,1 + Ψ1

34,2 + Ψ34,12

)

(E − H0 − V23)Ψ
4
23,1 = V23

(

Ψ4
12,3 + Ψ3

12,4 + Ψ12,34 + Ψ2
13,4 + Ψ4

13,2 + Ψ13,24

)

(E − H0 − V23)Ψ23,14 = V23

(

Ψ3
14,2 + Ψ2

14,3 + Ψ14,23

)

(E − H0 − V24)Ψ
3
24,1 = V24

(

Ψ4
12,3 + Ψ3

12,4 + Ψ12,34 + Ψ3
14,2 + Ψ2

14,3 + Ψ14,23

)

(E − H0 − V24)Ψ
1
24,3 = V24

(

Ψ1
23,4 + Ψ4

23,1 + Ψ23,14 + Ψ2
34,1 + Ψ1

34,2 + Ψ34,12

)

(E − H0 − V24)Ψ24,13 = V24

(

Ψ4
12,3 + Ψ3

12,4 + Ψ12,34 + Ψ2
13,4 + Ψ4

13,2 + Ψ13,24

)

(E − H0 − V34)Ψ
2
34,1 = V34

(

Ψ2
13,4 + Ψ4

13,2 + Ψ13,24 + Ψ3
14,2 + Ψ2

14,3 + Ψ14,23

)

(E − H0 − V34)Ψ
1
34,2 = V34

(

Ψ1
23,4 + Ψ4

23,1 + Ψ23,14 + Ψ3
24,1 + Ψ1

24,3 + Ψ24,13

)

(E − H0 − V34)Ψ34,12 = V34

(

Ψ4
12,3 + Ψ3

12,4 + Ψ12,34

)

6

Second step

Each Ψij is in its turn splitted in 3, the FY amplitudes, corresponding
to the different asymptotics of the remaining two particles

Let us consider e.g:

(E − H0)Ψ12 = V12 (Ψ12 + Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34)

writen in the form

(E − H0 − V12)Ψ12 = V12 (Ψ13 + Ψ14 + Ψ23 + Ψ24 + Ψ34) (3)

We make the following partition

Ψ12 = Ψ4
12,3 + Ψ3

12,4 + Ψ12,34

and split equation (3) into a system

(E − H0 − V12)Ψ
4
12,3 = V12 (Ψ13 + Ψ23)

(E − H0 − V12)Ψ
3
12,4 = V12 (Ψ14 + Ψ24)

(E − H0 − V12)Ψ12,34 = V12 (Ψ34)

If we do the same for the Faddeev amplitudes on the r.h.s.

Ψij = Ψl
ij,k + Ψk

ij,l + Ψij,kl i < j; k < l

and for each Faddeev equation, we end with the set of 18 coupled
equations equivalents to (1)

(E − H0 − Vij)Ψ
l
ij,k = Vij

(

Ψl
ik,j + Ψj

ik,l + Ψik,lj + Ψl
jk,i + Ψi

jk,l + Ψjk,il

)

(E − H0 − Vij)Ψ
k
ij,l = Vij

(

Ψk
il,j + Ψj

il,k + Ψil,kj + Ψk
jl,i + Ψi

jl,k + Ψjl,ik

)

(E − H0 − Vij)Ψij,kl = Vij

(

Ψj
kl,i + Ψi

kl,j + Ψkl,ij

)

for which it is possible to define appropriate boundary conditions en-
suring the unicity of the solution.

9



y

4

x y

z
z

x

1

2

3

4

1

2

3

Case of 4 identical particles 

y

4

x y

z
z

x

1

2

3

4

1

2

3



The total 4-body wavefunction is obtained by the action of permutation operators on the 
two FY amplitudes K and H 

3.1 Case of identical particles

In that case the 18 FY amplitudes can be obtained by the action of
the permutation operators Pij on two of them, one Ψl

ij,k and one Ψij,kl

Let us take for instance K ≡ Ψ4
12,3 and H ≡ Ψ12,34.

The K-H amplitudes satisfy the following equations

(E − H0 − V )K = V [(P23 + P13) (ε + P34) K + ε(P23 + P13) H ] (4)

(E − H0 − V )H = V [(P13P24 + P14P23) K + P13P24 H ] (5)

in which ε = ±1 depending on bosons or fermions.
Each amplitude F = K, H is considered as function of its own set of
Jacobi coordinates "x, "y,"z

"xK = ("r2 − "r1)

"yK =
√

4
3

(

"r3 − "r1+"r2

2

)

"zK =
√

3
2

(

"r4 − "r1+"r2+"r3

3

)

"xH = ("r2 − "r1)
"yH = ("r4 − "r3)
"zH =

√
2

(

"r3+"r4

2 − "r1+"r2

2

)

and expanded in angular momentum variables for each coordinate

< "x"y"z|F >=
∑

α

∫

dx̂dŷdẑ
Fα(xyz)

xyz
Yα(x̂, ŷ, ẑ) (6)
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ε for K and (−1)σx+τx+lx = (−1)σy+τy+ly = ε for H.

14

We have used the following couplings:

K amplitudes
{

[(t1t2)τxt3]T3
t4

}

T
⊗

{

[

(lx(s1s2)σx
)jx (lys3)jy

]

J3

(lzs4)jz

}

J

H amplitudes
[

(t1t2)τx(t3t4)τy
]

T
⊗











[

(lx(s1s2)σx
)jx

(

ly(s3s4)σy

)

jy

]

jxy

lz











J

ti/si are the isospin/spin of the individual particles
(T, J) are the total isospin and angular momentum of 4N system.

Each component Fα labelled by a set of 12 quantum numbers
Symmetry properties impose the additional constraints: (−1)σx+τx+lx =
ε for K and (−1)σx+τx+lx = (−1)σy+τy+ly = ε for H.

14
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The total wf is also well symetrized. 
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The total 4-body wavefunction is obtained by the action of permutation operators on the 
two FY amplitudes K and H 

3.1 Case of identical particles
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Let us take for instance K ≡ Ψ4
12,3 and H ≡ Ψ12,34.
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(E − H0 − V )H = V [(P13P24 + P14P23) K + P13P24 H ] (5)

in which ε = ±1 depending on bosons or fermions.
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(
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After projection, we end with a sytem of 3d integro-differential equations, similr to the 3-body case 

4 Numerical methods

Several steps further we end with a system of coupled integro-differential equations:

∑

α′

D̂αα′φα′(x, y, z) =
∑

α′

Vαα′(x)
∑

α”

fα′α” φα”(x
f
α′α”, y

f
α′α”, z

f
α′α”)

+
∑

α′

Vαα′(x)
∑

α”

∫ +1

−1
du hα′α”(x, y, z, u) φα”(x

h
α′α”, y

h
α′α”, z

h
α′α”)

+
∑

α′

Vαα′(x)
∑

α”

∫ +1

−1
du

∫ +1

−1
dv gα′α”(x, y, z, u, v) φα”(x

g
α′α”, y

g
α′α”, z

g
α′α”)

with
D̂αα′ = (E + ∆α)δαα′ − Vαα′ (7)

In the simplest case of 4 bosons in the S-wave approximation, i.e.

• interacting by S-wave potential only

• with all angular momentum equal to 0 in the FY expansion

one has [S. P. Merkuriev, S.L. Yakovlev, C. Gignoux, Nucl. Phys. A431 (1984) 125]

(E + ∆ − V )F1(x, y, z) = V (x)





∫ 1

−1
du

xy

x′y′

1

F1(x
′, y′

1, z) +
1

2

∑

i=1,2

∫ ∫ 1

−1
dudv

xyz

x′y′′

i z
′′

i

Fi(x
′, y′′

i , z
′′

i )





(E + ∆ − V )F2(x, y, z) = V (x)

[

F2(y, x, z) +
∫ 1

−1

dv
xz

ŷ1ẑ1

F1(y, ŷ1, ẑ1)

]

where:

x′2(x, y; u) =
1

4
x2 +

3

4
y2 −

1

2

√
3xyu

y′

1

2(x, y; u) =
3

4
x2 +

1

4
y2 +

1

2

√
3xyu

y′′

1

2(x, y, z; u, v) =
1

9
y′

1

2(x, y; u) +
8

9
z2 +

4

9

√
2y′

1(x, y; u)zv

z′′1
2(x, y, z; u, v) =

8

9
y′

1

2(x, y; u) +
1

9
z2 −

4

9

√
2y′

1(x, y; u)zv

y′′

2

2(x, y, z; u, v) =
1

3
y′

1

2(x, y; u) +
2

3
z2 −

2

3

√
2y′

1(x, y; u)zv

z′′2
2(x, y, z; u, v) =

2

3
y′

1

2(x, y; u) +
1

3
z2 +

2

3

√
2y′

1(x, y; u)zv

ŷ2
1(x, z; v) =

1

3
x2 +

2

3
z2 −

2

3

√
2xzv

ẑ2
1(x, z; v) =

2

3
x2 +

1

3
z2 +

2

3

√
2xzv

The numerical methods used are based on the Hermite spline expansion, orthogonal collocation
and iterative procedures for solving the linear system. An important step in their solution is
done by means of the tensor trick.
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1 The Formalism

[E−H0−V ]ϕα(x, y) = V (x)

[

∑

α′

∫

1

−1

duHα,α′(x, y, u)ϕα′(x′, y′) +
∑

α′′

∫

1

−1

duHα,α′′(x, y, u)ϕα′′(x′′, y′′)

]

ϕ(x, y, z) =
∑

ijk
cijk Si(x) Sj(y) Sk(z)

V =
4

∑

i<j=1
Vij = V12 + V13 + V14 + V23 + V24 + V34

P +φα

BLM
l1l2

(x̂1, x̂2) =
∑

m1m2

< l1m1; l2m2|l1l2; LM > Yl1m1
(x̂1)Yl2m2

(x̂2)

ΨLM ($x, $y) =
∑

α

1

xy
ϕLM

α (x, y) BLM
α (x̂, ŷ) α = {lx, ly} (1)

[E − H0 − V (x)] Ψ($x, $y) = V (x)
[

P + + P−]

Ψ($x, $y)

P±$xi = $xi±1

P±$yi = $yi±1

[E − H0 − V (x1)] Ψ($x1, $y1) = V (x1) [Ψ($x2, $y2) + Ψ($x3, $y3)]

[E − H0 − V1(x1) − V2(x2) − V3(x3)] Φ = 0

H = H0 + V

1

Search solutions in the form 

where S are spline functions. 
This is the only assumption in the calculations 
 
 
 
 
For bound state the boundary conditions are exponentially decreasing in all directions 
 

and f,h,g are known function to account for the permutation operators 

PIH cubiques

x xx i i+1i-1

S

S

2i

2i+1

(a)

PIH quintiques

x2

x5

x xx ii-1 i+1

S3i

S3i+1

S3i+2

(b)

Figure 1: allure des PIH cubiques et quintiques.

2 PIH Cubiques

Etant donnée une grille de N+1 points G={x0, x1, x2, ..., xN}, on associe à chaque xi deux fonctions
C1 cubiques par morceaux Si,σ=0,1(x), avec support [xi−1, xi+1] et définies par:

Si,σ(xj) = δijδσ,0

S ′

i,σ(xj) = δijδσ,1

C’est à dire: S(σ′)
i,σ (xj) = δijδσ,σ′

On utilise aussi un seul indice I pour /’etiqueter les splines, l’équivalence étant:

Si,σ ≡ SI=2i+σ

i = [I/2]
σ = mod(I, 2)

• Les 2 splines assosciées au point xi sont la S2i et la S2i+1

• Sur un intervalle ∆I il n’y a que 4 splines Si non nulles avec i = 2I − 2, 2I − 1, 2I, 2I + 1

• La spline Si a comme support ∆I
⋃

∆I+1 avec I=[i/2]

2.1 Expressions analytiques

2.1.1 Notation à deux indices

Si,0(x) ≡ S2i(x) =











3
(

x−xi−1

xi−xi−1

)2
− 2

(

x−xi−1

xi−xi−1

)3
si x ∈ [xi−1, xi]

3
(

xi+1−x
xi+1−xi

)2
− 2

(

xi+1−x
xi+1−xi

)3
si x ∈ [xi, xi+1]

3



We have derived analytic expressions for the integral kernels, e.g. :  



SOME RESULTS 



The 4He bound state 

We obtained in 99 the B with local NN potentials 

We obtained in 2004 the B with local+TNI and with non-local NN potentials 

tributions of T=1, 2 admixture were calculated for AV18 and
AV18+UIX models in Ref. [8] and found to be as small as
10 keV. Results for the 3N system presented in the last sec-
tion showed that Doleschall nonlocal models are more sen-
sible to isospin breaking: they account for !15 keV in 3H
compared to !5 keV in AV18+UIX [32]. In any case, for
the ! particle these effects should not exceed some 50 keV
and will not affect the physics discussed below. Notice also
that Coulomb corrections obtained by nonlocal models ex-
ceed by 70 keV those obtained by AV18, due to the different
rms radii they give.
As mentioned in Sec. II A, FY calculations have been

performed in the j-j coupling scheme. The following trunca-
tions in the partial wave expansion of amplitudes were used:
(i) VNN waves are limited to lx"3 but always include tensor-
coupled partners, i.e., involving the set 1S0 ,

3SD1 ,1P1 ,
3P0 ,

3PF2 ,
3P1 ,

1D2 ,
3DG3 ,

3D2 ,
1F3 ,

3FH4 ,
3F3, and

(ii) lx+ ly+ lz"10.
Convergence was studied as a function of jyz

=max"jy , jz# for K-like components and jyz=max"jy , lz# for
H-like components, starting with jyz"1. In Table VII we
present the !-particle binding energy results for INOY04!
and AV18 models, respectively. The convergence is rather
smooth, except when passing from jyz"5 to jyz"6. We
think this is an artefact of our truncation procedure which
keeps the basis set fixed in the x coordinate. Note that the
agreement between our results for the AV18 potential and
those given in Refs. [8,34] is very good. From the results
displayed in Table VII, as well as from analogous conver-
gence patterns seen in 3N calculations, we conclude that
Doleschall potentials converge more rapidly than AV18. This
is probably due to their weaker tensor force, resulting into

wave functions with stronger spherical symmetry.
To our opinion the main conclusion of the results dis-

played in Table VI is the possibility offered by the INOY
models to provide a satisfactory description of A=4 nuclei in
terms of two-body forces alone, as it is already the case for
A=2 and 3. One can argue that this agreement is not yet fully
realized in their present version, for they all slightly overbind
the experimental value: the most favorable version
"INOY04!# still exceeds the 4He binding energy by 0.79
MeV. One should, however, note that this result is obtained
without adjusting any additional parameter with respect to
A=3. On the other hand, the difference between INOY96
and INOY04!—due essentially to different parameterizations
of their nonlocal short-range parts—is 1.1 MeV. It seems
thus possible, by a finer tuning, to reach an even more pre-
cise description of A=4 in a next generation of potentials. If
they are not contradicted by other aspects of the phenom-
enology, INOY models offer an alternative description per-
mitting to avoid three-nucleon forces.
Results of Table VI have been gathered in a Tjon plot—

see Fig. 3—which displays the correlation between 3H and
4He binding energies for various NN potentials. One can see
that, due to the small overbinding of the ! particle, INOY
results (diamond symbols) are outside the line formed by
realistic local model predictions and, except for INOY96, are
almost superimposed to CD Bonn+Tucson-Melbourne (TM)
value.
INOY03, INOY04, and INOY04! models, which differ in

their P-wave structure, give very close results, while
INOY96, which has a different nonlocal S-wave structure,
falls out further apart. This indicates that the S waves are the
key point in binding ! particles, and in order to improve the
agreement with the experimental value a better tuning in the
3S1−

3D1 and
1S0 could be helpful.

Proton rms radii predicted by INOY potentials deserve
some comments. One can see already in 3N systems (see
Table II) that they are slightly smaller than the experimental
ones. For ! particles we have only calculated average rms of
nucleons, without making a distinction between neutrons and

TABLE VI. Binding energy B (in MeV) and rms radius R (in
fm) for the 4He ground state obtained with Doleschall and AV18
+UIX potentials. The lower part contains Coulomb force. Energies
presented in the two last lines of the table, respectively, for AV18
and AV18+UIX models have been taken from Refs. [8,34],
whereas the rms radius is from Ref. [6].

Potential $T% −$V% B R

INOY96 72.80 103.8 31.00 1.353
INOY03 69.89 99.94 30.04 1.369
INOY04 69.49 99.41 29.91 1.372
INOY04! 69.46 99.36 29.88 1.372
AV18 98.69 123.6 24.95 1.511

Potential $T% −$V% −$E% R
INOY96 72.45 102.7 30.19 1.358
INOY03 69.54 98.79 29.24 1.373
INOY04 69.14 98.62 29.11 1.377
INOY04! 69.11 98.19 29.09 1.376
AV18 97.77 122.1 24.22 1.516

97.80 122.0 24.23[8,34]
AV18+UIX 113.2 141.7 28.50[8,34] 1.44 [6]
Expt. 28.30 1.47

TABLE VII. Results of the !-particle binding energy (in MeV)
for INOY04! and AV18 models with VNN interaction limited to lx
"3 (see text) and partial wave basis limited to lx+ ly+ lz"10. The
convergence was searched as a function of jyz=max"jy , jz# for
K-like components and jyz=max"jy , jz# for H-like components. The
last line, denoted by an asterisk, contains additional calculations
with NN interaction waves up to jx"6 and lx+ ly+ lz"12.

jyz INOY04! AV18

1 28.094
2 28.661
3 28.967
4 28.971 23.897
5 28.974 23.920
6 29.084 24.233
7 29.085 24.226
* 29.085 24.223
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The 4He bound state 

We obtained in 99 the B with local NN potentials 

We obtained in 2004 the B with local+TNI and with non-local NN potentials 

tributions of T=1, 2 admixture were calculated for AV18 and
AV18+UIX models in Ref. [8] and found to be as small as
10 keV. Results for the 3N system presented in the last sec-
tion showed that Doleschall nonlocal models are more sen-
sible to isospin breaking: they account for !15 keV in 3H
compared to !5 keV in AV18+UIX [32]. In any case, for
the ! particle these effects should not exceed some 50 keV
and will not affect the physics discussed below. Notice also
that Coulomb corrections obtained by nonlocal models ex-
ceed by 70 keV those obtained by AV18, due to the different
rms radii they give.
As mentioned in Sec. II A, FY calculations have been

performed in the j-j coupling scheme. The following trunca-
tions in the partial wave expansion of amplitudes were used:
(i) VNN waves are limited to lx"3 but always include tensor-
coupled partners, i.e., involving the set 1S0 ,

3SD1 ,1P1 ,
3P0 ,

3PF2 ,
3P1 ,

1D2 ,
3DG3 ,

3D2 ,
1F3 ,

3FH4 ,
3F3, and

(ii) lx+ ly+ lz"10.
Convergence was studied as a function of jyz

=max"jy , jz# for K-like components and jyz=max"jy , lz# for
H-like components, starting with jyz"1. In Table VII we
present the !-particle binding energy results for INOY04!
and AV18 models, respectively. The convergence is rather
smooth, except when passing from jyz"5 to jyz"6. We
think this is an artefact of our truncation procedure which
keeps the basis set fixed in the x coordinate. Note that the
agreement between our results for the AV18 potential and
those given in Refs. [8,34] is very good. From the results
displayed in Table VII, as well as from analogous conver-
gence patterns seen in 3N calculations, we conclude that
Doleschall potentials converge more rapidly than AV18. This
is probably due to their weaker tensor force, resulting into

wave functions with stronger spherical symmetry.
To our opinion the main conclusion of the results dis-

played in Table VI is the possibility offered by the INOY
models to provide a satisfactory description of A=4 nuclei in
terms of two-body forces alone, as it is already the case for
A=2 and 3. One can argue that this agreement is not yet fully
realized in their present version, for they all slightly overbind
the experimental value: the most favorable version
"INOY04!# still exceeds the 4He binding energy by 0.79
MeV. One should, however, note that this result is obtained
without adjusting any additional parameter with respect to
A=3. On the other hand, the difference between INOY96
and INOY04!—due essentially to different parameterizations
of their nonlocal short-range parts—is 1.1 MeV. It seems
thus possible, by a finer tuning, to reach an even more pre-
cise description of A=4 in a next generation of potentials. If
they are not contradicted by other aspects of the phenom-
enology, INOY models offer an alternative description per-
mitting to avoid three-nucleon forces.
Results of Table VI have been gathered in a Tjon plot—

see Fig. 3—which displays the correlation between 3H and
4He binding energies for various NN potentials. One can see
that, due to the small overbinding of the ! particle, INOY
results (diamond symbols) are outside the line formed by
realistic local model predictions and, except for INOY96, are
almost superimposed to CD Bonn+Tucson-Melbourne (TM)
value.
INOY03, INOY04, and INOY04! models, which differ in

their P-wave structure, give very close results, while
INOY96, which has a different nonlocal S-wave structure,
falls out further apart. This indicates that the S waves are the
key point in binding ! particles, and in order to improve the
agreement with the experimental value a better tuning in the
3S1−

3D1 and
1S0 could be helpful.

Proton rms radii predicted by INOY potentials deserve
some comments. One can see already in 3N systems (see
Table II) that they are slightly smaller than the experimental
ones. For ! particles we have only calculated average rms of
nucleons, without making a distinction between neutrons and

TABLE VI. Binding energy B (in MeV) and rms radius R (in
fm) for the 4He ground state obtained with Doleschall and AV18
+UIX potentials. The lower part contains Coulomb force. Energies
presented in the two last lines of the table, respectively, for AV18
and AV18+UIX models have been taken from Refs. [8,34],
whereas the rms radius is from Ref. [6].

Potential $T% −$V% B R

INOY96 72.80 103.8 31.00 1.353
INOY03 69.89 99.94 30.04 1.369
INOY04 69.49 99.41 29.91 1.372
INOY04! 69.46 99.36 29.88 1.372
AV18 98.69 123.6 24.95 1.511

Potential $T% −$V% −$E% R
INOY96 72.45 102.7 30.19 1.358
INOY03 69.54 98.79 29.24 1.373
INOY04 69.14 98.62 29.11 1.377
INOY04! 69.11 98.19 29.09 1.376
AV18 97.77 122.1 24.22 1.516

97.80 122.0 24.23[8,34]
AV18+UIX 113.2 141.7 28.50[8,34] 1.44 [6]
Expt. 28.30 1.47

TABLE VII. Results of the !-particle binding energy (in MeV)
for INOY04! and AV18 models with VNN interaction limited to lx
"3 (see text) and partial wave basis limited to lx+ ly+ lz"10. The
convergence was searched as a function of jyz=max"jy , jz# for
K-like components and jyz=max"jy , jz# for H-like components. The
last line, denoted by an asterisk, contains additional calculations
with NN interaction waves up to jx"6 and lx+ ly+ lz"12.

jyz INOY04! AV18

1 28.094
2 28.661
3 28.967
4 28.971 23.897
5 28.974 23.920
6 29.084 24.233
7 29.085 24.226
* 29.085 24.223
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The 4He first excitation 
IV. RESULTS

The results presented in this section have been obtained
with the spin-dependent S-wave interaction MT I–III:

Vs

~

r
!

5Vr
exp

~

2mrr !
r 2Va

exp
~

2mar !
r .

The potential parameters and the value \

2/m
541.47 MeV fm2 are the same as those used, e.g., in Refs.
@1,33,34# and are slightly different from those given in the
original version @30#. Despite its bare simplicity, this poten-
tial turns out to be very efficient in describing the bulk of
low-energy properties in the few-nucleon systems. We will
first examine what we call the S-wave approximation, i.e.,
the fact that aside from the zero angular momentum of the
interaction pair, all the angular momenta variables in expan-
sion ~19! are set equal to zero. The convergence with respect
to the l y ,lz expansion will be examined in a second step.

A. Bound states

In the 4N system, the bound states exist only for the S
5T50 channel. In the S-wave approximation the number of
FY components is limited to Nc54 (NK5NH52) ~see
Table I!. The binding energies and rms radius for the ground
(4He) and first excited (4He*) states are given in Table II.
The corresponding grids are G1 with Ng512 and G1* with
Ng56, given in Table III. The estimated accuracy in the
binding energies is 0.01 MeV but we notice that much less
expensive calculations can provide a precise result as well;
e.g., the grid G2 with Ng58 gives also a binding of 30.30

MeV. In the ground state we remark that there is good agree-
ment with the best existing calculations @1,34#.
The first excitation which, experimentally, corresponds to

a Jp501 resonance 0.40 MeV above the p1t threshold
@35#, appears in this model as a loosely bound state. The
binding energy with respect to the N1NNN threshold ~E
528.535 MeV in this model! is 0.257 MeV. A similar re-
sult was found in Ref. @7# in which different versions of the
one term separable Yamaguchy potential gives a binding en-
ergy varying from 0.07 to 0.40 MeV, depending on their
different D-state contributions. This 01 first excitation has
been widely considered in the literature as being a breathing
mode @36–38#. Our conclusion is, however, different. We
have calculated the regularized two-body correlation func-
tions defined by

C
ax

~

x
!

5
(

a8~

ax85ax!
E E dydzuC

a8~x ,y ,z !u
2, ~31!

where C

a8(x ,y ,z) represents the total wave function com-
ponent in the a8 quantum numbers, and where ax denotes
the subset of quantum numbers a relative to the x variable
(lx ,sx , j x ,tx). The summation in Eq. ~31! is performed onto
one of the two bases, K or H . Once the total wave function
is normalized, the correlation functions are normalized ac-
cording to

(

ax
E dxC

ax
~

x
!

51. ~32!

The results are displayed in Fig. 6. The separated contri-
butions from the singlet and triplet state are plotted for ~a!
triton, ~b! 4He ground state, and ~c! 4He first excited state.
The difference between the correlation functions for the
ground and excited states is remarkable, both in the shape
and in the separated singlet-triplet contributions. For the ex-
cited state one can distinguish the superposition of two struc-
tures with two different length scales, the short-distance part
being similar to the triton one. This suggests a 113 structure
for the 4He excited state, as can be more clearly seen in plot
~d! where the results of ~c! are compared with those of the
triton suitably normalized. Contrary to what would happen in
a breathing mode, the short distance behavior of the nucleons
is that of an unperturbed triton with the fourth nucleon being
simply a remote spectator.
By modifying the MT I–III potential strength we failed to

pull the state out of the bound region, the three-body thresh-
old moving in the same direction. It seems very difficult for
a pure strong interaction to generate a first excitation in the
continuum. The right position of this resonance is, however,
a crucial point in any attempt to describe the low-energy data
~e.g., p1t! @20#. The effect of Coulomb interactions could
be enough. However, the inclusion of an ad hoc repulsive
four-body term V(r)5V0e2r

2
can also achieve the same

result.
The preceding results are only slightly modified by the

inclusion of higher partial waves in the FY expansion. The
effects of these contributions can be seen in Table IV. Their
smallness shows the validity of the S-wave approximation.
These results have been obtained using the grid G2 with

TABLE III. Grids used for 4N ground (4He) and first excited
(4He*) states.

grid G1

x 20 1.30 10.0
y 15 1.25 12.0
z 15 1.25 15.0

grid G2

x 15 1.30 10.0
y 10 1.25 12.0
z 10 1.25 15.0

grid G1*

x 08 1.30 08.0 05 1.10 20.0
y 07 1.30 10.0 05 1.10 30.0
z 07 1.20 10.0 13 1.10 80.0 10 1.00 150.0

TABLE II. Binding energies ~MeV! and rms radius ~fm! for the
4N ground (4He) and first excited (4He*) states. Our results for the
4He binding energy agree very well with the best existing calcula-
tions. The triton parameters are also mentioned for completeness.

4He @1# 4He @34# 4He 4He* 3H

B 30.31 30.29 30.30 8.79 8.53
rms 1.44 4.95 1.72
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Without Coulomb and isospin breaking it appears in most of models as loosely bound 

Ng58 for the ground state and G1* with Ng56 for the first
excitation for which the corresponding triton binding energy
is B358.513 MeV.

B. Elastic N1NNN scattering

A crucial point in our method is to ensure the proper
description of the 3N asymptotic state. This is used to fix the
grid parameters for the x ,y variables. In order to exhibit the
stability of our results, we will compare the phase shifts ob-
tained with several tritons corresponding to increasing nu-
merical accuracies. The considered grids, detailed in Table
V, are T4 with Ng56 and a binding energy B
58.593 MeV, T8 with Ng58 and B58.527 MeV, and T10
with Ng58 and B58.535 MeV. We recall that the precise
value for the 3N binding energy is B58.535 MeV. The grid
parameters for the z variable depends substantially on the
relative kinetic energy. A zero energy calculation requires a
relatively large value of zN but very few points inside are
sufficient to describe an asymptotic linear behavior. On the
contrary as far as the energy increases, the value of zN can be
decreased but the oscillations in the relative wave functions
demand an increasingly big number of points. A typical grid
for the case E50 is Gz[$

10,1.20,19.0;03,1.00,34.0
%

.

We have shown in Table VI the phase shifts for different
(S ,T) channels as a function of the center of mass energy.
For all of them, we have arbitrarily chosen, as in Ref. @5#, the
determination d(E50)5180°. For the S50 case the com-
parison between grids T4 and T8 has been made, showing a
good stability despite the fact that grid T4 gives only a poor
description of the asymptotic state. As it has been already
emphasized in Sec. II, the key point in our approach to the
scattering problem lies in the coherence between the
asymptotic state and the numerical solution of the 4N prob-
lem, rather than in a very precise description of it. The re-
sults corresponding to grid T8 are considered as converged.
A zero energy calculation directly provides us with the

scattering length. The results, given in Table VII, show a
high stability with respect to grid variations ~T8 and T10! and
our estimated accuracy is given in column 3. These values
are in agreement with the existing published calculations
@13#. For T51 they are close to those obtained in Ref. @5#

FIG. 6. Two-body correlation
functions C

ax
(x) for ~a! triton, ~b!

4He ground, and ~c! first excited
states. Solid ~dashed! line denotes
the triplet ~singlet! contributions.
In ~d!, the results of 4He first ex-
cited state are compared to the tri-
ton correlation function suitably
scaled.

TABLE IV. Nonzero angular momentum contributions to 4He
and 4He* binding energies.

NK1NH lx ly lz B4 B4* B*2B3

212 0 0 0 30.302 8.769 0.257
812 0 0,1 0,1 30.319 8.763 0.250
1613 0 0,1,2 0,1,2 30.324 8.770 0.257

TABLE V. The grids T4 , T8 , T10 used for the tritons 4, 8, 10.

grid T4 : B358.593 MeV

x 08 1.30 14.0 01 18.0
y 07 1.20 19.0 02 1.00 29.0

grid T8 : B358.527 MeV

x 12 1.30 14.0 01 18.0
y 10 1.20 19.0 02 1.00 29.0

grid T10 : B358.535 MeV

x 18 1.20 14.0 02 1.00 18.0
y 15 1.10 19.0 04 1.00 29.0

66 PRC 58F. CIESIELSKI AND J. CARBONELL

Not a « breathing mode »… but a n orbiting aroud a triton ! 
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3n and 4n resonances 

n3 and n4 are not bound …. but where are they  ? 
 
Computed 3 and 4-n resonances solving full FY in the complex plane (CRM)  

Phys. Rev. C71 (2005) 044004; nucl-th/0502037 Phys. Rev. C 72 (2005) 034003; nucl-th/0507022 
early – it reaches its maximal value when W is reduced from ≈1060 MeV*fm to ≈ 720 MeV*fm. Then, once the
maximal value for its real part is reached, resonance trajectory have to move rapidly into 3-rd quadrant.

FIG. 6: Jπ = 3/2− three-neutron state resonance trajectory obtained when reducing the strength W of phenomenological
Yukawa-type force (open circles for CS and solid line+snowflake points for ACCC methods). Trajectory depicted by full circles
represents one obtained using CS, when reducing enhancement factor γ for 3P2 −3 F2 nn interaction . Trajectory depicted by
full squares is dineutron resonance path in 3P2 −3 F2 channel, obtained by enhancing nn-interaction in these waves. Presented
results are based on Reid 93 model.

In figure 7 we present 3n resonance trajectories only partialy without following them to their final positions,
when additional interaction is completely removed. The reason is that these positions are very far from bound
region, requiring many terms in Padé expansion to attain accurate ACCC predictions. Then one can imagine the
hypothetical scenario that these trajectories turn around and return to positive real parts; although we have never
encountered such trajectories in practical calculations we ignore if such trajectories can be in principal excluded by
rigorous mathematical arguments. Nevertheless we would like to stress that such developpment is very unlikely, in
particular due to the fact that we manipulate with purely attractive external force. Furthermore in order to get back
to fourth-energy quadrant resonance trajectory should exhibit very sharp behavior after leaving it – from Table V one
can see that larger part of trajectory is already depicted in 4-th quadrant – in contrary these trajectories continue
smoothly gaining in energy and do not show any signs of turning around after passing to third quadrant.

In this study we have deliberately omitted the use of realistic 3NF models. The reason is that such forces are
not completely settled yet. In addition, we should remark, that the UIX [37] 3NF acts repulsively for multineutron
systems [5]. More recent Illinois 3NF contains charge symmetry breaking (CSB) and considerably improves under-
binding problem of neutron rich nuclei present for AV18+UIX complect [38]. However even strongly CSB breaking
realistic 3NF should be by order weaker than the phenomenological one used by us to make three-neutron resonant.
The reason of weak 3NF efficiency in multineutron physics is that such force requires configurations when all three
neutrons are close to each other, whereas such structures are strongly suppressed by Pauli principle.

Finally, one can expect that enhanced (artificial) bound state - resonance pole relation is not unique. I.e. some
resonance can exist due to continuation of a bound state of the other symmetry, which is missed in our calculations.
To investigate such possibility we have chosen a resonance in Jπ = 3

2

−
state, obtained using help of phenomenological

3NF force eq.(12) having W = 360 MeV*fm. Then we gradually reduced W to zero, whereas at the same time at each
step increasing the enhancement factor for the 3P2-

3F2 channel from 1 to 3.7. Obtained trajectory of the resonance
we have traced in Fig. 8 (circles with the crosses) together with the resonance curves obtained with additional 3NF

9

energy part and a large imaginary one it would be difficult to be identified experimentally. Resonance should have a
rather small width Γ = −2Im(Eres) to produce a visible effect in the experimental cross section and a E = Re(Eres)
centered Breit-Wigner shape. At most it will give a weak enhancement in the cross section, hardly discernable from
the background and not necessary centered around the E = Re(Eres). This makes very doubtful the perspective of
physically observable tetraneutron resonances. Their eventual existence would imply a too strong modifications in
the present nuclear Hamiltonians. Should the recent claims of resonant tetraneutron be confirmed, our understanding
of nuclear forces will have to be significantly changed.

FIG. 6: Sensibility of the 2+ tetraneutron resonance trajectory with respect to nn P–waves. Solid line correspond to Reid 93
nn interaction and dashed line was obtained with nn P–waves enhanced by a factor γ=1.2

Our results are in qualitative agreement with findings of Sofianos et al. [10], where authors were able to determine
accurately tetraneutron resonance positions in third energy quadrant for positive parity states, however using S-wave
MT I-III potential. Due to small impact of P and higher nn interaction terms for tetraneutron S -wave models become
very appropriate to study this system.

IV. CONCLUSION

Configuration space Faddeev-Yakubovsky equations have been solved with the aim of determining the positions of
the four-neutron resonances in the complex energy plane.

Realistic Reid 93 nn interaction model has been used. A systematic study of four-neutron resonances have been
accomplished by first adding to the nuclear hamiltonian an attractive 4n force to artificially bind tetraneutron. The
trajectory of the energy eigenvalue is then traced as a function of the strength of the additional force until it is fully
removed.

Two methods, namely Complex Scaling and Analytical Continuation in the Coupling Constant, were employed to
follow these trajectories.



The A=4 scattering states 

!!0" = "!a0+
2 + 3a1+

2 " . !17"

Results for AV18 and AV18+UIX models have also been
obtained and agree at the 1% level with those given in Ref.
[35].
The J"=0+ and 1+ positive-parity states, determining the

low-energy behavior of the n+3H cross section, do not have
any S-matrix singularity, except the triton bound state thresh-
old. It is therefore not surprising that the n+3H scattering
lengths are found to be correlated with 3N binding energy, in
a similar way as n+d doublet scattering length is Ref. [36].
This is the reason why realistic local interaction models, pro-
viding too low 3N binding energies, overestimate n+3H
zero-energy cross sections. Once triton binding energy is cor-
rected, for instance by implementing 3NF, a value close to
the experimental one is automatically obtained. From Table
VIII it can be seen that the Doleschall potential agrees with
the lower bound of experimentally measured zero-energy
cross section, whereas the AV18+UIX model coincides with
its upper bound. The zero-energy scattering cross section is
thus fairly well reproduced.
The situation with scattering lengths looks more precari-

ous. The values found in the literature are hardly compatible
with each other [37], as can be seen in Table VIII. The usual
way to get ai is to express them in terms of the measured
quantities ac and !!0", by reversing relations (16) and (17).
This procedure, represented in Fig. 5, is numerically un-
stable. Indeed, once !!0" is fixed, the domain of permitted
a1+ and a0+ values is given by the ellipse of Eq. (17) in the
!a0+ ,a1+" plane. Since there are uncertainties in !!0", the
permitted values of scattering lengths are trapped in between
two ellipsis (dotted curves in Fig. 5). On the other hand, each
measurement of ac restricts a1+ and a0+ values to lie on a
straight line which spreads into a band due to experimental
errors (see Fig. 5). The lower band displayed in Fig. 5 fol-
lows from the R-matrix analysis result ac=3.607±0.017 fm
[41], while the upper one comes from the experimental mea-
surement ac=3.82±0.07 fm from Ref. [39]. By assuming an

exact value of ac, e.g., ac=3.624 fm given by the top of the
lower band, the present—though small—experimental error
in !!0" leads to two sets of solutions which spread over a
wide range: (i) a0+= #4.31−5.00$ , a1+= #3.16−3.40$, and (ii)
a0+= #2.25−2.94$ , a1+= #3.85−4.08$ fm. This example illus-
trates the difficulty of extracting reliable values of a0+ and
a1+. The accurate determination of ai would require us to
gain one order of magnitude in measuring both !!0" and ac.
As it can be seen also from Fig. 5, the coherent scattering

length value ac=3.82±0.07 fm of Ref. [39] is in evident dis-
agreement with the experimentally measured zero-energy
cross sections, since it does not intersect the !!0" ellipsis. In
this respect, the more recent values ac=3.607±0.017 fm [41]
and ac=3.59±0.02 fm [40] are more reliable. The Doleschall
nonlocal potential provides ac=3.63 fm, one standard devia-
tion from these measurements, and seems to be more com-
patible with data than the AV18+UIX model. Figure 5 sug-
gests also that the real value of the zero-energy cross section
should coincide with the lower bound of the experimental
result.
The success in describing n+3H scattering lengths by the

Doleschall potential is visible at slightly higher energies as
well. In Fig. 6 we present our calculated elastic cross section
for the scattering energies in the n+3H center of mass energy
range from 0 to 3 MeV. The Doleschall potential reproduces
experimental cross sections near its minima at Ec.m.
%0.4 MeV. In this region both Malfliet-Tjon (MT) I-III—
the only potential known to us being capable to reproduce
the resonant region [43]—and AV18+UIX overestimate the
experimental value.
In previous works [30,37,42,44,45] we pointed out that

local realistic interaction models underestimate the cross sec-
tions near the resonance peak, Ec.m.=3 MeV. At that time,
calculations had been, however, performed with a limited
number of partial waves and the failure was attributed in Ref.
[47] to a lack of convergence. Recently we have consider-
ably increased our basis set and have shown that the dis-
agreement is indeed a consequence of nuclear models

FIG. 5. (Color online) Extraction procedure for n+3H singlet
!a0+" and triplet !a1+" scattering lengths from measurements of zero-
energy cross section (elliptic band) [38] and coherent scattering
length (linear bands) [39–41]. The values of ai are given by the
intersection of these two curves. Bandwidths are related to experi-
mental errors and, even being small, they make their determination
very unstable.

FIG. 6. (Color online) Comparison between experimental and
theoretical n− 3H total cross section calculated with several local
and nonlocal NN potentials.
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Have described the A=4 scattering prcess below breau-up 
 n + 3H 
 p + 3H →   n + 3He 

                     → 2H + 2H 
Maybe the more interesting was to found that the more familar interactions, even reproducing 
the A=3 and A=4 binding energies, failled to describe the first resonance in nuclear physics ! 
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The He atomic clusters 

Our approach allows to deal with strongly repulsive potentials (« hard core ») 
Wa could compute(*) the Van-der-Waals 3- and 4-body bound states of 4He atoms  

Phys. Rev. A73 (2006) (*) 

In the case of elastic atom-trimer !1+3" scattering, the
asymptotic behavior of the w.f. can be matched by simply
imposing at the numerical border z=Zmax, the solution of the
3N bound state problem for all the quantum numbers, corre-
sponding to the open channel !a. It is worth reminding that
only K-type components contribute in describing 3+1 par-
ticle channels:

F!a

K !x,y,Zmax" = f!a
!x,y" . !11"

Indeed, below the first inelastic threshold, at large values
of z, the solution of Eq. !2" factorizes into a He trimer
ground state w.f.—being a solution of 3N Faddeev
equations—and a plane wave propagating in the z direction
with the momentum k!a

=# m
"2 !Ecm−EHe3

". One has

F!a

K !x,y,z" $ f!a

K !x,y"% ĵlz
!k!a

z" + tan!#"n̂lz
!k!a

z"& .

Here the functions f!a

K !x ,y" are the Faddeev amplitudes
obtained after solving the corresponding He trimer bound
state problem, whereas EHe3

is its ground state energy;
n̂lz

!k!a
z" and ĵlz

!k!a
z" are regularized Riccati-Bessel func-

tions. Equations !2" in conjunction with the appropriate
boundary conditions define the set of equations to be solved.
The numerical methods employed will be briefly explained
in the next section.

Once the integrodifferential equations of the scattering
problem are solved, one has two different ways to obtain the
scattering observables. The easier one is to extract the scat-
tering phases directly from the tail of the solution, by calcu-

lating the logarithmic derivative ! !zF!a
K !x,y,z"

F!a
K !x,y,z" " of the open

channel’s K amplitude !a in the asymptotic region:

tan # =

k!a
ĵl!!k!a

z" −
!zF!a

K !x,y,z"

F!a

K !x,y,z"
ĵl!k!a

z"

!zF!a

K !x,y,z"

F!a

K !x,y,z"
n̂l!k!a

z" − k!a
n̂l!!k!a

z"

. !12"

This result can be independently verified by using an in-
tegral representation of the phase shifts

k!a
tan # = −

m

"2 ' $!a

!123" ĵl!k!a
z"!V14 + V24 + V34"%dV .

!13"

$!a

!123" is the trimer—composed from the He atoms indexed
by 1, 2, and 3—ground state w.f. normalized to unity and %
is normalized according to

%!x!i,y! i,z!i" = $!a

!123"!x!,y!"% ĵlz
!k!a

z" + tan!#"n̂lz
!k!a

z"& .

!14"

Detailed discussions on this subject can be found in %25,26&.

C. Numerical methods

In order to solve the set of integrodifferential equations—
obtained when projecting Eq. !2" and the appropriate bound-

ary conditions Eqs. !8"–!11" into a partial wave basis—the
components Fi

! are expanded in terms of piecewise Hermite
spline basis:

Fi
!!x,y,z" = ( cijkl

! Sj!x"Sk!y"Sl!z" .

We use piecewise Hermite polynomials as a spline basis. In
this way, the integrodifferential equations are converted into
an equivalent linear algebra problem with unknown spline
expansion coefficients to be determined. For bound states,
the eigenvalue-eigenvector problem reads

Ax = EBx , !15"

where A and B are square matrices, while E and x are, re-
spectively, the unknown eigenvalue!s" and its eigenvector!s".
In the case of the elastic scattering problem, a system of
linear algebra equations is obtained:

%A − EcmB&x = b , !16"

where x is a vector of unknown spline expansion coefficients
and b is an inhomogeneous term, generated when imple-
menting the boundary conditions Eq. !11". For detailed dis-
cussions on the equations and method used to solve large
scale linear algebra problems, one can refer to %26&.

III. TRIMER SCATTERING AND BOUND STATES

As mentioned in the Introduction, trimer states have been
broadly explored in many theoretical works. Hyperspherical,
variational and Faddeev techniques were used to calculate
accurately bound state energies %16,17,19,27–30& as well as
to test different He-He interaction models. Nevertheless, we
found it useful to consider these states as a first step, before
the more ambitious analysis of He tetramer states could be
undertaken. Special emphasis will be attributed to He-He2
scattering calculations, which are less studied and for which
some discrepancies were pointed out %18,19&. Some argu-
ments will also be developed in favor of considering the first
trimer excitation as an Efimov state.

We present in Table I the convergence of the He trimer
states as a function of the partial-wave basis size. It contains
results for the ground !B3" and first excited !B3

*" state binding

TABLE I. Convergence of He trimer calculations obtained when
increasing partial wave basis. In the three columns are, respectively,
presented trimer ground !B3" and excited !B3

*" state energies in mK,
as well as atom-dimer scattering length !a0

!2+1"" in Å.

lmax B3 !mK" B3
* !mK" a0

!1+2" !Å"

0 89.01 2.0093 155.39
2 120.67 2.2298 120.95
4 125.48 2.2622 116.37
6 126.20 2.2669 115.72
8 126.34 2.2677 115.61

10 126.37 2.2679 115.58
12 126.39 2.2680 115.56
14 126.39 2.2680 115.56
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In Fig. 3 we display the behavior of the He-He2 scattering
lengths, when the He-He potential is multiplied by a scaling
factor !"1, according to Ṽ=!V. In this figure, the He-He2
scattering length is plotted as a function of the fictive dimer
binding energy. One can see that, when decreasing !, scat-
tering length decreases. However, in the absence of Efimov
states one should expect them increasing, since reducing !,
the dimer target becomes larger. Once ! is reduced to
!0.990, the scattering length becomes negative and for val-
ues !!0.979 it exhibits a singularity going from a0=−# to
+#. This singularity corresponds to the appearance of a new
trimer bound state "i.e., second excited state in He trimer#.
This analysis clearly demonstrates that the He trimer excited
state is an Efimov one. It is worth mentioning that for an
enhancement factor !=0.979, the He dimer binding energy is
only 0.046 mK.

IV. TETRAMER STATES

The major aim of this paper is to provide a comprehensive
analysis of the four-atomic He compound "tetramer#. The
first efforts to describe this system were made already in the
late 1970s by Nakaichi et al. $38% using a variational method.
Later on, variational Monte Carlo techniques were used by
several authors $29,39–41% to compute the tetramer ground
state. These methods are very powerful in calculating L$

=0+ bound state properties, but are seldom generalized to
describe excited states and are not appropriate for the scat-
tering problem.

FY techniques were also used by Nakaichi et al. $42% to
calculate the tetramer ground state binding energy and the
He-He3 scattering length. However, in order to reduce
the—at that time—outmatching numerical costs, some im-
portant approximations were made. The He-He potential was
restricted to S-wave and written as a one-rank separable ex-
pansion and the same expansion was used to represent the
FY amplitudes. These approximations led to a tetramer
ground state which is underbound by 40% with respect to
their own variational result $38%. A recent attempt to calcu-
late the He tetramer binding energy using S-wave FY equa-
tions was done in $43%, although without separable expansion
of FY amplitudes.

The FY calculations we present here contain no approxi-
mation other than the finite basis set used in the partial wave

expansion "7#. This basis set included amplitudes with inter-
nal angular momentum not exceeding a given fixed value
lmax, i.e., fulfilling the condition max"lx , ly , lz#% lmax. The
largest basis we have considered has lmax=8, and consists of
180 FY amplitudes, a number by two orders of magnitude
larger than in preceding calculations. Note that the smallest
basis, which is often referred to as S-wave approximation, is
obtained by fixing lmax=0 and requires only two amplitudes,
one of type K and one of type H. The convergence is dis-
played in Table III for the tetramer ground state binding en-
ergy and He-He3 scattering length.

The corresponding FY K-amplitudes are displayed in Fig.
4 as a function of the He-He3 distance r=&2

3z. One can see
the different scales involved in the bound state and zero en-
ergy scattering wave function.

The convergence of the tetramer calculations is sensibly
slower than the one observed for the trimer case "see Table
I#. Such a deterioration is due to the complex structure of the
involved FY components. Indeed, each He atom pair brings
an additional hard-core region; the ensemble of these regions
crosses over in the multidimensional configuration space
$48% and results into a single domain with nontrivial geom-
etry. Inside this multidimensional domain, the total wave
function must vanish by cancelling the contributions of the
different FY amplitudes, which can be achieved only at the
price of increasing its functional complexity.

FIG. 3. "Color online# The change of the atom-dimer scattering
length as a function of the dimer binding energy.

TABLE III. Convergence of the He tetramer calculations ob-
tained when increasing the partial wave basis of Eq. "7#. The two
columns represent, respectively, the tetramer ground state binding
energy in mK "B4# and the atom-trimer scattering length "a0

"3+1## in
Å.

max "lx , ly , lz# B4 "mK# a0
"3+1# "Å#

0 348.8 !−855
2 505.9 190.6
4 548.6 111.6
6 556.0 105.9
8 557.7 103.7

FIG. 4. "Color online# Comparison of the functional dependence
of K-type FY components in one He atom separation from He3 core
direction. Single, dashed, and dotted line curves correspond, respec-
tively, to tetramer ground, excited state, and He-He3 zero energy
scattering wave functions.
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Using the large value of 3+1 sctatering length we predicted a B*
4 =1.09 mK (below B3) 





Conclusion 
The Faddeev-Yakubowsky methods are the only to provide a solution of the full A-body problem, 
taking into account the rich variety of channels. 
 
They are numerically quite heavy… and that’s why A remains small ! 
With the present computers they can be extended to A=5 but A=4 brerakup is still “on the way”… 
 
They are not as precise as the ad-hoc variational methods (although 4 digits is relatively easy to get)  
However the possibility to acces to bound and scattering states on the same foot, lead in some cases to  
spectacular predictions. 
 
e.g. the first excited state of a H2

+ (in the pp S=1 channel) 
 
The binding energies of a H2

+ were calculated with 12 significant digits 
In the pp S=1 channel, only one bound state was found  
By computing the p+H scattering we found a scattering length value of A=750 a.u. 
We predicted a first excited sate with B= 1.09 10-9 a.u. 
Latter confirmed by “variational fishing” … and yet not found experimentaly !!! 
One of greatest joys … 

J. Carbonell, R. Lazauskas, D. Delande, L. Hilico and S. Kılıc, 
Europhys. Lett., 64 (3), pp. 316–322 (2003) 
 

Lazauskas R. and Carbonell J., Few-Body Syst., 31 (2002) 125. 
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Fig. 1 – Low-energy cross-section for the scattering of a proton by a hydrogen atom in its ground
state, for the pp triplet state, compared to the results using the Landau potential for the interaction.

three inter-particles distances goes to infinity. The idea is thus to expand the full 3-body
wave function on a convenient discrete basis set and to diagonalize the 3-body Hamiltonian
in this basis set. For highly accurate calculations of very weakly bound states, the basis set
must be chosen carefully. The first step is to isolate the angular dependence of the 3-body
wave function, which is straightforward for L = 0 states. One is left with a 3-dimensional
Schrödinger equation depending on the inter-particle distances only. We use the perimetric
coordinates

x = r1 + r2 − r3,

y = r1 − r2 + r3,

z = −r1 + r2 + r3, (6)

1 10 100 1000
-0.1

0

0.1

0.2
ψ(r)

r (Bohr radii)

Fig. 2 – Wave functions (not normalized) of the ground (dashed line) and excited (solid thick line)
levels of the 2pσu state of the H+

2 molecular ion. The last one is compared with the corresponding
p-H zero-energy scattering wave function (thin line). The existence of an excited level with very small
binding energy is predicted by our calculations. Its wave function extends very far in the internuclear
distance r, with a maximum probability density around 100 Bohr radii. It is responsible for a huge
scattering length of 750 a.u. Note the use of a logarithmic scale on r.


