How to calculate the nuclear wave function of ${ }^{4} \mathrm{He}$?

The Faddeev-Yakubowsky approach

Jaume Carbonell

Irfu- CEA Saclay
Institut de recherche
sur les lois fondamentales
de l'Univers

INTRODUCTION (I)

In view of solving the $\mathrm{A}=3$ Schrodinger equation

$$
\begin{equation*}
\left(E-H_{0}\right) \Psi=V \Psi \quad V=\sum_{i<j} V_{i j} \tag{1}
\end{equation*}
$$

Faddeev wrote in 1960 a set of equations, equivalent to (1), which provides a proper mathematical scheme for the variety of physical situations involved.
Apart from the 3-body bound state, the scattering of one particle on a 2-body bound state gives rise to a very complex description

INTRODUCTION (II)

Soon latter (19676), Yakubovsky generalized the equations to $A>4$ thus providing a complete mathematical tool for the "exact" solution of the A-body problem

$$
\begin{equation*}
\left(E-H_{0}\right) \Psi=V \Psi \quad V=\sum_{i<j} V_{i j} \tag{1}
\end{equation*}
$$

Till now, only the $\mathrm{A}=3$ and (partially) the $\mathrm{A}=4$ problem have been solved in their "full complexity"

The 3- and 4-body break-up is still "on the way" (R. Lazauskas, using Complex Scaling)

INTRODUCTION (III)

A "Fadeev-like" - but independent - approach exists based on AGS(*) equations
They have been developped recently by A. Fonseca and A. Deltuva (Lisbon) with great succes

All this machinery is superfluous when dealing only with bound states

For solving this problem, other independent methods methods have been developped leading in the last 10 years to a spectacular progress in the field:

No Core Shell Model (cf B. Barret talk) A=14 (?)
combined with RGM solve "simple" scattering problems (A=4,5 Navratil, Sofia)
Green Function Monte Carlo $\mathrm{A}=12$
also "simple" scattering problems (A=4,5)
CCM (cf. M Dufour, last FUTIPEN workshop)
Hyperspherical Harmonics (Pisa A=3-4, + M. Gattobigio A=6)
Based on a Faddeev decomposition of the wf and Khon variational principle
Applied to full scattering results $A=3,4$

THE MACHINERY A=3 (I)

The first step is to isolated the intrinsc dynamics of the 3-body Hamiltonian

$$
\begin{array}{ll}
\mathcal{H}=\mathcal{H}_{0}+V & \mathcal{H}_{0}=-\frac{\hbar^{2}}{2}\left(\frac{1}{m_{1}} \Delta_{\vec{r}_{1}}+\frac{1}{m_{2}} \Delta_{\vec{r}_{2}}+\frac{1}{m_{3}} \Delta_{\vec{r}_{3}}\right) \\
V & =V_{1}\left(\vec{r}_{2}-\vec{r}_{3}\right)+V_{2}\left(\vec{r}_{3}-\vec{r}_{1}\right)+V_{3}\left(\vec{r}_{1}-\vec{r}_{2}\right)
\end{array}
$$

The first step is to isolated the intrinsic dynamics of the 3-body Hamiltonian.
This is done by introducing the Jacobi coordinates (3 sets!)

$$
\begin{aligned}
\vec{x}_{i} & =\sqrt{\frac{2 m_{j} m_{k}}{m_{0}\left(m_{j}+m_{k}\right)}}\left(\vec{r}_{j}-\vec{r}_{k}\right), \quad i=1,2,3 \\
\vec{y}_{i} & =\sqrt{\frac{2 m_{i}\left(m_{j}+m_{k}\right)}{m_{0} M}}\left[\vec{r}_{i}-\frac{m_{j} \vec{r}_{j}+m_{k} \vec{r}_{k}}{m_{j}+m_{k}}\right]
\end{aligned}
$$

And the center of mass coordinate R. In terms of them

$$
\begin{aligned}
\mathcal{H}_{0} & =-\frac{\hbar^{2}}{2}\left(\frac{1}{m_{1}} \Delta_{\vec{r}_{1}}+\frac{1}{m_{2}} \Delta_{\vec{r}_{2}}+\frac{1}{m_{3}} \Delta_{\vec{r}_{3}}\right)=-\frac{\hbar^{2}}{m_{0}}\left[\Delta_{\vec{x}_{i}}+\Delta_{\vec{y}_{i}}+\frac{m_{0}}{2 M} \Delta_{\vec{R}}\right] \\
V & =V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)+V_{3}\left(x_{3}\right)
\end{aligned}
$$

The total 3-body wf factorizes into an intrinsic part Φ and a c.o.m. plane wave

$$
\Psi\left(\vec{x}_{i}, \vec{y}_{i}, \vec{R}\right)=\Phi\left(\vec{x}_{i}, \vec{y}_{i}\right) e^{i \vec{P} \cdot \vec{R}}
$$

THE MACHINERY A=3 (II)

Φ is a solution of the 3-body « intrinsic» Schrodinger equation

$$
\begin{equation*}
\left[E-H_{0}-V_{1}\left(x_{1}\right)-V_{2}\left(x_{2}\right)-V_{3}\left(x_{3}\right)\right] \Phi=0 \tag{1}
\end{equation*}
$$

$$
H_{0}=-\frac{\hbar^{2}}{m_{0}}\left[\Delta_{\overrightarrow{x_{i}}}+\Delta_{\vec{y}_{i}}\right]
$$

None of the Jacobi sets is privileged: all are necessary to properly describe the interaction region and the asymptotic behaviours of the differents channels.

And Φ ?

The seminal idea of Faddeev was to split the total 3-body wavefunction in a sum(*) of as many components (Faddeev Amplitudes) as asymptotic channels

$$
\Phi=\Phi_{1}+\Phi_{2}+\Phi_{3}
$$

Φ_{i} fulfill a set of coupled equations - the Faddeev Equations- strictly equivalent to (1)

$$
\begin{aligned}
& {\left[E-H_{0}-V_{1}\left(x_{1}\right)\right] \Phi_{1}\left(\vec{x}_{1}, \vec{y}_{1}\right)=V_{1}\left(x_{1}\right)\left[\Phi_{2}\left(\vec{x}_{2}, \vec{y}_{2}\right)+\Phi_{3}\left(\vec{x}_{3}, \vec{y}_{3}\right)\right]} \\
& {\left[E-H_{0}-V_{2}\left(x_{2}\right)\right] \Phi_{2}\left(\vec{x}_{2}, \vec{y}_{2}\right)=V_{2}\left(x_{2}\right)\left[\Phi_{3}\left(\vec{x}_{3}, \vec{y}_{3}\right)+\Phi_{1}\left(\vec{x}_{1}, \vec{y}_{1}\right)\right]} \\
& {\left[E-H_{0}-V_{3}\left(x_{3}\right)\right] \Phi_{3}\left(\vec{x}_{3}, \vec{y}_{3}\right)=V_{3}\left(x_{3}\right)\left[\Phi_{1}\left(\vec{x}_{1}, \vec{y}_{1}\right)+\Phi_{2}\left(\vec{x}_{2}, \vec{y}_{2}\right)\right]}
\end{aligned}
$$

- Each FC is « naturally » expressed in its own Jacobi set
- Coupling is ensured by the rhs. Is strongly non local, given by the linear reletions between different J sets
- In the «non interacting region» $\mathrm{V}_{\mathrm{i}}=0$, the FE decouple and corresponding FC has simple asymtpotics
${ }^{(*)}$ not a product !!! as one could expect from the N-body approximate solutions

THE MACHINERY A=3 (III)

In case of 3 identical particles

- The 3 potentials are the same $\mathrm{V}_{\mathrm{i}}=\mathrm{V}$
- The 3 Faddeev equations are the same
- The functional form of the FA - in its own Jacobi set - is the same

$$
\begin{gathered}
{\left[E-H_{0}-V\left(x_{1}\right)\right] \Psi\left(\vec{x}_{1}, \vec{y}_{1}\right)=V\left(x_{1}\right)\left[\Psi\left(\vec{x}_{2}, \vec{y}_{2}\right)+\Psi\left(\vec{x}_{3}, \vec{y}_{3}\right)\right]} \\
\Phi=\Psi\left(\vec{x}_{1}, \vec{y}_{1}\right)+\Psi\left(\vec{x}_{2}, \vec{y}_{2}\right)+\Psi\left(\vec{x}_{3}, \vec{y}_{3}\right)
\end{gathered}
$$

Introducing the Permutation operators $P^{ \pm} \Psi\left(\vec{x}_{i}, \vec{y}_{i}\right)=\Psi\left(\vec{x}_{i \pm 1}, \vec{y}_{i \pm 1}\right)$

$$
\begin{gathered}
{\left[E-H_{0}-V(x)\right] \Psi(\vec{x}, \vec{y})=V(x)\left[P^{+}+P^{-}\right] \Psi(\vec{x}, \vec{y})} \\
\Phi=\left(1+P^{+}+P^{-}\right) \Psi
\end{gathered}
$$

If we impose $P_{23} \Psi(\vec{x}, \vec{y})=\epsilon \Psi(\vec{x}, \vec{y})$ with $\quad \varepsilon= \pm 1$
One has $\quad P_{i j}\left(1+P^{+}+P^{-}\right) \Psi=\epsilon \Psi$
and the total 3-body wavefunction has the desired symetrie
Wow do we do it in practice?

THE MACHINERY A=3 (IV)

To solve in practice equation

$$
\left[E-H_{0}-V(x)\right] \Psi(\vec{x}, \vec{y})=V(x)\left[P^{+}+P^{-}\right] \Psi(\vec{x}, \vec{y})
$$

One expands the FC in terms of Bipolar Harmonics

$$
\begin{aligned}
& \Psi^{L M}(\vec{x}, \vec{y})=\sum_{\alpha} \frac{1}{x y} \varphi_{\alpha}^{L M}(x, y) B_{\alpha}^{L M}(\hat{x}, \hat{y}) \quad \alpha=\left\{l_{x}, l_{y}\right\} \\
& B_{l_{1} l_{2}}^{L M}\left(\hat{x}_{1}, \hat{x}_{2}\right)=\sum_{m_{1} m_{2}}<l_{1} m_{1} ; l_{2} m_{2} \mid l_{1} l_{2} ; L M>Y_{l_{1} m_{1}}\left(\hat{x}_{1}\right) Y_{l_{2} m_{2}}\left(\hat{x}_{2}\right)
\end{aligned}
$$

and obtain, after projecion, a set of integro-differential equations for the radial components

$$
\left[E-H_{0}-V\right] \varphi_{\alpha}(x, y)=V(x)\left[\sum_{\alpha^{\prime}} \int_{-1}^{1} d u H_{\alpha, \alpha^{\prime}}(x, y, u) \varphi_{\alpha^{\prime}}\left(x^{\prime}, y^{\prime}\right)+\sum_{\alpha^{\prime \prime}} \int_{-1}^{1} d u H_{\alpha, \alpha^{\prime \prime}}(x, y, u) \varphi_{\alpha^{\prime \prime}}\left(x^{\prime \prime}, y^{\prime \prime}\right)\right]
$$

The integral comes from the P's

$$
\frac{\phi_{\alpha_{1}}\left(x_{1}, y_{1}\right)}{x_{1} y_{1}}=\sum_{\alpha_{2}} \int d u_{1} H_{\alpha_{1} \alpha_{2}}\left(x_{1}, y_{1}, u_{1}\right) \frac{\phi_{\alpha_{2}}\left[x_{2}\left(x_{1}, y_{1}, u_{1}\right), y_{2}\left(x_{1}, y_{1}, u_{1}\right)\right]}{x_{2} y_{2}}
$$

To get the right symetry one must include only components such that:

$$
P_{23} \Psi(\vec{x}, \vec{y})=(-)^{l_{x}+\sigma_{x}+\tau_{x}}=\epsilon \Psi(\vec{x}, \vec{y})
$$

THE FY EQUATIONS FOR A=4

Two diferent types of coordinates «K » and « H »

$$
2
$$

$$
\begin{aligned}
& \vec{x}_{K}(i j k l) \equiv \vec{x}_{i j, k}^{l}=\lambda \sqrt{2 \mu_{i j}}\left(\vec{r}_{j}-\vec{r}_{i}\right) \\
& \vec{y}_{K}(i j k l) \equiv \vec{y}_{i j, k}^{l}=\lambda \sqrt{2 \mu_{i j, k}}\left(\vec{r}_{k}-\frac{m_{i} \vec{r}_{i}+m_{j} \vec{r}_{j}}{m_{i j}}\right) \\
& \vec{z}_{K}(i j k l) \equiv \vec{z}_{i j, k}^{l}=\lambda \sqrt{2 \mu_{i j k, l}}\left(\vec{r}_{l}-\frac{m_{i} \vec{r}_{i}+m_{j} \vec{r}_{j}+m_{k} \vec{r}_{k}}{m_{i j k}}\right) \\
& \vec{x}_{H}(i j k l) \equiv \quad \vec{x}_{i j, k l}=\lambda \sqrt{2 \mu_{i j}}\left(\vec{r}_{j}-\vec{r}_{i}\right) \\
& \vec{y}_{H}(i j k l) \equiv \vec{y}_{i j, k l}=\lambda \sqrt{2 \mu_{k l}}\left(\vec{r}_{k}-\vec{r}_{l}\right) \\
& \vec{z}_{H}(i j k l) \equiv \vec{z}_{i j, k l}=\lambda \sqrt{2 \mu_{i j, k l}}\left(\frac{m_{k} \vec{r}_{k}+m_{l} \vec{r}_{l}}{m_{k l}}-\frac{m_{i} \vec{r}_{i}+m_{j} \vec{r}_{j}}{m_{i j}}\right) \\
& \mathcal{H}_{0}=\frac{\hbar^{2}}{2}\left(\frac{1}{m_{1}} \Delta_{\vec{r}_{1}}+\frac{1}{m_{2}} \Delta_{\vec{r}_{2}}+\frac{1}{m_{3}} \Delta_{\vec{r}_{3}}+\frac{1}{m_{4}} \Delta_{\vec{r}_{4}}\right) \\
& =-\hbar^{2} \lambda^{2}\left(\Delta_{\vec{x}_{K}}+\Delta_{\vec{y}_{K}}+\Delta_{z_{K}}\right)-\frac{\hbar^{2}}{8 m} \Delta_{R} \\
& =-\hbar^{2} \lambda^{2}\left(\Delta_{\vec{x}_{H}}+\Delta_{\vec{y}_{H}}+\Delta_{\vec{z}_{H}}\right)-\frac{\hbar^{2}}{8 m} \Delta_{R} \\
& V=\sum_{i<j=1}^{4} V_{i j}=V_{12}+V_{13}+V_{14}+V_{23}+V_{24}+V_{34}
\end{aligned}
$$

THE FY EQUATIONS FOR A=4

To solve the 4-body (intrinsic) Schrodinger equation

$$
\begin{equation*}
\left(E-H_{0}\right) \Psi=V \Psi \quad V=\sum_{i<j=1}^{4} V_{i j} \tag{3}
\end{equation*}
$$

First step

Split Ψ in the usual Faddeev amplitudes, $\Psi_{i j}$, associated with each interacting pair (i, j).

$$
\Psi=\sum_{i<j} \Psi_{i j}=\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}
$$

Equation (3) is equivalent to the system of 6 coupled equations

$$
\begin{aligned}
\left(E-H_{0}\right) \Psi_{12} & =V_{12}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right) \\
\left(E-H_{0}\right) \Psi_{13} & =V_{13}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right) \\
\left(E-H_{0}\right) \Psi_{14} & =V_{14}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right) \\
\left(E-H_{0}\right) \Psi_{23} & =V_{23}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right) \\
\left(E-H_{0}\right) \Psi_{24} & =V_{24}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right) \\
\left(E-H_{0}\right) \Psi_{34} & =V_{34}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right)
\end{aligned}
$$

Second step

Each $\Psi_{i j}$ is in its turn splitted in 3, the FY amplitudes, corresponding to the different asymptotics of the remaining two particles

Let us consider e.g:

$$
\left(E-H_{0}\right) \Psi_{12}=V_{12}\left(\Psi_{12}+\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right)
$$

writen in the form

$$
\begin{equation*}
\left(E-H_{0}-V_{12}\right) \Psi_{12}=V_{12}\left(\Psi_{13}+\Psi_{14}+\Psi_{23}+\Psi_{24}+\Psi_{34}\right) \tag{3}
\end{equation*}
$$

We make the following partition

$$
\Psi_{12}=\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}
$$

and split equation (3) into a system

$$
\begin{aligned}
\left(E-H_{0}-V_{12}\right) \Psi_{12,3}^{4} & =V_{12}\left(\Psi_{13}+\Psi_{23}\right) \\
\left(E-H_{0}-V_{12}\right) \Psi_{12,4}^{3} & =V_{12}\left(\Psi_{14}+\Psi_{24}\right) \\
\left(E-H_{0}-V_{12}\right) \Psi_{12,34} & =V_{12}\left(\Psi_{34}\right)
\end{aligned}
$$

If we do the same for the Faddeev amplitudes on the r.h.s.

$$
\Psi_{i j}=\Psi_{i j, k}^{l}+\Psi_{i j, l}^{k}+\Psi_{i j, k l} \quad i<j ; k<l
$$

and for each Faddeev equation, we end with the set of 18 coupled equations equivalents to (1)

$$
\begin{aligned}
\left(E-H_{0}-V_{12}\right) \Psi_{12,3}^{4} & =V_{12}\left(\Psi_{13,4}^{2}+\Psi_{13,2}^{4}+\Psi_{13,24}+\Psi_{23,4}^{1}+\Psi_{23,1}^{4}+\Psi_{23,14}\right) \\
\left(E-H_{0}-V_{12}\right) \Psi_{12,4}^{3} & =V_{12}\left(\Psi_{14,2}^{3}+\Psi_{14,3}^{2}+\Psi_{14,23}+\Psi_{24,1}^{3}+\Psi_{24,3}^{1}+\Psi_{24,13}\right) \\
\left(E-H_{0}-V_{12}\right) \Psi_{12,34} & =V_{12}\left(\Psi_{34,1}^{2}+\Psi_{34,2}^{1}+\Psi_{34,12}\right) \\
\left(E-H_{0}-V_{13}\right) \Psi_{13,4}^{2} & =V_{13}\left(\Psi_{14,2}^{3}+\Psi_{14,3}^{2}+\Psi_{14,23}+\Psi_{34,1}^{2}+\Psi_{34,2}^{1}+\Psi_{34,12}\right) \\
\left(E-H_{0}-V_{13}\right) \Psi_{13,2}^{4} & =V_{13}\left(\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}+\Psi_{23,4}^{1}+\Psi_{23,1}^{4}+\Psi_{23,14}\right) \\
\left(E-H_{0}-V_{13}\right) \Psi_{13,24} & =V_{13}\left(\Psi_{24,1}^{3}+\Psi_{24,3}^{1}+\Psi_{24,13}\right) \\
\left(E-H_{0}-V_{14}\right) \Psi_{14,2}^{3} & =V_{14}\left(\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}+\Psi_{24,1}^{3}+\Psi_{24,3}^{1}+\Psi_{24,13}\right) \\
\left(E-H_{0}-V_{14}\right) \Psi_{14,3}^{2} & =V_{14}\left(\Psi_{13,4}^{1}+\Psi_{13,2}^{4}+\Psi_{13,24}+\Psi_{34,1}^{2}+\Psi_{34,2}^{1}+\Psi_{34,12}\right) \\
\left(E-H_{0}-V_{14}\right) \Psi_{14,23} & =V_{14}\left(\Psi_{23,4}^{1}+\Psi_{23,1}^{4}+\Psi_{23,14}\right) \\
\left(E-H_{0}-V_{23}\right) \Psi_{23,4}^{1} & =V_{23}\left(\Psi_{24,1}^{3}+\Psi_{24,3}^{1}+\Psi_{24,13}+\Psi_{34,1}^{2}+\Psi_{34,2}^{1}+\Psi_{34,12}\right) \\
\left(E-H_{0}-V_{23}\right) \Psi_{23,1}^{4} & =V_{23}\left(\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}^{4}+\Psi_{13,4}^{2}+\Psi_{13,2}^{4,}+\Psi_{13,24}\right) \\
\left(E-H_{0}-V_{23}\right) \Psi_{23,14} & =V_{23}\left(\Psi_{14,2}^{3}+\Psi_{14,3}^{2}+\Psi_{14,23}\right) \\
\left(E-H_{0}-V_{24}\right) \Psi_{24,1}^{3} & =V_{24}\left(\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}+\Psi_{14,2}^{3}+\Psi_{14,3}^{2}+\Psi_{14,23}\right) \\
\left(E-H_{0}-V_{24}\right) \Psi_{24,3}^{1} & =V_{24}\left(\Psi_{23,4}^{1}+\Psi_{23,1}^{4}+\Psi_{23,14}^{4}+\Psi_{34,1}^{2}+\Psi_{34,2}^{1}+\Psi_{34,12}^{4}\right) \\
\left(E-H_{0}-V_{24}^{4}\right) \Psi_{24,13}^{4} & =V_{24}^{4}\left(\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}+\Psi_{13,4}^{2}+\Psi_{13,2}^{4}+\Psi_{13,24}\right) \\
\left(E-H_{0}-V_{34}\right) \Psi_{34,1}^{2} & =V_{34}\left(\Psi_{13,4}^{2}+\Psi_{13,2}^{4}+\Psi_{13,24}+\Psi_{14,2}^{3}+\Psi_{14,3}^{2}+\Psi_{14,23}\right) \\
\left(E-H_{0}-V_{34}^{4}\right) \Psi_{34,2}^{1} & =V_{34}\left(\Psi_{23,4}^{1}+\Psi_{23,1}^{4}+\Psi_{23,14}^{4}+\Psi_{24,1}^{3}+\Psi_{24,3}^{1}+\Psi_{24,13}^{4}\right) \\
\left(E-H_{0}-V_{34}^{4}\right) \Psi_{34,12} & =V_{34}\left(\Psi_{12,3}^{4}+\Psi_{12,4}^{3}+\Psi_{12,34}^{4}\right)
\end{aligned}
$$

Case of 4 identical particles
In that case the 18 FY amplitudes can be obtained by the action of the permutation operators $P_{i j}$ on two of them, one $\Psi_{i j, k}^{l}$ and one $\Psi_{i j, k l}$ Let us take for instance $K \equiv \Psi_{12,3}^{4}$ and $H \equiv \Psi_{12,34}$. The K-H amplitudes satisfy the following equations

$$
\begin{align*}
\left(E-H_{0}-V\right) K & =V\left[\left(P_{23}+P_{13}\right)\left(\varepsilon+P_{34}\right) K+\varepsilon\left(P_{23}+P_{13}\right) H\right] \tag{4}\\
\left(E-H_{0}-V\right) H & =V\left[\left(P_{13} P_{24}+P_{14} P_{23}\right) K+P_{13} P_{24} H\right] \tag{5}
\end{align*}
$$

in which $\varepsilon= \pm 1$ depending on bosons or fermions.
Each amplitude $F=K, H$ is considered as function of its own set of Jacobi coordinates $\vec{x}, \vec{y}, \vec{z}$

$$
\begin{array}{ll}
\vec{x}_{K}=\quad\left(\vec{r}_{2}-\vec{r}_{1}\right) & \vec{x}_{H}=\quad\left(\vec{r}_{2}-\vec{r}_{1}\right) \\
\vec{y}_{K}=\sqrt{\frac{4}{3}}\left(\vec{r}_{3}-\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) & \vec{y}_{H}= \\
\vec{z}_{K}=\sqrt{\frac{3}{2}}\left(\vec{r}_{4}-\frac{\vec{r}_{4}+\vec{r}_{2}+\vec{r}_{3}}{3}\right) & \vec{z}_{H}=\sqrt{2}\left(\frac{\vec{r}_{3}+\vec{r}_{4}}{2}-\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right)
\end{array}
$$

and expanded in angular momentum variables for each coordinate

$$
\begin{equation*}
<\vec{x} \vec{y} \vec{z} \left\lvert\, F>=\sum_{\alpha} \int d \hat{x} d \hat{y} d \hat{z} \frac{F_{\alpha}(x y z)}{x y z} Y_{\alpha}(\hat{x}, \hat{y}, \hat{z})\right. \tag{6}
\end{equation*}
$$

Y_{α} are generalized tripolar harmonics containing spin, isospin and angular momentum variables

The label α holds for the set of intermediate quantum numbers defined in a given coupling scheme and includes the specification for the type of amplitudes K or H .

We have used the following couplings:

K amplitudes $\left\{\left[\left(t_{1} t_{2}\right)_{\tau_{x}} t_{3}\right]_{T_{3}} t_{4}\right\}_{T} \otimes\left\{\left[\left(l_{x}\left(s_{1} s_{2}\right)_{\sigma_{x}}\right)_{j_{x}}\left(l_{y} s_{3}\right)_{j_{y}}\right]_{J_{3}}\left(l_{z} s_{4}\right)_{j_{z}}\right\}_{J}$ H amplitudes $\left[\left(t_{1} t_{2}\right)_{\tau_{x}}\left(t_{3} t_{4}\right)_{\tau_{y}}\right]_{T} \otimes\left\{\left[\left(l_{x}\left(s_{1} s_{2}\right)_{\sigma_{x}}\right)_{j_{x}}\left(l_{y}\left(s_{3} s_{4}\right)_{\sigma_{y}}\right)_{j_{y}}\right]_{j_{x y}} l_{z}\right\}_{J}$

Each component F_{α} labelled by a set of 12 quantum numbers
The total 4-body wavefunction is obtained by the action of permutation operators on the two FY amplitudes K and H

$$
\begin{array}{rll}
|\Psi\rangle & =\left[1+\varepsilon\left(P_{23}+P_{13}\right)\right]\left[1+\varepsilon\left(P_{14}+P_{24}+P_{34}\right)\right] & |K\rangle \\
& +\left[1+\varepsilon\left(P_{13}+P_{23}+P_{14}+P_{24}\right)+P_{13} P_{24}\right] & \\
|H\rangle
\end{array}
$$

One can show that, by imposing to K the « right symetrie » in P12 H the «right symetrie » in P12 and P34

$$
(-1)^{\sigma_{x}+\tau_{x}+l_{x}}=(-1)^{\sigma_{y}+\tau_{y}+l_{y}}=\varepsilon
$$

The total wf is also well symetrized.

After projection, we end with a sytem of 3d integro-differential equations, similr to the 3-body case

$$
\begin{aligned}
\sum_{\alpha^{\prime}} \hat{D}_{\alpha \alpha^{\prime}} \phi_{\alpha^{\prime}}(x, y, z) & =\sum_{\alpha^{\prime}} V_{\alpha \alpha^{\prime}}(x) \sum_{\alpha^{\prime \prime}} \quad \phi_{\alpha^{\prime} \alpha^{\prime \prime}}\left(x_{\alpha^{\prime} \alpha^{\prime \prime}}^{f}, y_{\alpha^{\prime} \alpha^{\prime \prime}}^{f}, z_{\alpha^{\prime} \alpha^{\prime \prime}}^{f}\right) \\
& +\sum_{\alpha^{\prime}} V_{\alpha \alpha^{\prime}}(x) \sum_{\alpha^{\prime \prime}} \int_{-1}^{+1} d u \quad h_{\alpha^{\prime} \alpha^{\prime \prime}}(x, y, z, u) \phi_{\alpha^{\prime \prime}}\left(x_{\alpha^{\prime} \alpha^{\prime \prime}}^{h}, y_{\alpha^{\prime} \alpha^{\prime \prime}}^{h}, z_{\alpha^{\prime} \alpha^{\prime \prime}}^{h}\right) \\
& +\sum_{\alpha^{\prime}} V_{\alpha \alpha^{\prime}}(x) \sum_{\alpha^{\prime \prime}} \int_{-1}^{+1} d u \int_{-1}^{+1} d v g_{\alpha^{\prime} \alpha^{\prime \prime}}(x, y, z, u, v) \phi_{\alpha^{\prime \prime}}\left(x_{\alpha^{\prime} \alpha^{\prime \prime}}^{g}, y_{\alpha^{\prime} \alpha^{\prime \prime}}^{g}, z_{\alpha^{\prime} \alpha^{\prime \prime}}^{g}\right)
\end{aligned}
$$

with $\hat{D}_{\alpha \alpha^{\prime}}=\left(E+\Delta_{\alpha}\right) \delta_{\alpha \alpha^{\prime}}-V_{\alpha \alpha^{\prime}}$
and f, h, g are known function to account for the permutation operators
Search solutions in the form

$$
\varphi(x, y, z)=\sum_{i j k} c_{i j k} S_{i}(x) S_{j}(y) S_{k}(z)
$$

where S are spline functions.
This is the only assumption in the calculations

For bound state the boundary conditions are exponentially decreasing in all directions

We have derived analytic expressions for the integral kernels, e.g. :

$$
\begin{aligned}
& g_{\alpha, \alpha^{\prime}}(x, y, z, u, v)= \frac{1}{2} \cdot t_{\alpha, \alpha^{\prime}} \cdot \sum_{l_{x y}, \sigma l_{x y}^{\prime}, \sigma^{\prime}, l_{y z}^{\prime}, L, S, \lambda} A\left\{\begin{array}{ccc}
l_{x} & \sigma_{x} & j_{x} \\
l_{y} & s_{3} & j_{y} \\
l_{x y} & \sigma & J_{3}
\end{array}\right\} \cdot A\left\{\begin{array}{ccc}
l_{x}^{\prime} & \sigma_{x}^{\prime} & j_{x}^{\prime} \\
l_{y}^{\prime} & s_{4} & j_{y}^{\prime} \\
l_{x y}^{\prime} & \sigma^{\prime} & J_{3}^{\prime}
\end{array}\right\} \\
& \cdot A\left\{\begin{array}{ccc}
l_{x y} & \sigma & J_{3} \\
l_{z} & s_{4} & j_{z} \\
L & S & J
\end{array}\right\} \cdot A\left\{\begin{array}{ccc}
l_{x y}^{\prime} & \sigma^{\prime} & J_{3}^{\prime} \\
l_{z}^{\prime} & s_{2} & j_{z}^{\prime} \\
L & S & J
\end{array}\right\} \cdot A\left\{\begin{array}{ccc}
l_{x}^{\prime} & l_{y}^{\prime} & l_{x y}^{\prime} \\
l_{z}^{\prime} & L & l_{y z}^{\prime}
\end{array}\right\} \\
& \cdot A\left\{\begin{array}{ccc}
l_{x}^{\prime} & \lambda & l_{x y} \\
l_{z} & L & l_{y z}^{\prime}
\end{array}\right\} \cdot(-)^{s_{1}+s_{2}-\sigma_{x}+s_{2}+\sigma^{\prime}-S} \cdot A\left\{\begin{array}{ccc}
s_{2} & s_{1} & \sigma_{x} \\
s_{3} & \sigma & \sigma_{x}^{\prime}
\end{array}\right\} \\
& \cdot A\left\{\begin{array}{ccc}
s_{2} & \sigma_{x}^{\prime} & \sigma \\
s_{4} & S & \sigma^{\prime}
\end{array}\right\} \cdot \frac{x y z}{x_{K K}^{\prime} y_{K K}^{\prime} z_{K K}^{\prime}} \\
& \mathcal{H}_{l_{x} l_{y}, l_{x}^{\prime} \lambda}^{l_{x}}(x, y, u) \cdot \mathcal{H}_{\lambda l_{z}, l_{y}^{\prime} l_{z}^{\prime}}^{l_{y z}\left(y_{0}, z, v\right)} \\
& t_{\alpha, \alpha^{\prime}}=(-)^{t_{1}+t_{2}-\tau_{x}+t_{2}+T_{3}^{\prime}-T} \cdot A\left\{\begin{array}{ccc}
t_{2} & \tau_{x}^{\prime} & T_{3} \\
t_{4} & T & T_{3}^{\prime}
\end{array}\right\} \cdot A\left\{\begin{array}{ccc}
t_{2} & t_{1} & \tau_{x} \\
t_{3} & T_{3} & \tau_{x}^{\prime}
\end{array}\right\}
\end{aligned}
$$

SOME RESULTS

The ${ }^{4} \mathrm{He}$ bound state

$$
N_{c}=5+5 \quad N_{c}=15+9
$$

We obtained in 99 the B with local NN potentials

	B	\bar{r}	B	\bar{r}
AV14	23.34	1.56	23.81	1.54
NIJM II	23.39	1.54	23.86	1.53
REID 93	23.65	1.53	24.12	1.52

We obtained in 2004 the B with local+TNI and with non-local NN potentials Phys. Rev C70 (2004) 044002; nucl-th/04080

Potential	$\langle T\rangle$	$-\langle V\rangle$	B	R
INOY96	72.80	103.8	31.00	1.353
INOY03	69.89	99.94	30.04	1.369
INOY04	69.49	99.41	29.91	1.372
INOY04'	69.46	99.36	29.88	1.372
AV18	98.69	123.6	24.95	1.511
Potential	$\langle T\rangle$	$-\langle V\rangle$	$-\langle E\rangle$	R
INOY96	72.45	102.7	30.19	1.358
INOY03	69.54	98.79	29.24	1.373
INOY04	69.14	98.62	29.11	1.377
INOY04'	69.11	98.19	29.09	1.376
AV18	97.77	122.1	24.22	1.516
	97.80	122.0	$24.23[8,34]$	
AV18+UIX	113.2	141.7	$28.50[8,34]$	$1.44[6]$
Expt.			28.30	1.47

The ${ }^{4} \mathrm{He}$ first excitation

Without Coulomb and isospin breaking it appears in most of models as loosely bound
Phys. Rev. C58 (1998) 58-74

$$
C_{\alpha_{x}}(x)=\sum_{\alpha^{\prime}\left(\alpha_{x}^{\prime}=\alpha_{x}\right)} \iint d y d z\left|\Psi_{\alpha^{\prime}}(x, y, z)\right|^{2}
$$

triton

Not a « breathing mode »... but a n orbiting aroud a triton !

$3 n$ and $4 n$ resonances

n_{3} and n_{4} are not bound \ldots. but where are they ?
Computed 3 and 4-n resonances solving full FY in the complex plane (CRM)

Phys. Rev. C71 (2005) 044004; nucl-th/0502037

Phys. Rev. C 72 (2005) 034003; nucl-th/0507022

The $A=4$ scattering states

Have described the $A=4$ scattering prcess below breau-up

$$
\begin{aligned}
& n+{ }^{3} \mathrm{H} \\
& p+{ }^{3} \mathrm{H} \rightarrow n+{ }^{3} \mathrm{He} \\
& \rightarrow{ }^{2} \mathrm{H}+{ }^{2} \mathrm{H}
\end{aligned}
$$

Maybe the more interesting was to found that the more familar interactions, even reproducing the $A=3$ and $A=4$ binding energies, failled to describe the first resonance in nuclear physics !

The He atomic clusters

Our approach allows to deal with strongly repulsive potentials («hard core ») Wa could compute ${ }^{*}$) the Van-der-Waals 3- and 4-body bound states of 4He atoms

$l_{\max }$	$B_{3}(\mathrm{mK})$	$B_{3}^{*}(\mathrm{mK})$	$a_{0}^{(1+2)}(\AA)$
0	89.01	2.0093	155.39
2	120.67	2.2298	120.95
4	125.48	2.2622	116.37
6	126.20	2.2669	115.72
8	126.34	2.2677	115.61
10	126.37	2.2679	115.58
12	126.39	2.2680	115.56
14	126.39	2.2680	115.56

$\max (l x, l y, l z)$	$B_{4}(\mathrm{mK})$	$a_{0}^{(3+1)}(\AA)$
0	348.8	≈-855
2	505.9	190.6
4	548.6	111.6
6	556.0	105.9
8	557.7	103.7

Using the large value of $3+1$ sctatering length we predicted $a B_{4}^{*}=1.09 \mathrm{mK}$ (below B_{3})

Conclusion

The Faddeev-Yakubowsky methods are the only to provide a solution of the full A-body problem, taking into account the rich variety of channels.

They are numerically quite heavy... and that's why A remains small!
With the present computers they can be extended to $A=5$ but $A=4$ brerakup is still "on the way"...

They are not as precise as the ad-hoc variational methods (although 4 digits is relatively easy to get) However the possibility to acces to bound and scattering states on the same foot, lead in some cases to spectacular predictions.
e.g. the first excited state of a $\mathrm{H}_{2}{ }^{+}$(in the pp S=1 channel)

The binding energies of a $\mathrm{H}_{2}{ }^{+}$were calculated with 12 significant digits In the pp S=1 channel, only one bound state was found By computing the $\mathrm{p}+\mathrm{H}$ scattering we found a scattering length value of $\mathrm{A}=750 \mathrm{a} . \mathrm{u}$. We predicted a first excited sate with $B=1.0910^{-9}$ a.u.
Latter confirmed by "variational fishing" ... and yet not found experimentaly !!! One of greatest joys ...

Lazauskas R. and Carbonell J., Few-Body Syst., 31 (2002) 125.
J. Carbonell, R. Lazauskas, D. Delande, L. Hilico and S. Kilic, Europhys. Lett., 64 (3), pp. 316-322 (2003)

