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Success of nuclear covariant density functional

Energy density functional (EDF) theory in nuclear physics is nowadays the
most important microscopic approach for large-scale nuclear structure
calculations in medium and heavy nuclei. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Modern

Phys. 75 (2003) 121. G. A. Lalazissis, P. Ring, D. Vretenar (Eds.), Extended Density Functionals in Nuclear Structure Physics,

in: Lecture Notes in Physics, vol. 641, Springer, Heidelberg, 2004.

In the past decades, covariant (relativistic) EDF has achieved comparable
success with other non-relativistic EDFs in describing many structure
properties of nuclei all over the nuclear chart, keeping some inherent
advantages. Reinhard (1989), Ring (1996), Vretenar (2005), Meng (2006), Niksic (2011) [also shown in
the talk by Dario Vretenar]

advantages in using functionals with manifest covariance

1 Natural inclusion of the nucleon spin degree of freedom

2 Nuclear spin-orbit potential emerges automatically

3 An unique parametrization of time-odd components (nuclear currents and
magnetism) in nuclear mean-field

4 A distinction between scalar and four-vector nucleon selfenergies, leading
to a natural saturation mechanism of nuclear matter

5 Emergence of pseudo-spin/spin symmetry in nucleon/anti-nucleon spectra
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Effective Lagrangian density and energy density functional

Building blocks

The basic building blocks of an effective Lagrangian density are the densities
and currents bilinear in the Dirac spinor field ψ of the nucleon:

(ψ̄OΓψ), O ∈ {1, ~τ}, Γ ∈ {1, γµ, γ5, γ5γµ, σµν}, (1)

The effective Lagrangian can be written as a power series in the currents
(ψ̄OΓψ) and their derivatives, with higher-order terms representing in-medium
many-body correlations. In the following, we start with the Lagrangian density
of the point-coupling model, including four channels.

Four-fermion interaction terms

isoscalarõscalar: (ψ̄ψ)2

isoscalarõvector: (ψ̄γµψ)(ψ̄γµψ)
isovectorõscalar: (ψ̄~τψ) · (ψ̄~τψ)
isovectorõvector: (ψ̄~τγµψ) · (ψ̄~τγµψ)
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Effective Lagrangian density and energy density functional

Effective Lagrangian density

Effective Lagrangian density with higher-order self-coupling terms

L = Lfree + L4f + Lhot + Lder + Lem,

where,

Lfree = ψ̄(iγµ∂
µ −m)ψ, (2a)

L4f = −1

2
[αS(ψ̄ψ)(ψ̄ψ) + αV (ψ̄γµψ)(ψ̄γµψ)

+αTS(ψ̄~τψ) · (ψ̄~τψ) + αTV (ψ̄~τγµψ) · (ψ̄~τγµψ)], (2b)

Lhot = −1

3
βS(ψ̄ψ)3 − 1

4
γS(ψ̄ψ)4 − 1

4
γV (ψ̄γµψ)4, (2c)

Lder = −1

2
[δS∂ν(ψ̄ψ)∂ν(ψ̄ψ) + δV ∂ν(ψ̄γµψ)∂ν(ψ̄γµψ)

+δTS∂ν(ψ̄~τψ) · ∂ν(ψ̄~τψ) + δTV ∂ν(ψ̄~τγµψ) · ∂ν(ψ̄~τγµψ)],(2d)

Lem = −eψ̄γµ
1− τ3

2
ψAµ −

1

4
FµνFµν . (2e)

Note: There are totally 9 free parameters to be determined if we neglect the
isovector-scalar channel.

Remark

The non-linear coupling terms − 1
3
βS(ψ̄ψ)3 − 1

4
γS(ψ̄ψ)4 are necessary for

reproducing incompressibility and surface properties [J. Boguta, A. R. Bodmer,

NPA292(1977)413]. Is it possible to introduce scale-like density in Skyrme-force to
avoid the non-integer ρα term?
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Effective Lagrangian density and energy density functional

Energy density functional

Energy density functional

ESR
DF[ρS , j

µ
i , κ, κ

∗] = Ekin[j0V ] + Eem[j0V ] + E int[ρS , j
µ
i ] + Epair[κ, κ∗] (3)

kinetic part and electrostatic part

Ekin = Tr[(α · p + βm) ρV ], Eem = Tr[
e

2
A0ρp] (4)

interaction part

E int = Tr

[
αS

2
ρ2

S +
βS

3
ρ3

S +
γS

4
ρ4

S +
δS
2
ρS4ρS +

αV

2
jµj

µ +
γV

4
(jµj

µ)2

+
δV
2

jµ4jµ +
αTV

2
~jµTV · (~jTV )µ +

δTV

2
~jµTV · 4(~jTV )µ

]
(5)

NO non-integer power of density terms!
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Effective Lagrangian density and energy density functional

Energy density functional

Pairing part

A density-independent δ-force in the pairing channel is adopted and the
corresponding pairing energy is as follows,

Epair[κ, κ∗] =
∑
τ=n,p

Tr[κ∗τ · Vτ · κτ ]. (6)

Hohenberg-Kohn theorem and Kohn-Sham scheme

− According to the HK theorem, all the ground-state properties of interacting
system are determined by the ground-state density ρI

gs, which minimizes the
total energy. P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.

− According to the KS scheme, there exist a unique local single-particle
potential Σsp(r), such that the exact ground-state density ρI

gs of interacting
system equals the local ground-state density ρNI

gs (r) of the auxiliary
non-interacting system. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
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Relativistic analogue of Kohn-Sham equation

Relativistic analogue of Kohn-Sham equation

Auxiliary local densities/currents in the CDF theory

The local densities/currents in no-sea approximation are bilinear in the
single-particle orbital ψk , weighted by the occupation probability v 2

k or ukvk ,

Γµi (r) =
∑
k>0

v2
k ψ̄k (r)Γµi ψk (r), κτ (r) = −

τ∑
k>0

fkukvkψ
†
k (r)ψk (r). (7)

where Γµi = 1, γµ, and ~τγµ for the S ,T , and TV channels respectively. fk is a
smooth cutoff as introduced in Ref. [Krieger (1990)] to avoid divergence.

Relativistic analogue of Kohn-Sham equation

The single-particle orbital ψk is determined by the relativistic Kohn-Sham
equation,

[γµ(i∂
µ − Σµ)− (m + ΣS)]ψk = 0, (8)

where the single-particle potentials (ΣS ,Σµ) are given in terms of densities,

ΣS = αSρS + βSρ
2
S + γSρ

3
S + δS4ρS , (9a)

Σµ = αV jµV + γV (jµV )3 + δV4jµV + e
1− τ3

2
Aµ

+αTV~τ ·~jµTV + δTV~τ · 4~jµTV . (9b)
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Parametrization procedure and PC-PK1

Parametrization procedure

Fitting method

Levenberg-Marquardt method

Obsevables in fitting

− Binding energies of 60 spherical nuclei from O to Pb isotopes
− Charge radii of 17 spherical nuclei from O to Pb isotopes
− Empirical neutron pairing gaps for 122Sn, 124Sn, and 200Pb
− Empirical proton pairing gaps for 92Mo, 136Xe, and 144Sm

Fitting strategy

− Starting from the PC-LA and PC-F1 sets, we minimize the square deviation
between the experimental observable Oexp

i and the calculated value Ocal
i

χ2(a) =
N∑
i

[
Oexp

i − Ocal
i (a)

ωi

]2

. (10)

− In order to balance the influence of different observables, the weight ωi is
introduced and taken as 1.00 for binding energies, 0.02 for charge radii and
0.05 for empirical pairing gaps respectively. 10 / 44
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Parametrization procedure and PC-PK1

The PC-PK1 parameter set

Table: The point-coupling constants and pairing strengthes of PC-PK1 set. The
corresponding QCD-scaled coupling constants cln are given in the last column as well.

Coupling Constant Value Dimension cln
αS −3.96291 × 10−4 MeV−2 -1.695

βS 8.6653 × 10−11 MeV−5 1.628

γS −3.80724 × 10−17 MeV−8 -3.535

δS −1.09108 × 10−10 MeV−4 -0.277

αV 2.6904 × 10−4 MeV−2 1.151

γV −3.64219 × 10−18 MeV−8 -0.338

δV −4.32619 × 10−10 MeV−4 -1.097

αTV 2.95018 × 10−5 MeV−2 0.505

δTV −4.11112 × 10−10 MeV−4 -4.171

Vn −349.5 MeV fm3

Vp −330 MeV fm3

Table: Comparison with other parameter sets for the descriptions of binding energies
of 60 selected spherical nuclei and charge radii of 17 selected spherical nuclei, where

the root mean square (rms) deviation ∆ =
N∑
i

√
(Oexp

i − Ocal
i )2/N.

PC-PK1 DD-PC1 PC-F1 PC-LA NL3*
∆BE 1.33 3.09 2.60 2.64 2.88
∆Rc 0.019 0.019 0.017 0.023 0.022

− Much better description for the binding energies and the same good
description for the charge radii of candidate nuclei.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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Some illustrative calculations

Nuclear matter properties at the saturation density

Table: The predicted saturation properties for nuclear matter by PC-PK1 in
comparison with those by DD-PC1, PC-F1, PC-LA, NL3* and PK1, including the
binding energy per nucleon E/A, nucleon Dirac mass M∗

D and Landau mass

M∗
L =

√
p2

F + M∗2
D , incompressibility K0, symmetry energy Esym, the slope

L ≡ 3ρ0(dEsym/dρ)ρ=ρ0 and curvature Ksym ≡ 9ρ2
0(d

2Esym/d2ρ)ρ=ρ0 of the
symmetry energy at the saturation density ρ0.

PC-PK1 DD-PC1 PC-F1 PC-LA NL3* PK1

ρ0 (fm−3) 0.154 0.152 0.151 0.148 0.150 0.148
E/A(MeV) -16.12 -16.06 -16.17 -16.13 -16.31 -16.27

M∗
D/M 0.59 0.58 0.61 0.58 0.59 0.60

M∗
L /M 0.65 0.64 0.67 0.64 0.65 0.66

K0(MeV) 238 230 255 264 258 283
Esym(MeV) 35.6 33 37.8 37.2 38.7 37.6

L(MeV) 113 70 117 108 123 116
Ksym(MeV) -583 -528 -627 -709 -630 -641

− The saturation properties of nuclear matter (not adopted in fitting) are
reproduced quite well.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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Some illustrative calculations

Binding energies of spherical nuclei
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− The PC-PK1 well reproduces the binding energies.
− The small overall underestimation leaves space for dynamic correlation.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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Some illustrative calculations
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− A remarkable improvement is shown in the binding energies.
− The deviation is less isospin-dependent.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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Some illustrative calculations

Binding energies of deformed nuclei: dynamic correlation energy

Global studies have shown that the dynamic (vibration and rotation) correlation
energy in the ground state is
− the smallest for magic nuclei
− nearly constant (∼ 3 MeV) for well deformed rare-earth and actinide nuclei
M. Bender, G. F. Bertsch & P.-H. Heenen, PRC73, 034322 (2006)
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Some illustrative calculations

Binding energies of deformed nuclei: dynamic correlation energy
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− a systematic underestimation of the binding energies (∼ 3 MeV) for
both ytterbium and uranium isotopes is found for PC-PK1.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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− After taking into account the rotational energy correction in the cranking
approximation, the deviations by PC-PK1 are within 1 MeV.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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− The ytterbium and uranium isotopes were used to fit the DD-PC1, therefore
there is no need to include additionally the rotational energy correction.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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Configuration mixing of projected triaxial states

Configuration mixing of projected triaxial states

Construction of nuclear collective wave functions

The nuclear collective wave function of even-even nucleus is given by the
superposition of projected triaxial states |Φ(β, γ)〉 with designed quantum
numbers J,

|ΨJM
α 〉 =

∫
dβdγ

∑
K≥0

f JK
α PJ

MK |Φ(β, γ)〉, (11)

where PJ
MK = 1

(1+δK0)
[P̂J

MK + (−1)J P̂J
M−K ] is a symmetrized projection operator

and |Φ(β, γ)〉 is a set of quasi-particle vacua from the static covariant density
functional calculations with constrains on the mass quadrupole moments.

Covariant energy functional with constrains on quadrupole moments

E ′[ρS , j
µ
i , κ, κ

∗] = EDF[ρS , j
µ
i , κ, κ

∗] +
∑
µ=0,2

Cµ
2

(〈Q̂2µ〉 − q2µ)
2 (12)

Note: A large set of highly correlated triaxially deformed states |Φ(β, γ)〉 will
be generated in the minimization of E ′ by changing the parameters q2µ.

16 / 44



Success of nuclear covariant density functional A new parametrization for the nuclear covariant energy functional Symmetry restored multi-reference nuclear covariant density functional Summary and perspective

Configuration mixing of projected triaxial states

Configuration mixing of projected triaxial states

Hill-Wheeler-Griffin (HWG) integral equation

The coefficients f JK
α in the collective wave functions are determined by

variation of the nuclear total energy EJM
α with respect to f JK∗

α .

δEJM
α

δf JK
α (q)

=
δ

δf JK∗
α

[
〈ΨJM

α |Ĥ|ΨJM
α 〉

〈ΨJM
α |ΨJM

α 〉

]
= 0. (13)

This procedure is equivalent to the solution of following discretized
Hill-Wheeler-Griffin (HWG) integral equation: q ≡ (β, γ)∫

dq′
∑
K ′≥0

[
H J

KK ′(q, q
′)− E J

αN J
KK ′(q, q

′)
]
f JK ′
α (q′) = 0, (14)

where H and N are the angular-momentum projected GCM kernel matrices
of the Hamiltonian and the Norm, respectively.

Projected GCM kernel matrices

OJ
KK ′(q, q

′) =
2J + 1

8π2

∫
dΩDJ∗

KK ′(Ω)〈q|ÔR̂(Ω)|q′〉 (15)
17 / 44
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Multi-reference energy density functional and transition density

Multi-reference energy density functional

Transition/mixed density prescription for MR-EDF

In the projected Hamiltonian kernel, we adopt the transition/mixed density
prescription [Bonche, Dobaczewski, Flocard, Heenen & Meyer, NPA510, 466 (1990)], i.e.,

〈q|ĤR̂(Ω)|q′〉/〈q|R̂(Ω)|q′〉 −→ EMR
qq′ [Γ

µ
qq′(Ω)], (16)

where the MR-EDF EMR
qq′ has the same form as the SR-EDF ESR

DF, but replacing
the densities/currents Γµ with the transition/mixed ones Γµqq′(Ω), where
Γµqq(0) = Γµ.

Local transition/mixed density/currents

Γµqq′(Ω)(r) =
∑
kl

〈q|c†k cl R̂(Ω)|q′〉
〈q|R̂(Ω)|q′〉

ψ†k (r)Γ
µψl(r) (17)

Note: In the symmetry restored GCM calculations, the mixed density is in
general a complex quantity and might be negative, and therefore can not be
used in the EDFs with non-integer powers or exponential form of
densities/currents.
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Numerical implementation

Numerical implementation

Numerical details for mean-field calculations

Basis expansion method: a set of three-dimensional isotropic harmonic
oscillator basis functions in Cartesian coordinates

Symmetries: parity, D2 symmetry, and time reversal invariance

Numerical details for beyond-mean-field calculations

A cutoff ξ(= 10−7) in the occupation probability to eliminate the
contribution of high-lying s.p. states in the Dirac basis.

The Gaussian-Legendre quadrature is used for integrals over the Euler
angles in the calculations of kernels.

Symmetries in transition/mixed densities: parity and time reversal
invariance. The mixed (time-odd) currents are non-zero!

Symmetries in overlaps: the symmetries imposed in the mean-field give
rise to symmetries in the overlaps that allow the reduction of the
integration intervals for the Euler angles by a factor of ∼ 16.

JMY, J Meng, D Pena Arteaga & P Ring, Chin. Phys. Lett. 25, 3609 (2008);

JMY, J Meng, P Ring & D Pena Arteaga, PRC79, 044312 (2009);

JMY, J Meng, P Ring & D Vretenar, PRC81, 044311 (2010).
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Numerical implementation

Numerical implementation

Solution of HWG equation

Diagonalize the Norm matrix N J
KK ′(q, q

′) in both K and q spaces
simultaneously and eliminate redundant degree of freedom.

Construct a H matrix in collective subspace composed of natural states.

Diagonalize the new H matrix in the natural basis and calculate the
coefficients f JK

α with the eigenvectors in the collective subspace.

P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Heidelberg, 1980)

Also introduced in the P.-H.Heenen’s talk!
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Numerical implementation

A approximate scheme correction for particle number projection

PN correction to MR-EDF

To account for the PNP correction, one usually subtracts two constraining
terms from the MR-EDF,

EMR
qq′ [Γ

µ
qq′ (Ω)] → EMR

qq′ [Γ
µ
qq′ (Ω)]− λp[Zq,q′ (Ω)− Z0]− λn[Nq,q′ (Ω)− N0],(18)

where Z/N0 is the desired proton (neutron) number, λτ = (λq
τ + λq′

τ )/2 and
Z/Nq,q′(Ω) = Tr[Γ0

qq′(Ω)(r)].

Mean-field and projected energy curves of
24Mg, calculated without (left panel) and with
(right panel) the PN correction.

Importance of the PN correction on the
ordering of AMP PECs in certain regions of
deformation.

JMY, H Mei, H Chen, J Meng, P Ring, & D Vretenar, PRC 83, 014308 (2011)
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Numerical implementation

Convergence check of the angular momentum projection

JMY, J Meng, P Ring, ZX Li, ZP Li & K Hagino, PRC 83,

014308 (2011)

The expectation value of Ĵ2 on the projected
state |JMK ; q〉,

〈JMK ; q|Ĵ2|JMK ; q〉

=

∫
dΩDJ∗

MK 〈Ĵ2R̂(Ω)〉∫
dΩDJ∗

MK 〈R̂(Ω)〉
= J(J + 1)~2, (19)

where Ω = (φ, θ, ψ).

Nθ = 10(12) is sufficient for the axial state
with J ≤ 4(6).

Nφ,ψ = 8(10) is sufficient for the triaxial state
with J ≤ 2(4). The larger K component
requires more mesh points for φ, ψ angles!

(Nφ,Nθ,Nψ) = (10, 10, 10) is sufficient for the
triaxial state with J ≤ 4.

More mesh points in Euler angles for the states of
higher spin states.
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Some illustrative calculations

An example: the well deformed nucleus 166Dysprosium

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
- 1 3 5 0

- 1 3 4 8

- 1 3 4 6

- 1 3 4 4

- 1 3 4 2

- 1 3 4 0

 

 

E (
Me

V)

β

 J = 0
 J = 2
 J = 4
 J = 6
 J = 8
 J = 1 0
 M F

1 6 6 D y

A pronounced minimum with
β = 0.350 in the mean-field potential
energy surface.

After angular momentum projection,
one obtains the projected PES with
J = 0. · · · , 10.

The projected PES with J = 0 has a
minimum with β = 0.375.

The energy gained from AMP is∼ 3
MeV.
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Some illustrative calculations

An example: the well deformed nucleus 166Dysprosium

Figure: The energies of projected GCM states with
J = 0, 2 as a function of the cutoff ζ used to define
the natural basis. The horizontal line indicates the
energy position for minimum on the projected PEC.

The appearance of plateaus is the
signature of the convergence of the
GCM calculations. P. Bonche, J. Dobaczewski, H.

Flocard, P.-H. Heenen, and J. Meyer, Nucl. Phys. A 510, 466

(1990)

The ζ value should be the same for
the same spin J state (orthogonality
condition), but could be different for
different spin states.

Also introduced in the Rodriguez’s talk!
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Some illustrative calculations

An example: the well axially deformed nucleus 166Dysprosium

Figure: The excitation energies [normalized to
Ex (2

+
1 )] and B(E2) values of low-lying states as

functions of angular momentum.

Good agreement has been shown
between the rigid rotor model and the
projected GCM calculations, both of
which reproduce the data quite well.

25 / 44



Success of nuclear covariant density functional A new parametrization for the nuclear covariant energy functional Symmetry restored multi-reference nuclear covariant density functional Summary and perspective

Some illustrative calculations

1DAMP+GCM calculation for 80Zr

- 0 . 5 0 . 0 0 . 5 1 . 0
- 2
0
2
4
6
8

1 0
 

E (
Me

V)

b

R M F ( P C P K 1 ) 8 0 Z r

 M F
 J = 0
 J = 2
 J = 4
 J = 6
 J = 8
 J = 1 0

26 / 44



Success of nuclear covariant density functional A new parametrization for the nuclear covariant energy functional Symmetry restored multi-reference nuclear covariant density functional Summary and perspective
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Some illustrative calculations

1DAMP+GCM calculation for 80Zr
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Some illustrative calculations

Example: 24Mg

− AMP generate two
competing minima on the
PEC(J = 0).
JMY, J Meng, P Ring,& D Vretenar, PRC81,

044311 (2010)

− AMP deepens the energy of triaxial state (also shown
in P. H. Heenen’s talk!).

− The spectrum is reproduced rather well.
− Triaxiality increases slightly the collectivity of 24Mg.
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Some illustrative calculations

Potential energy curves of magnesium isotopes
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b
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2 8
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Figure: Self-consistent RMF+BCS mean-field potential energy curves of even-even
magnesium isotopes, as functions of the axial deformation parameter β.

There are both prolate and oblate minima in most isotopes. The changing of
global minima shows a clear picture of shape evolution with the neutron
number: spherical (N=8) → deformed → spherical (N=20) → deformed 29 / 44
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Some illustrative calculations

Potential energy curves of magnesium isotopes
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Figure: Angular-momentum projected 0+ potential energy curves of even-even
magnesium isotopes, as functions of the axial deformation parameter β.

The restoration of rotational symmetry lowers down the deformed minima and
makes the spherical minima soft.
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Some illustrative calculations

E2 transition strengths of magnesium isotopes

8 1 2 1 6 2 0 2 4 2 8
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0  H F B  ( G o g n y )
 R M F ( 1 D ) ( P C - F 1 )
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 C E R N

 

 

B(
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:0+ 1 ->
 2+ 1) (e

2 fm
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N e u t r o n  n u m b e r

 M g  

Figure: B(E2; 0+
1 → 2+

1 ) (e2fm4) values in
20−40Mg, calculated using the AMP+GCM model
with the relativistic density functional PC-F1, are
compared to available data and the results of the
1DAMP+GCM calculation based on the
non-relativistic HFB framework with the Gogny
force [Rodriguez-Guzman, Egido & Robledo, NPA709, 201 (2002)].

By restricting axial symmetry, the
calculations with PC-F1 yield results in
reasonable agreement with data except
at and in the neighborhood of the
neutron number N = 20.

The PC-F1(PC-PK1) gives spherical g.s.
for 32Mg, contradicting with the data?

W. Schwerdtfeger et al., PRL 103, 012501 (2009); K. Wimmer et al.,

PRL 105, 252501 (2010)

The puzzle of 32Mg! Fortune, PRC84, 024327 (2011)

Triaxality or pairing correlation?
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Some illustrative calculations

Different pairing strengths: δ force
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Orig.(δ∗): T. Burvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, PRC65, 044308 (2002)

Adju.(δ): JMY, J. Meng, P. Ring & D. P. Arteaga, PRC79, 044312 (2009)
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Some illustrative calculations

Strengths of δ pairing force in 32Mg

Adjusted pairing strengths (fitted to
odd-even mass diff.) lower down the
shoulder by 1.6 MeV. As a results, a
prolate deformed minimum is shown on
the projected (J = 0) PEC.
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shoulder by 1.6 MeV. As a results, a
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Results of the 3DAMPGCM calculations.
The B(E2; 0+

1 → 2+
1 ) = 330.1 e2fm4 and

the ordering of 2+
1 and 0+

2 states in 32Mg
by the adjusted pairing strengths are in
good agreement with the data.
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Some illustrative calculations

Strengths of δ pairing force in 32Mg

Distributions of wave functions:

0+
1 : Prolate 0+

2 : Spherical and Prolate
Results of the 3DAMPGCM calculations.
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Some illustrative calculations

Strengths of δ pairing force in 32Mg

The strong pairing strength melts the
N = 20 shell gap, as a consequence of
which, the deformed configuration
becomes the ground state.

Results of the 3DAMPGCM calculations.
The B(E2; 0+

1 → 2+
1 ) = 330.1 e2fm4 and

the ordering of 2+
1 and 0+

2 states in 32Mg
by the adjusted pairing strengths are in
good agreement with the data.

33 / 44



Success of nuclear covariant density functional A new parametrization for the nuclear covariant energy functional Symmetry restored multi-reference nuclear covariant density functional Summary and perspective

Some illustrative calculations

Carbon isotopes

− Rather good agreement between the two
calculations and the experiment data is found
for the systematics of both Ex(2

+
1 ) and

B(E2 : 2+
1 → 0+

1 ) values.
JMY, J Meng, P Ring, ZX Li, ZP Li & K Hagino, PRC 83, 014308 (2011)
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Figure: Excitation energies of 2+

1 states

Ex (2
+
1 ) (MeV) and the B(E2) values (e2fm4)

for even-even carbon isotopes.
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Some illustrative calculations

Carbon isotopes

− Rather different 〈β2〉1/2 have been shown in
16,18,20C, or even in 22C
− Relative large 〈β2〉1/2 in 10,12,14C are from
large shape fluctuation.
JMY, J Meng, P Ring, ZX Li, ZP Li & K Hagino, PRC 83, 014308 (2011)

4 6 8 1 0 1 2 1 4 1 6
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

 

 

<b
2 >1/2

n e u t r o n  n u m b e r

 n e u t r o n
 p r o t o n1 D A M P + G C M

c a r b o n

Figure: Average deformation of 0+
1 state in

the 1DAMP+GCM calculations for even-even
carbon isotopes.
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Some illustrative calculations

Potential energy surfaces in (β, γ) plane

Potential energy surfaces:
Probability distributions:

JMY, J Meng, P Ring, ZX Li, ZP Li & K Hagino, PRC 83, 014308 (2011)
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Some illustrative calculations

Potential energy surfaces in (β, γ) plane

Potential energy surfaces:

Single-particle energy levels of neutrons in 16C:

JMY, J Meng, P Ring, ZX Li, ZP Li & K Hagino, PRC 83, 014308 (2011)
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Some illustrative calculations

Effects of triaxiality in 16,18,20C

4 6 8 1 0 1 2 1 4 1 60

5

1 0

1 5
0
2
4
6
8 C a r b o n

 E x p .
 1 D - A M P G C M  ( P C - F 1 )
 3 D - A M P G C M  ( P C - F 1 )

 

 

B(
E2

:2+ 1 ->
 0+ 1) (e

2 fm
4 )

N e u t r o n  n u m b e r

 

 
E x(2+ 1 ) (

Me
V)

Figure: Excitation energies of 2+
1 states Ex (2

+
1 )

(MeV) and the B(E2) values (e2fm4) for
even-even carbon isotopes.

− Even though there is an evident
triaxial minimum on the projected PEC
with J = 0 (18C), the effect of
triaxiality on the Ex(2

+
1 ) and

B(E2 : 2+
1 → 0+

1 ) is small.

36 / 44



Success of nuclear covariant density functional A new parametrization for the nuclear covariant energy functional Symmetry restored multi-reference nuclear covariant density functional Summary and perspective

Outline

1 Success of nuclear covariant density functional

2 A new parametrization for the nuclear covariant energy functional

Effective Lagrangian density and energy density functional

Relativistic analogue of Kohn-Sham equation

Parametrization procedure and PC-PK1

Some illustrative calculations

3 Symmetry restored multi-reference nuclear covariant density functional

Configuration mixing of projected triaxial states

Multi-reference energy density functional and transition density

Numerical implementation

Some illustrative calculations
An example: the well deformed nucleus 166Dysprosium

1DAMP+GCM calculation for 80Zr

3DAMP+GCM calculations for Magnesium isotopes

3DAMP+GCM calculations for Carbon isotopes

4 Summary and perspective
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Summary and perspective

A new parameter set PC-PK1 has been proposed:

I Observables (binding energies, charge radii, and empirical
pairing gaps) of 60 selected spherical nuclei (in fitting)

I Saturation properties of nuclear matter and isospin dependence
of binding energy

I Properties of spherical and deformed nuclei (dynamic
correlation energy is necessary)

Based on the covariant EDF, angular momentum restored configuration
mixing calculations have been realized by implementing the 3DAMP and
GCM. The success of this MR-EDF calculations has been illustrated in
both carbon and magnesium isotopes as well as in 80Zr.

I The effect of triaxiality is not evident for g.s (band) of
concerned nuclei. (Is there any for other properties, nuclei?)

I Much influence of pairing strength on 32Mg.

Many things to be done ...

I NO particle number projection (to be implemented) (could be regularized!)

I Density-dependent terms in EDF (exponential form, which density?)

I · · ·
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Collaboration

Relativistic EDF

Zhipan Li, Hua Mei Southwest Univ. China

Zhao-Xi Li, Jiang Xiang Southwest Univ. China (students)

Jie Meng, Peng-wei Zhao Peking Univ. China

Peter Ring, Daniel Pena Arteaga TUM, Germany

Dario Vretenar Zagreb Univ. Croatia

Kouichi Hagino Tohoku Univ. Japan

Non-relativistic EDF

Paul-Henri Heenen, Kouhei Washiyama ULB, Belgium

Michael Bender Université Bordeaux, France
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Center-of-Mass correction and average pairing gap

Center-of-Mass correction to total energy

As the translational symmetry is broken in mean-field approximation, the c.m.
correction energy is calculated by the projection-after-variation in first-order
approximation with the posteriori correction scheme,

Emic
c.m. = − 1

2mA
〈P̂2

c.m.〉, (20)

with A mass number and P̂c.m. =
∑A

i p̂i the total momentum in the c.m.
frame. M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, EPJA 7, 467 (2000)

Average pairing gap

The pairing strength parameters Vτ can be adjusted by fitting the average
pairing gaps to the experimental (five-point) odd-even mass difference,

〈∆〉τ =

∑
k fkukvk < ∆τ (r) >k∑

k fkukvk
, ∆τ (r) =

∂Epair[κ, κ∗]

∂κτ (r)
. (21)

M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, EPJA 8, 59(2000)
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Charge radii and neutron thickness
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Fission barrier of 240Pu
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− The fission barrier and the excitation energy of the fission isomer are in
agreement with the empirical values.
PW Zhao, ZP Li, JMY & J Meng, PRC82, 054319 (2010)
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Neutron-rich Kr, Sr, Zr, and Mo isotopes

Figure: The charge radii of Kr, Sr, Zr, and Mo isotopes calculated with the PC-PK1
set together with a separable pairing force in Ref. [Tian, Ma,& Ring, PLB676 (2009)44].

J Xiang, ZP Li, ZX Li, JMY & J Meng, arXiv:1107v1 [nucl-th] (2011) 43 / 44
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Shape coexistence in 98Sr and 100Zr

Table: The Ex (0
+
2 ) and ρ2(E0; 0+

2 → 0+
1 ) of 98Sr and 100Zr, by the Bohr Hamiltonian

calculations derived from the PC-PK1, in comparison between the data.

98Sr 100Zr

Cal. Exp. Cal. Exp.

Ex (0
+
2 )(MeV) 0.216 0.215 0.468 0.331

ρ2(E0; 0+
2 → 0+

1 )× 103 116.841 51(5) 150.321 108(19)

The experimental data is reproduced
rather well.

The ρ2(E0) matrix element in 100Zr is
relative larger than that in 98Sr, which is
due to the relative lower barrier (along
γ-direction) separating the competing
prolate and oblate minima.

J Xiang, ZP Li, ZX Li, JMY & J Meng, arXiv:1107v1 [nucl-th] (2011)
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