Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

Pseudo-potential-based Skyrme EDF kernel

$\underline{\mathsf{J.}\;\mathsf{Sadoudi}}^1\quad \mathsf{T.}\;\mathsf{Duguet}^1\quad\mathsf{K.}\;\mathsf{Bennaceur}^2\quad\mathsf{J.}\;\mathsf{Meyer}^2$

 1 DSM/IRFU/SPhN, CEA Saclay 2 IPNL, Université Lyon 1

12-16 septembre 2011

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

Outline

Introduction

- Three-body Skyrme pseudo-potential
 Construction of the pseudo-potential
 - Trilinear part of the EDF
- Fitting protocol
 - Symmetric Nuclear Matter
 - SLyX Fitting protocol
- Results
 - SNM properties
 - Landau parameters
 - Binding energies and radii systematics

Conclusions

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Outline				

Introduction

- Three-body Skyrme pseudo-potential
 Construction of the pseudo-potential
 Till
 - Trilinear part of the EDF
- Fitting protocol
 - Symmetric Nuclear Matter
 - SLyX Fitting protocol
- Results
 - SNM properties
 - Landau parameters
 - Binding energies and radii systematics

Conclusions

Introduction Three-body Skyrme pseudo-potential •00 00000		Fitting protocol	Results	Conclusions	
		000	00000	00	
General EDF	method : Basic ingredie	ents			

Key object : the off-diagonal energy kernel

$$E[g',g] \equiv E[\langle \Phi(g')|; |\Phi(g)\rangle] \equiv E[\rho_{ij}^{g'g}, \kappa_{ij}^{g'g}, \kappa_{ij}^{gg'*}]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j^{\dagger} a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle} \quad ; \quad \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle}$$

• $\{a_i^{\dagger}\}$ = arbitrary single-particle basis

• $|\Phi(g)\rangle=$ Bogoliubov product state with collective label g

Ex: purely local Skyrme bilinear kernel without isospin and pairing

$$E^{\text{ex}}[g',g] \equiv \int d\vec{r} \left\{ \frac{C^{\rho\rho}\rho^{g'g}(\vec{r})\rho^{g'g}(\vec{r}) + C^{ss}\bar{s}^{g'g}(\vec{r}) \cdot \bar{s}^{g'g}(\vec{r}) \right\}$$

• { $\rho^{g'g}(\vec{r})$, $\vec{s}^{g'g}(\vec{r})$ } = set of one-body *local* transition densities • $C^{\rho\rho}$ and C^{ss} are the free parameters to adjust phenomenologically

Introduction •00	Three-body Skyrme pseudo-potential 00000	Fitting protocol	Results 00000	Conclusions 00
Particular	case : pseudo-potential-ba	sed EDF		
Key object :	the off-diagonal energy kernel			

$$E_{\boldsymbol{H}}[g',g] \langle \Phi(g') | \Phi(g) \rangle \ \equiv \ \langle \Phi(g') | \boldsymbol{H}_{\mathsf{pseudo}}(\{t_i\}) | \Phi(g) \rangle \ \stackrel{\mathsf{GWT}}{=} \ E_{\boldsymbol{H}}[\rho_{ij}^{g'g}, \kappa_{ij}^{g'g}, \kappa_{ij}^{gg's}]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j^{\dagger} a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle} \quad ; \quad \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle}$$

• $\{a_i^{\dagger}\} = \text{arbitrary single-particle basis}$

• $|\Phi(g)\rangle=$ Bogoliubov product state with collective label g

Ex: purely local Skyrme bilinear kernel derived from two-body pseudo-potential

•
$$H_{\text{pseudo}} = t_0 \, \delta(\vec{r}_1 - \vec{r}_2)$$

 $E_H^{\text{ex}}[g',g] = \int d\vec{r} \, \left\{ A^{\rho\rho} \rho^{g'g}(\vec{r}) \rho^{g'g}(\vec{r}) + A^{ss} \bar{s}^{g'g}(\vec{r}) \cdot \bar{s}^{g'g}(\vec{r}) \right\}$

• $A^{
ho
ho}$ and A^{ss} are related through a single parameter $t_0 \Rightarrow$ Pauli principle

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
EDF method	: density-dependent inte	eraction		

Key object : the off-diagonal energy kernel

$$E[g',g]\langle \Phi(g')|\Phi(g)\rangle \ \equiv \ \langle \Phi(g')|\, "H"\,(\{t_i\},\rho^{g'g}(\vec{r}))|\Phi(g)\rangle \ \stackrel{``\mathsf{GWT"}}{=} \ E[\rho^{g'g}_{ij},\kappa^{g'g}_{ij},\kappa^{gg'}_{ij}*]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j^{\dagger} a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle} \quad ; \quad \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle}$$

• $\{a_i^{\dagger}\} = \text{arbitrary single-particle basis}$

• $|\Phi(g)\rangle=$ Bogoliubov product state with collective label g

Ex: purely local Skyrme (quasi) bilinear kernel

$$E^{\rm ex}[g',g] \equiv \int d\vec{r} \left\{ A^{\rho\rho} \rho^{g'g}(\vec{r}) \rho^{g'g}(\vec{r}) \rho^{g'g}(\vec{r}) + A^{ss} \rho^{g'g}(\vec{r}) \vec{s}^{g'g}(\vec{r}) \cdot \vec{s}^{g'g}(\vec{r}) \right\}$$

- Empirical density dependence breaks the Pauli principle = self-interaction
- EDF method with density-dependent interaction is not a pseudo-potential-based EDF

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Motivations				

General-EDF vs pseudo-potential-based-EDF

- **X** General-EDF formulation break Pauli principle a priori
- ✓ Pseudo-potential-based EDF one case free from such problem
 - \blacktriangleright The pseudo-potential must not depend on the system
- **X** Symmetry restoration for general-EDF \Rightarrow problematic *a priori*
 - $\mathbf x$ Can design regularization method but non trivial
 - ✓ Pseudo-potential-based-EDF \Rightarrow free from any problem

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Outline				

Introduction

- Three-body Skyrme pseudo-potential
 Construction of the pseudo-potential
 Trilinear part of the EDF
 - Fitting protocol
 - Symmetric Nuclear Matter
 - SLyX Fitting protocol
 - Results
 - SNM properties
 - Landau parameters
 - Binding energies and radii systematics

Conclusions

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	●0000	000	00000	00
Challenges				

Pseudo-potential-based EDF

- X How to get high-quality EDF parameterizations in such a restricted formulation?
- → According to previous (limited) attempt, this is not easy
- ► Develop rich enough pseudo-potential to provide good phenomenology
- → Develop simple enough pseudo-potential whose fitting remains bearable
- **X** The analytical derivation of the energy kernel can be tedious

A new Skyrme pseudo-potential

- **Two-body** Skyrme pseudo-potential without density dependence (unsufficient)
- ★ The most general three-body Skyrme pseudo-potential at second order in gradients
- \bigstar The same pseudo-potential should be used in the normal and pairing channel
- **X** Present study : normal part of the functional only

Introduction	Three-body Skyrme pseudo-potential			al	Fitting protocol		Results		Conclusions	
000	00000				000			00000	00	
~	<u> </u>				. .	-				

- Pseudo-potential \Rightarrow compute E[g,g] and E[g',g] strictly follows
- Three-body kernel through Standard Wick Theorem

$$E_{H}^{\rho\rho\rho} = \frac{1}{6} \sum_{ijklmn} \langle ijk | \hat{v}_{123}^{3} \mathcal{A}_{123} | lmn \rangle \ \rho_{li} \ \rho_{mj} \ \rho_{nk}$$

Antisymmetrizer : $A_{123} = 1 - P_{12} - P_{13} - P_{23} + P_{12}P_{23} + P_{13}P_{23}$

- Aim : Construct the most general Skyrme three-body pseudo-potential
 - \blacktriangleright i.e. identify all three-body operators providing independent EDF terms

Skyrme pseudo-potential ingredients

- $\hat{v}_{123}^3 = \hat{v}_{\overline{123}}^3 + \hat{v}_{\overline{312}}^3 + \hat{v}_{\overline{231}}^3$: develop and derive the energy functional only for $\hat{v}_{\overline{123}}^3$
- Kronecker operators : $\hat{\delta}_{r_i r_j}$ with $i \neq j \in \{1, 2, 3\}^2$
- Gradients operators : $\hat{\vec{k}}_{ij}$, $\hat{\vec{k}}'_{ij}$ with $i \neq j \in \{1, 2, 3\}^2$, $\hat{\vec{k}}_{ij} = -\frac{i}{2}(\hat{\vec{\nabla}}_i \hat{\vec{\nabla}}_j)$
- Exchange operators : P_{ij}^r , P_{ij}^σ , P_{ij}^τ with $i \neq j \in \{1, 2, 3\}^2$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

 $\hat{\vec{k}}_{ij}\cdot\hat{\vec{k}}_{kl}+\hat{\vec{k}}_{ij}^{\,\prime}\cdot\hat{\vec{k}}_{kl}^{\,\prime}$ or $\hat{\vec{k}}_{ij}\cdot\hat{\vec{k}}_{kl}^{\,\prime}+\hat{\vec{k}}_{ij}^{\,\prime}\cdot\hat{\vec{k}}_{kl}$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{\overline{123}}^3$$
 : $\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12} + \hat{\vec{k}}_{12}' \cdot \hat{\vec{k}}_{12}'$ or $\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12}'$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
_				

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{312}^3$$
 : $\hat{\vec{k}}_{13} \cdot \hat{\vec{k}}_{13} + \hat{\vec{k}}_{13}' \cdot \hat{\vec{k}}_{13}'$ or $\hat{\vec{k}}_{13} \cdot \hat{\vec{k}}_{13}'$

Introduction	Three-body	Skyrme p	seudo-po	tential	Fitting	g protocol	Results	Conclusions	
000	00000				000		00000	00	
~	. .				-				

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{231}^3$$
: $\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23} + \hat{\vec{k}}_{23}' \cdot \hat{\vec{k}}_{23}'$ or $\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23}'$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

 $\hat{v}_{123}^3 \ : \ \ \hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{13} + \hat{\vec{k}}_{23}' \cdot \hat{\vec{k}}_{13}' \qquad \text{or} \qquad \hat{\vec{k}}_{13} \cdot \hat{\vec{k}}_{23}' + \hat{\vec{k}}_{13}' \cdot \hat{\vec{k}}_{23}$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{\overline{123}}^3$$
 : $\hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}'_{kl}$ or $\hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}'_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}_{kl}$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i P_{12}^{\sigma} \right] \quad ??$$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{\overline{123}}^3 \ : \ \ \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}' \qquad \text{or} \qquad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl}' + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 \left(P_{13}^{\sigma} + P_{23}^{\sigma} \right) \right] \quad ??$$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{\overline{123}}^3 : \quad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}'_{kl} \quad \text{ or } \quad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}'_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 (P_{13}^{\sigma} + P_{23}^{\sigma}) + x_i^3 P_{12}^{\tau} \right] \quad ??$$

 $\blacktriangleright~P_{ij}^r=\pm 1$ only when applied with gradient terms $\dot{\vec{k}}_{ij}$, \vec{k}_{ij}'

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{123}^3 \ : \ \ \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}' \qquad \text{or} \qquad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl}' + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 (P_{13}^{\sigma} + P_{23}^{\sigma}) + x_i^3 P_{12}^{\tau} + \cdots \right]$$

 $\blacktriangleright~P_{ij}^r=\pm 1$ only when applied with gradient terms $\dot{\vec{k}}_{ij}$, $\dot{\vec{k}}_{ij}'$

→ Starts with 100 parameters

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{123}^3 \ : \ \ \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}' \qquad \text{or} \qquad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl}' + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 (P_{13}^{\sigma} + P_{23}^{\sigma}) + x_i^3 P_{12}^{\tau} + \cdots \right]$$

 $\blacktriangleright~P_{ij}^r=\pm 1$ only when applied with gradient terms ${\hat {\vec k}}_{ij}$, ${\hat {\vec k}}_{ij}'$

- ➡ Starts with 100 parameters
- Derivation of the trilinear EDF : straightforward but cumbersome
 - → Development of a formal computation code
 - → Identification of correlated terms via SVD

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{123}^3 \ : \ \ \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}' \qquad \text{or} \qquad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl}' + \hat{\vec{k}}_{ij}' \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 (P_{13}^{\sigma} + P_{23}^{\sigma}) + x_i^3 P_{12}^{\tau} + \cdots \right]$$

 $\blacktriangleright~P_{ij}^r=\pm 1$ only when applied with gradient terms $\dot{\vec{k}}_{ij}$, \vec{k}_{ij}'

- ➡ Starts with 100 parameters
- Derivation of the trilinear EDF : straightforward but cumbersome
 - ➡ Development of a formal computation code
 - → Identification of correlated terms via SVD
- Final three-body Skyrme pseudo-potential

$$\begin{split} \hat{v}_{\overline{123}}^{3} &= u_{0} \,\,\hat{\delta}_{r_{1}r_{3}} \hat{\delta}_{r_{2}r_{3}} \\ &+ \frac{u_{1}}{2} \left[1 + y_{1} P_{12}^{\sigma} \right] \left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12} + \hat{\vec{k}}_{12}' \cdot \hat{\vec{k}}_{12}' \right) \hat{\delta}_{r_{1}r_{3}} \hat{\delta}_{r_{2}r_{3}} \\ &+ u_{2} \left[1 + y_{21} P_{12}^{\sigma} + y_{22} (P_{13}^{\sigma} + P_{23}^{\sigma}) \right] \left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12}' \right) \hat{\delta}_{r_{1}r_{3}} \hat{\delta}_{r_{2}r_{3}} \end{split}$$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{\overline{123}}^3 : \quad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}'_{kl} \quad \text{ or } \quad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}'_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{123}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 (P_{13}^{\sigma} + P_{23}^{\sigma}) + x_i^3 P_{12}^{\tau} + \cdots \right]$$

 $\blacktriangleright~P_{ij}^r=\pm 1$ only when applied with gradient terms $\dot{\vec{k}}_{ij}$, \vec{k}_{ij}'

- ➡ Starts with 100 parameters
- Derivation of the trilinear EDF : straightforward but cumbersome
 - ➡ Development of a formal computation code
 - → Identification of correlated terms via SVD
- Final three-body Skyrme pseudo-potential

$$\begin{split} \hat{v}_{\overline{312}}^3 &= u_0 \ \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{31}^{\sigma} \right] \left(\hat{\vec{k}}_{31} \cdot \hat{\vec{k}}_{31} + \hat{\vec{k}}_{31}' \cdot \hat{\vec{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ u_2 \left[1 + y_{21} P_{31}^{\sigma} + y_{22} (P_{32}^{\sigma} + P_{12}^{\sigma}) \right] \left(\hat{\vec{k}}_{31} \cdot \hat{\vec{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \end{split}$$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

• Hermiticity implies that gradient operators combine according to

$$\hat{v}_{\overline{123}}^3 \ : \ \ \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}'_{kl} \qquad \text{or} \qquad \hat{\vec{k}}_{ij} \cdot \hat{\vec{k}}'_{kl} + \hat{\vec{k}}'_{ij} \cdot \hat{\vec{k}}_{kl}$$

• Function of exchange operators $P_{\overline{123}}^{\{x\}}$ multiplies each spatial structure listed above

$$P_{\overline{123}}^{\{x_i\}} = t_i \left[1 + x_i^1 P_{12}^{\sigma} + x_i^2 (P_{13}^{\sigma} + P_{23}^{\sigma}) + x_i^3 P_{12}^{\tau} + \cdots \right]$$

 $\blacktriangleright~P^r_{ij}=\pm 1$ only when applied with gradient terms $\dot{\vec{k}}_{ij}$, $\dot{\vec{k}}'_{ij}$

- → Starts with 100 parameters
- Derivation of the trilinear EDF : straightforward but cumbersome
 - → Development of a formal computation code
 - → Identification of correlated terms via SVD
- Final three-body Skyrme pseudo-potential

$$\begin{split} \hat{v}_{\overline{231}}^3 &= u_0 \ \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{23}^{\sigma} \right] \left(\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23} + \hat{\vec{k}}_{23}' \cdot \hat{\vec{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \\ &+ u_2 \left[1 + y_{21} P_{23}^{\sigma} + y_{22} (P_{21}^{\sigma} + P_{31}^{\sigma}) \right] \left(\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \end{split}$$

Introduction 000	Three-body Skyrme pseudo-potential	Fitting protocol	Results 00000	Conclusions OO
Trilinear pa	art of the EDF			
Functional of	f the one-body local densities			
$\mathcal{E}_{even}^{ ho ho ho} =$	$\sum_{t=0,1} \left\{ B_t^{\rho} \rho_0 \rho_t^2 + B_t^{\tau} \rho_0 \rho_t \tau_t + B_t^{\tau} \rho_0 \rho_t +$	$B_t^{\nabla\rho}\rho_0 \vec{\nabla}\rho_t \cdot \vec{\nabla}\rho_t +$	$\sum_{\mu\nu} B_t^J \rho_0 J_{t,\mu\nu}.$	$J_{t,\mu u}\Big\}$
	$+ B_{10}^{\tau} \rho_1 \rho_1 \tau_0 + B_{10}^{\nabla \rho} \rho_1$	$\vec{\nabla}\rho_1 \cdot \vec{\nabla}\rho_0 + \sum B_2$	${}^{J}_{10} ho_1 J_{1,\mu\nu} J_{0,\mu\nu}$	
		μν		
$\mathcal{E}_{odd}^{ ho ho ho ho}={t \ t}$	$\sum_{s=0,1} \left\{ B_t^s \rho_0 \vec{s}_t^2 + B_t^T \rho_0 \vec{s}_t \cdot \vec{T}_t + \right.$	$\sum_{\mu\nu} B_t^{\nabla s} \rho_0 \nabla_\mu s_{t,\nu} \nabla_\mu s_{$	$\nabla_{\mu}s_{t,\nu} + B_t^j \rho_0 j$	$\vec{j}_t \cdot \vec{j}_t$
	$+B_{t\bar{t}}^T \rho_1 \vec{s}_t \cdot \vec{T}_{\bar{t}} + B_t^{\tau s} \vec{s}_0 \vec{s}_t \tau_t$	$a + \sum_{\mu\nu} \left[B_t^{\nabla\rho s} s_{0,\nu} \nabla \right]$	$7_{\mu}\rho_t abla_{\mu} s_{t,\nu}$	
	$+B^{\nabla\rho s}_{t\bar{t}}s_{1,\nu}\nabla_{\mu}\rho_{t}\nabla_{\mu}s_{\bar{t},\nu}+$	$B_t^{Js}s_{0,\nu}j_{t,\mu}J_{t,\mu\nu}$ -	$+ B_{t\bar{t}}^{Js} s_{1,\nu} j_{t,\mu} J_{\bar{t}}$	$[,\mu\nu]$
	$+\sum_{\mu\nu\lambda k}\epsilon_{\nu\lambda k}\Big[B_t^{\nabla sJ}s_{0,k}\nabla\mu$	$s_{t,\nu}J_{t,\mu\lambda} + B_{t\bar{t}}^{\nabla sJ}s$	$_{1,k} \nabla_{\mu} s_{t,\nu} J_{\bar{t},\mu\lambda}$]}
	$+B_{10}^{s}\rho_{1}\vec{s}_{1}\cdot\vec{s}_{0}+B_{10}^{\nabla s}\rho_{1}\nabla$	$_{\mu}s_{1,\nu}\nabla_{\mu}s_{0,\nu} + B_{10}^{j}$	$\rho_1 \vec{j}_1 \cdot \vec{j}_0 + B_{10}^{\tau s}$	$\vec{s}_1 \vec{s}_1 \tau_0$

Introduction 000	Three-body Skyrme pseudo-potential	Fitting protocol	Results 00000	Conclusions 00
Trilinear pa	rt of the EDF			
Functional of	the one-body local densities			
$\mathcal{E}_{even}^{ ho ho ho}=$	$\sum_{t=0,1} \left\{ \frac{B_t^{\rho} \rho_0 \rho_t^2 + B_t^{\tau} \rho_0 \rho_t \tau_t + I}{B_t^{\tau} \rho_0 \rho_t \tau_t + I} \right\}$	$B_t^{\nabla ho} ho_0 \vec{\nabla} ho_t \cdot \vec{\nabla} ho_t +$	$\sum_{\mu\nu} \frac{B_t^J}{B_t} \rho_0 J_{t,\mu\nu}$	$J_{t,\mu\nu}\Big\}$
	$+B_{10}^{\tau}\rho_{1}\rho_{1}\tau_{0}+B_{10}^{\nabla\rho}\rho_{1}$	$\vec{\nabla}\rho_1 \cdot \vec{\nabla}\rho_0 + \sum_{\mu\nu} \underline{B}$	$J_{10}\rho_1 J_{1,\mu\nu} J_{0,\mu\nu}$	
$\mathcal{E}_{\mathrm{odd}}^{ ho ho ho}={t \over t}$	$\sum_{s=0,1} \left\{ \boldsymbol{B}_t^s \rho_0 \vec{s}_t^2 + \boldsymbol{B}_t^T \rho_0 \vec{s}_t \cdot \vec{T}_t + \right.$	$\sum_{\mu\nu} B_t^{\nabla s} \rho_0 \nabla_\mu s_{t,\nu}$	$\nabla_{\mu}s_{t,\nu} + \frac{B_t^j}{\rho_{0,\nu}}$	$\vec{j}_t \cdot \vec{j}_t$
	$+ B_{t\bar{t}}^{T} \rho_1 \vec{s}_t \cdot \vec{T}_{\bar{t}} + B_t^{\tau s} \vec{s}_0 \vec{s}_t \tau_t$	$+\sum_{\mu u}\left[B_{t}^{\nabla hos}s_{0, u}\nabla hos^{2}\right]$	$\nabla_{\mu} \rho_t \nabla_{\mu} s_{t,\nu}$	
	$+ B^{\nabla \rho s}_{t\bar{t}} s_{1,\nu} \nabla_{\mu} \rho_t \nabla_{\mu} s_{\bar{t},\nu} +$	$B_t^{Js}s_{0,\nu}j_{t,\mu}J_{t,\mu\nu}$ -	$+ B_{t\bar{t}}^{Js} s_{1,\nu} j_{t,\mu} J_{t,\mu}^{Js} s_{1,\nu} j_{t,\mu} j_{t,\mu} J_{t,\mu}^{Js} s_{1,\nu} j_{t,\mu} J_{t,\mu}^{Js} s_{1,\mu} J_{t,\mu}^{Js} s_{1,\mu}^{Js} s_$	$\bar{t},\mu u$
	$+\sum_{\mu\nu\lambda k}\epsilon_{\nu\lambda k}\Big[B_t^{\nabla sJ}s_{0,k}\nabla_\mu\cdot$	$s_{t,\nu}J_{t,\mu\lambda} + B_{t\bar{t}}^{\nabla sJ}s$	$_{1,k} abla_{\mu} s_{t,\nu} J_{\bar{t},\mu\lambda}$]}
	$+B_{10}^{s} ho_{1}ec{s}_{1}\cdotec{s}_{0}+B_{10}^{\nabla s} ho_{1} abla_{r}$	$_{\mu}s_{1,\nu} abla_{\mu}s_{0,\nu}+B_{10}^{j}$	$\rho_1 \vec{j}_1 \cdot \vec{j}_0 + B_{10}^{\tau_2}$	$\vec{s}_1 \vec{s}_1 \tau_0$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Trilinear part	of the EDF			

Time-even functional coefficients

	u_0	u_1	u_1y_1	u_2	$u_2 y_{21}$	$u_2 y_{22}$
$B_0^{\rho} =$	$+\frac{3}{16}$	+0	+0	+0	+0	+0
$B_1^{\rho} =$	$-\frac{3}{16}$	+0	+0	+0	+0	+0
$B_0^{\tau} =$	+0	$+\frac{3}{32}$	+0	$+\frac{15}{64}$	$+\frac{3}{16}$	$+\frac{3}{32}$
$B_{10}^{\tau} =$	+0	$-\frac{1}{32}$	$+\frac{1}{32}$	$-\frac{5}{64}$	$-\frac{1}{16}$	$-\frac{7}{32}$
$B_1^{\tau} =$	+0	$-\frac{1}{16}$	$-\frac{1}{32}$	$+\frac{1}{32}$	$+\frac{1}{16}$	$-\frac{1}{16}$
$B_0^{\nabla \rho} =$	+0	$+\frac{15}{128}$	+0	$-\frac{15}{256}$	$-\frac{3}{64}$	$-\frac{3}{128}$
$B_{10}^{\nabla\rho} =$	+0	$-\frac{5}{64}$	$+\frac{1}{32}$	$+\frac{5}{128}$	$+\frac{1}{32}$	$+\frac{7}{64}$
$B_1^{\nabla \rho} =$	+0	$-\frac{5}{128}$	$-\frac{1}{32}$	$-\frac{7}{256}$	$-\frac{1}{32}$	$-\frac{5}{128}$
$B_0^J =$	+0	$+\frac{1}{32}$	$-\frac{1}{16}$	$-\frac{7}{64}$	$-\frac{1}{8}$	$+\frac{1}{32}$
$B_{10}^{J} =$	+0	$-\frac{1}{16}$	$+\frac{1}{16}$	$+\frac{1}{32}$	+0	$+\frac{3}{16}$
$B_{1}^{J} =$	+0	$+\frac{1}{32}$	+0	$-\frac{7}{64}$	$-\frac{1}{16}$	$-\frac{1}{32}$

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	0000	000	00000	00
Conclusions				

Three-body pseudo-potential in the literature

- Time-even and time-odd EDF from u₀ [Beiner et al. NPA, 238, (1975), 29]
- Time-even EDF from *u*₀, *u*₁ [Waroquier *et al.* PRC, **19**, (1979), 1983]
- Time-even EDF from u₀, u₁, y₁, u₂, y₂₁ [Liu et al. NPA, **534**, (1991), 1] (incorrect)
- Performing MR-EDF, i.e. using E[g',g], necessitates time-odd part

Complete energy functional

- The pairing functional must be computed from the same pseudo-potential
 - ➡ Under progress

Spin-orbit and tensor three-body pseudo-potential in development

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Outline				

Introduction

- Three-body Skyrme pseudo-potential
 Construction of the pseudo-potential
 Trilinear part of the EDF
- Fitting protocol
 - Symmetric Nuclear Matter
 - SLyX Fitting protocol
- Results
 - SNM properties
 - Landau parameters
 - Binding energies and radii systematics

Conclusions

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	● 00	00000	00
Motivation				

• Aim :

- **Q** Overcome known difficulty for pure $t_0 \ \hat{\delta}_{\vec{r}_1 \vec{r}_2} \ \hat{\delta}_{\vec{r}_2 \vec{r}_3}$
- Get a pseudo-potential parameterization as good as SLy4
- → Similar fitting procedure used
- How many parameters?
 - → Usual bilinear functional (density-dependent interaction) : 7+2 parameters
 - → Two-body plus three-body pseudo-potential : (9-2)+6 parameters = 4 more

Fitting protocol

Results

Three-body Skyrme pseudo-potential

Introduction

Conclusions

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	00●	00000	00
SLvX Fitting protocol				

Which impact those two behaviors (ρ_{cr}, ρ_{infl}) have?

• Produce a set of parameterizations varying

$$\bullet$$
 K_{∞} : {230, 240, 250, 260, 270}

$$\Rightarrow \frac{m_0^*}{m} : \{0.70, 0.71, \cdots, 0.80, 0.81\}$$

- Parameterizations (preliminary) name : $S_3 Ly_{K_\infty}^{10m_0^*/m}$

Fitted nuclear properties

- Fit on pure neutron matter equation of state
 - As for SLy4 parameterization : Wiringa ab-initio data
- Symmetry energy $a_{sym} = 32 \text{ MeV}$
- Binding energies and radii of doubly magic nuclei (if exist):

40
Ca, 48 Ca, 56 Ni, 100 Sn, 132 Sn, 208 Pb

• Neutron spin-orbit splitting $\epsilon_{3p} \equiv \epsilon_{\nu 3p_{1/2}} - \epsilon_{\nu 3p_{3/2}}$ in ²⁰⁸Pb

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Outline				

Introduction

- Three-body Skyrme pseudo-potential
 Construction of the pseudo-potential
 Trilinear part of the EDF
- Fitting protocol
 - Symmetric Nuclear Matter
 - SLyX Fitting protocol

Results

- SNM properties
- Landau parameters
- Binding energies and radii systematics

Conclusions

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
<u> </u>				

S₃Ly parameterizations

- Is S₃Ly parameterizations high-quality EDFs?
 - ➡ Choice of four S₃Ly parameterizations + SLy4
 - → $S_3Ly_{260}^{71}$, $S_3Ly_{250}^{73}$, $S_3Ly_{230}^{76}$, $S_3Ly_{250}^{81}$

$S_3Ly_{K_\infty}^{10m_0^*/m}$	$S_3Ly_{260}^{71}$	$S_3Ly_{250}^{73}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4
$\rho_{\rm cr}$	0.464	0.431	0.383	0.383	*
$ ho_{infl}$	0.362	0.333	0.289	0.327	*

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

Landau parameters

- Spin instabilities around saturation density, i.e. $G_0 \leq -1$
 - \blacktriangleright Known from [Chang, PLB, **56**, (1975), 205] \Rightarrow gradient-less 3B potential
- Weak point of present parameterizations ⇒ need for higher-order terms?

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00

Landau parameters

- Spin instabilities around saturation density, i.e. $G_0 \leq -1$
 - \blacktriangleright Known from [Chang, PLB, **56**, (1975), 205] \Rightarrow gradient-less 3B potential

● Weak point of present parameterizations ⇒ need for higher-order terms?

Diadian energiae exetencetia						
000	00000	000	00000	00		
Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions		

Binding energies systematic

$S_3Ly_{K_\infty}^{10m_0^*/m}$	$S_3Ly_{260}^{71}$	$S_3Ly_{250}^{73}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
	Isotopic chains					
$ar{\Delta}_E$ (MeV)	2.18	2.02	1.79	1.19	0.75	
$ar{\Delta}_{ E }$ (MeV)	2.74	2.61	2.42	2.01	2.63	
σ_E (MeV)	2.40	2.36	2.28	2.05	3.12	

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions		
000	00000	000	00000	00		
Rinding operates systematic						

Binding energies systematic

$S_3Ly_{K_\infty}^{10m_0^*/m}$	$S_3Ly_{260}^{71}$	$S_3Ly_{250}^{73}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
	Isotonic chains					
$ar{\Delta}_E$ (MeV)	0.73	0.63	0.47	0.05	-0.54	
$ar{\Delta}_{ E }$ (MeV)	1.63	1.56	1.46	1.38	1.67	
σ_E (MeV)	1.87	1.82	1.76	1.70	2.03	

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions		
000	00000	000	00000	00		
Rinding operates systematic						

Binding energies systematic

$S_3Ly_{K_\infty}^{10m_0^*/m}$	$S_3Ly_{260}^{71}$	$S_3 Ly_{250}^{73}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
	Isotonic chains					
$ar{\Delta}_E$ (MeV)	0.73	0.63	0.47	0.05	-0.54	
$ar{\Delta}_{ E }$ (MeV)	1.63	1.56	1.46	1.38	1.67	
σ_E (MeV)	1.87	1.82	1.76	1.70	2.03	

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	0000	00
Radii systema	tic			

Stematic

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions		
000	00000	000	00000	00		
Radii systematic						

$S_3Ly_{K_\infty}^{10m_0^*/m}$	$S_3Ly_{260}^{71}$	$S_3 Ly_{250}^{73}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4
	Isotonic chains				
$ar{\Delta}_{r_c}~(10^{-2}~{ m fm})$	0.5	0.0	0.1	-0.3	3.5
$ar{\Delta}_{ r_c }$ (10^{-2} fm)	1.6	1.7	1.5	1.8	3.6
$\sigma_{r_c}~(10^{-2}~{ m fm})$	2.5	2.5	2.4	2.5	2.7

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions		
000	00000	000	00000	00		
Radii systematic						

$S_3Ly_{K_\infty}^{10m_0^*/m}$	$S_3Ly_{260}^{71}$	$S_3 Ly_{250}^{73}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4
	Isotonic chains				
$ar{\Delta}_{r_c}~(10^{-2}~{ m fm})$	0.5	0.0	0.1	-0.3	3.5
$ar{\Delta}_{ r_c }$ (10^{-2} fm)	1.6	1.7	1.5	1.8	3.6
$\sigma_{r_c}~(10^{-2}~{ m fm})$	2.5	2.5	2.4	2.5	2.7

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	00
Outline				

Introduction

- Three-body Skyrme pseudo-potential
 Construction of the pseudo-potential
 Trilinear part of the EDF
- 3 Fitting protocol
 - Symmetric Nuclear Matter
 - SLyX Fitting protocol
- Results
 - SNM properties
 - Landau parameters
 - Binding energies and radii systematics

Conclusions

C I .	1 .1 1			
000	00000	000	00000	•0
Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions

Conclusions and outlooks

- Possible to get as good phenomenology as usual EDFs with pseudo-potential
- Still spin-instabilities remain a problem

Functional form

- Pairing functional must be computed to be in a true pseudo-potential formulation
- Four-body gradient-less pseudo-potential might help to control spin-instabilities
- S-O and tensor three-body pseudo-potential?

Adjustment procedure

- Use of modern INM equation of states
- Control finite-size instabilities of trilinear parameterizations

Post-fit analysis

- Determine which free parameters are under or over constrained
- Make use of future spurious free parameterizations in MR-EDF calculations

Introduction Three	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	0●
E	1. 1. 111. 1			

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	0.
E				

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	0.
E				

Skyrme EDF 12-16/09/2011 25 / 25 (50)

Introduction	Three-body Skyrme pseudo-potential	Fitting protocol	Results	Conclusions
000	00000	000	00000	0.
E				

