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General plan of the talk.

Part → 1) Short introduction to the ”problem” of COM ....

Part → 2) COM-projected Hartree-Fock approximation (PBV)

Part → 3) Results

3-a) Total energies and hole energies

3-b) Spectroscopic factors → one-nucleon transfer reactions

3-c) Elastic charge form factors and charge densities

3-d) Coulomb sum rules

Part → 4) Conclusions

Collaborator.
K.W.Schmid → Institut für Theoretiche Physik der Universität Tübingen (Germany)
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Introduction

We consider the nucleus as a closed system of interacting and non relativistic nucleons.

Homogenity of space →→ conservation of total linear momentum of the system (the nuclear

hamiltonian can depend only on relative coordinates and momenta).

a) Dependence on total linear momentum is trivial.

b) One should solve the Schrödinger equation for the internal hamiltonian.

Few-body physics → Jacobi coordinates → nucleons are fermions → explicit antisymmetrization

→ very difficult with increasing number of nucleons.

Many-body physics → expansion of w.f in terms of HF (or generalized HF) determinants → Pauli

principle is fullfilled but there is spontaneous symmetry breaking. → spuriuos

admixtures → broken Galilei invariance

Problem recognized inmediately after the development of the shell model (Elliot and Skyrme,

Proc. Roy. Soc. A 232 (1955) 561)

For pure HO configurations and complete n~ω spaces there is a solution (Giraud, NPA 71

(1965) 373)
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Solution with projection techniques

Advantages

a) It works in general model spaces and well as for general (non oscillator) wave functions.

b) It allows to recover translational (PAV) and even full Galilei (PBV) invariances.

Main technical difficulties

a) Any of the bases usually used in nuclear structure is closed under the action of the shift

operator → link with states outside of the original single-particle basis → extended Wick’s

theorems are required.

b) No inert core can be used.

→ Linear momentum is a true A-body correlation

Galilei invariance provides important effects on top of the usually assumed 1/A dependence

K.W.Schmid and F. Grümmer, Z. Phys. A 336 (1990) 5; A 337 (1990) 267.

K.W.Schmid and P.-G.Reinhard, NPA 530 (1991) 283.

K.W.Schmid, Eur. Phys. J. A 16 (2003) 475, A 12 (2001) 29; A 13 (2002) 319; A 14 (2002) 413.
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COM projection before the variation(COM-PBV)

We used the Brink-Boeker interaction B1 (NPA A 91 (1996) 1)

V̂ (1, 2) =
X

i=1,2

e
−

(~r1−~r2)2

µ2
i

“

Wi + BiP̂
σ
−HiP̂

τ
−MiP̂

σ
P̂

τ
”

(1)

complemented with a short finite range spin-orbit interaction (derived from Gogny-D1S) plus

Coulomb.

The projection operator has the Thouless’s form (we go to the rest frame !!!)

Ĉ(0) =

∫

d3~aS(~a) =

∫

d3~aei~a~P (2)

Ĥ =
∑

ir

tir ĉ
†
i ĉi +

1

4

∑

ikrs

vikrsĉ
†
i ĉ

†
k ĉsĉr (3)

Details R.Rodriguez-Guzman and K.W.Schmid; Eur. Phys. J. A 19 (2004) 45; A 19 (2004) 61.
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|D〉 =
A
∏

h=1

b̂†h|0〉 (4)

b̂†β =

Mb
∑

i=1

D∗
iβ ĉ†i (5)

Trial wave function for symmetry restoration (PBV into the COM rest frame)

|D; 0〉 =
Ĉ(0)|D〉

〈D|Ĉ(0)|D〉
(6)

The variational principle is applied to the projected energy δEpr = 0

Epr =
〈D|ĤĈ(0)|D〉

〈D|Ĉ(0)|D〉
(7)

We perform COM-PBV for the nuclei 4He, 12C, 16O, 28Si, 32S and 40Ca.
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For details R.Rodriguez-Guzman and K.W.Schmid; Eur. Phys. J. A 19 (2004) 45; A 19

(2004) 61.
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We have also minimized the energy (penalization of center of mass excitations)

Eλ = 〈Dλ|

(

Ĥ −
~P 2

2MA

)

|Dλ〉 + λ〈Dλ|
~P 2

2MA
+

1

2
MAw2 ~R2|Dλ〉 (8)
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Eh

c = Ec − 〈Dc|b̂
†
h(Dc)

(

Ĥ −
P̂ 2

2M(A − 1)

)

b̂h(Dc)|Dc〉 (9)
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Eh

p = Epr −
〈Dpr|b̂

†
h(Dpr)ĤĈ(0)b̂h(Dpr)|Dpr〉

〈Dpr|b̂
†
h(Dpr)Ĉ(0)b̂h(Dpr)|Dpr〉

(10)
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Usual hole-spectroscopic factors

Snor
h =

∑

σ

∫

d3~k |fnor
hτσ(~k )|2 = δττh

. (11)

Galilei invariant hole-spectroscopic factors → Details EPJ A 19 (2004) 61.

Sproj

h̃
≡
∑

σ

∫

d3~k |fproj

h̃τσ
(~k )|2 = δττh

∞
∫

0

dk k2 gproj

τhh̃ lhjh
(k)

2

(12)

sum rule violation for Galilei invariant hole-spectroscop ic factors

∑

h̃

Sproj

h̃
= A − ǫ (13)

ǫ/A varies only between 0.12 and 0.35 percent for the considered cases.
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Density in momentum representation

ρ̂n ≡
∑

τ

fτ (Q2)

Nτ
∑

i=1

exp{i~q · ~ri} (14)

Normal elastic charge form factor

Fn
ch(Q2) = 〈D|ρ̂n|D〉 (15)

Density in momentum representation+Gartenhaus-Schwartz operator

ρ̂inv ≡ ρ̂n exp{−i~q · ~R} (16)

Galilei invariant charge form factor

F pr
ch (Q2) =

〈D|ρ̂invĈ(0)|D〉

〈D|Ĉ(0)|D〉
(17)

F dy
ch (Q2) = Fn

ch(Q2) exp

{

3

8

~q 2

〈D|P̂
2

|D〉

}

(18)



Microscopic description of nuclear structure with symmetry projected theories 13'

&

$

%



Microscopic description of nuclear structure with symmetry projected theories 14'

&

$

%



Microscopic description of nuclear structure with symmetry projected theories 15'

&

$

%



Microscopic description of nuclear structure with symmetry projected theories 16'

&

$

%



Microscopic description of nuclear structure with symmetry projected theories 17'

&

$

%

Conclusions

1) The restoration of the Galilei invariance in the nuclear many-body problem can be done with

projection techniques.

2) It has important effects not only for oscillator configurations but also for more realistic wave

functions.

3) In the long range this symmetry restoration should also be included in shell model, QMC

diagonalization method as well as in the VAMPIR family.

4) This symmetry restoration is also considered at the moment in electronic structure studies

4-a) 1D repulsive Hubbard model (3D spin projection+ 1D linear momentum projection) →

K.W.Schmid et al., Phys. Rev. B 72 (2005) 085116

4-b) 2D repulsive Hubbard model (3D spin projection+ 2D linear momentum projection) →

R.Rodriguez-Guzman et al., in progress

Good news → A lot remains to be done !!!!!!)
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